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Abstract 

Background:  The ability to compare RNA secondary structures is important in under-
standing their biological function and for grouping similar organisms into families 
by looking at evolutionarily conserved sequences such as 16S rRNA. Most compari-
son methods and benchmarks in the literature focus on pseudoknot-free structures 
due to the difficulty of mapping pseudoknots in classical tree representations. Some 
approaches exist that permit to cluster pseudoknotted RNAs but there is not a general 
framework for evaluating their performance.

Results:  We introduce an evaluation framework based on a similarity/dissimilarity 
measure obtained by a comparison method and agglomerative clustering. Their com-
bination automatically partition a set of molecules into groups. To illustrate the frame-
work we define and make available a benchmark of pseudoknotted (16S and 23S) and 
pseudoknot-free (5S) rRNA secondary structures belonging to Archaea, Bacteria and 
Eukaryota. We also consider five different comparison methods from the literature that 
are able to manage pseudoknots. For each method we clusterize the molecules in the 
benchmark to obtain the taxa at the rank phylum according to the European Nucleo-
tide Archive curated taxonomy. We compute appropriate metrics for each method and 
we compare their suitability to reconstruct the taxa.

Keywords:  RNA secondary structures, Evaluation framework, Benchmark, RNA 
comparison methods, Agglomerative clustering

Background
RNA is a single-stranded polymer made of four types of nucleotides—Adenine (A), 
Guanine (G), Cytosine (C), and Uracil (U)—linked together by phosphodiester bonds. 
RNA can encode genetic information and perform biological functions in molecu-
lar processes including transcription, splicing, translation, and regulation of pro-
tein function. RNA folds on itself forming a three-dimensional shape by establishing 
hydrogen bonds mainly forming Watson-Crick (G-C and A-U) and wobble (G-U) 
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base pairs. Such spatial configuration of an RNA is tied to its biological functions [1]. 
Knowledge of similarity between molecules permits to group them into families, infer 
their evolutionary history, detect functional motifs and, thus, predict their biological 
function [2].

Functional non-coding RNAs such as transfer RNA (tRNA) and ribosomal RNA 
(rRNA) that perform different but cooperative functions in protein synthesis exhibit a 
spatial configuration—i.e., a structure—that is highly conserved despite possible differ-
ences in the sequence of nucleotides (also called primary sequence) [3, 4]. In fact, while 
the sequence variations contribute to differences among species, the structure is neces-
sary for cell function and is evolutionary conserved.

Biological classification started formally in 1758 with Linneus’s work [5]. The aim of 
this research area is to produce biological taxonomies in which one or more populations 
of an organism or organisms are grouped together due to similar characteristics. Such 
groups are called taxa and each defined taxon has a name and belongs to a taxonomy 
rank in the defined hierarchy. Taxonomy ranks that are typically used are: domain, king-
dom, phylum (division in botany), class, order, family, genus and species. Since 1990, 
thanks to the work of Woese et  al.  [6], the general accepted classification of cellular 
life at the domain taxonomy rank is: Archaea, Bacteria and Eukaryota. A major break-
through in the reconstruction of phylogenies, mainly regarding microbial life (which is 
the large majority of life on Earth), was the use of the 16S rRNA, a component of prokar-
yotic ribosomes, because it is present in all cells and shows a slow rate of evolution [7]. 
Current existing taxonomies are phylogenetic tree-guided and manually curated. They 
strongly rely on the molecular approach on 16S rRNA and other ribosomal RNAs like 
23S and 5S. Different taxonomies are available in public databases, e.g. RDP-II  [8], 
Greengenes [9] and SILVA [10, 11].

In the literature, most approaches to compare RNAs focus on the secondary structure, 
an abstraction of the spatial three-dimensional shape obtained disregarding the molec-
ular form and considering only phosphodiester bonds between consecutive nucleo-
tides (referred to as strong bonds) and hydrogen bonds (also called weak bonds). This 
abstraction represents an intermediate level between the primary sequence and the 
shape and has the advantage of being both relevant from a biological perspective and 
tractable from a computational point of view. An RNA secondary structure is said to 
be pseudoknot-free if its arc-diagram does not present crossings among weak bonds 
(Fig. 1a) and it is called pseudoknotted otherwise (Fig. 1b). The arc-diagram of an RNA 
secondary structure is a graph whose vertices, represented on a horizontal line, iden-
tify nucleotides, while the arcs that connect two non-consecutive vertices correspond to 
weak bonds. Comparison methods are typically based on the natural mapping between 
secondary structures without pseudoknots and trees. They apply algorithms based on 
tree edit or tree alignment to quantify the differences between the two molecules. An 
approach based on tree edit distance is implemented in the tool RNAdistance [12], while 
another using tree alignment is developed in RNAforester [3, 13]. Both are distributed 
with the Vienna RNA package  [14]. Other techniques that consider different second-
ary structure representations, such as multilayer models or arc-annotated sequences, 
are also based on tree edit and tree alignment distance. Some implementations of these 
approaches are MiGaL [15], TreeMatching [16], Gardenia [17], and RNAStrAT [18].
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Motifs with pseudoknots play a central role in cellular activities, but they are 
excluded from most of the comparison approaches in the literature because the clas-
sical tree representation of structures fails when these motifs are present. However, 
some alternative techniques have been defined to classify RNA structures with pseu-
doknots. A concept of shape was introduced by Giegerich et  al.  [19], and a topo-
logical classification based on a topological invariant, the Genus, was introduced by 
Bon et al. [20]. To simplify the computation, Reidys et al. introduced the concept of 
shadow of an arc-diagram  [21]. To such a topological classification, Vernizzi et al. 
added a new topological invariant, the crossing number, associated to the shadow of 
the arc-diagram [22]. It is the number of crossings of the shadow arcs. These topolog-
ical-based approaches permit the classification of pseudoknotted RNA molecules into 
families, but they cannot infer their evolutionary history or detect functional motifs. 
For example, Quadrini showed that a set of 16S rRNA, with or without the effects 
of drugs, are classified in the same group  [23]. Moreover, their classification meth-
ods find groups that do not correspond exactly to the known taxonomies. Matsui et 
al. proposed a method that considers tree adjoining grammars for modeling pseu-
doknots and extended hidden Markov models on tree structures to pair stochastic 
tree adjoining grammars  [24]. Chiu and Chen developed heuristics, called Progres-
sive Stem Matching (PSM), to align a pair of RNA secondary structures with arbitrary 
pseudoknots by identifying conserved stems of the two RNA molecules  [25]. A tool 
called PSMAlign was made available for computing the alignment. We introduced a 
tree grammar to model RNA secondary structures with arbitrary pseudoknots and 
defined the Algebraic Structural Pseudoknot RNA Alignment (ASPRA) distance to 
quantify the structural differences between pairs of molecules [26]. Furthermore, we 
developed the tool ASPRAlign to compute the ASPRA distance between two or more 
molecules  [27]. The distance is obtained by aligning particular tree representations 
of RNAs. These trees neglect the primary sequence by considering only the struc-
ture of the molecules to be aligned. Wang et al. [28] proposed a tree representation of 
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Fig. 1  On the top, an RNA secondary structure illustrated via an arc-diagram. The motif in part a is 
pseudoknot-free, while the one in part b is pseudoknotted. Pseudoknots are clearly visible as crossings of 
arcs. On the bottom, the three feasible relations: c concatenation, d nesting and e crossing of two bonds
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structures with pseudoknots by topological centroid identification and their compari-
son methods based on the tree edit distance. Antczak et al. [29] introduced a concept 
of Pseudoknot Order (PskOrder) that gives a measure of the pseudoknot complex-
ity, which allows the connection to the hierarchy of RNA folding introduced by Zok 
et  al.  [30]. A direct application is the encoding of an RNA structure with pseudo-
knots into the dot-bracket-letter notation  [31, 32]. RAG-2D (RNA As Graph) is an 
approach that permits to describe the topology of molecules using the Laplacian 
matrix of a graph. Schlick and co-workers defined dual graphs to formalize RNA sec-
ondary structures using connectivity information among the loops of the structures. 
Their approach permits to exploit concepts of graph theory to study the relation-
ships between structure and function in RNAs also in case of pseudoknotted struc-
tures [33–35]. In particular, they defined two features, based on the Laplacian matrix, 
that reflect the graph topology of a structure. Using these features it is possible to 
define a distance between two structures [36].

To the best of our knowledge the works presented above are the up-to-date availa-
ble studies in the long-standing problem of comparison of RNA secondary structures 
in presence of pseudoknots. Evaluating the performance of these techniques is cer-
tainly an important aspect, but unfortunately, as we mentioned above, a framework 
for evaluating approaches that can manage structures with pseudoknots is not avail-
able in the literature. BRASERO, a benchmark, was introduced by Allali et  al. [37] 
in 2012 for comparìing the performance of tools that accepts only pseudoknot-free 
structures.

This work aims at defining an evaluation framework for comparison methods that 
manage pseudoknotted RNA structures. The framework assumes that it is possi-
ble to obtain a similarity/dissimilarity measure between any pair of structures from 
any considered comparison method. This measure is used as a basis for applying 
agglomerative clustering, one of the most common types among hierarchical cluster-
ing approaches  [38], in order to compute a partition of a given set of molecules. To 
illustrate and test the framework, we select several sets of molecules and automati-
cally partition them to reconstruct their taxa according to a certain taxonomic rank 
of a hierarchical taxonomy. The execution of the framework requires the selection 
of a manually curated biological taxonomy, for instance one of those that are pre-
sent in SILVA [10, 11] or other databases, and select a taxonomy rank, e.g., phylum, 
class, order and so on. Then, agglomerative clustering is run on each set of molecules 
imposing a number of clusters equal to the number of taxa in the selected taxonomy 
rank. The precision of the computed partition w.r.t. the labels in the curated biologi-
cal taxonomy is then computed using appropriate metrics.

More in detail, we define an open-data repository that consists of 504 molecules 
of pseudoknotted 16S rRNA, 68 molecules of pseudoknotted 23S rRNA and 174 
pseudoknot-free molecules of 5  S rRNA belonging to the generally accepted three 
life domains Archaea, Bacteria, and Eukaryota. We then reconstruct their taxa at the 
phylum taxonomy rank according to the European Nucleotide Archive (ENA) tax-
onomy  [39]. The repository of molecules is available at https://​doi.​org/​10.​6084/​m9.​
figsh​are.​20731​783.​v1. The scripts to execute the framework and the processed mol-
ecules are available at https://​github.​com/​bdslab/​Taxon​Class​ifier. They can be used 

https://doi.org/10.6084/m9.figshare.20731783.v1
https://doi.org/10.6084/m9.figshare.20731783.v1
https://github.com/bdslab/TaxonClassifier
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to reproduce all the results presented in this work and to try to reconstruct different 
curated taxonomies at different taxonomy ranks of the same dataset or other datasets. 
Moreover, they can be adapted to classify other kind of features of a set of molecules, 
such as their known function or their types of pseudoknots.

To show how the evaluation framework can be used, we apply it to five comparison 
methods: Genus, PSMAlign, ASPRAlign, PskOrder and RAG-2D. ASPRAlign was intro-
duced by the same authors of this paper while the other methods were developed by 
other research groups. The dissimilarity measures provided by the methods are evalu-
ated w.r.t. their suitability to classify the molecules in groups corresponding to their 
phylum. We compute all the performance scores using the rand index, homogeneity, 
and completeness scores metrics [40, 41]. The metrics are computed for each method, 
varying the parameters of the clustering algorithm. The computed metrics show that, 
in general, Genus and PskOrder have a lower performance than the other methods in 
reconstructing the phyla as they make a high abstraction on the information contained 
in the secondary structure. In the case of 16S structures, PSMAlign, ASPRAlign and 
RAG-2D show similar scores with performance varying slightly according to the chosen 
parameter of the clustering algorithm and the chosen metric for the clustering evalua-
tion. Archaea are better reconstructed by ASPRAlign while, for Bacteria and Eukaryota, 
phyla are better reconstructed by PSMAlign in some cases and by ASPRAlign in some 
other cases. However, the scores of PSMAlign and ASPRAlign have slight differences, 
also w.r.t. the scores of RAG-2D. For Eukaryota, the best scores are lower than those of 
Archaea and Bacteria and this suggests a further analysis on lower taxonomy ranks, such 
as class or order. In the case of 23S structures, the results are similar to the 16S ones, but 
in this case the best scores of Eukaryota are not lower than the Archaea and Bacteria 
ones. This might suggest that for 23S the complexity of the organism does not affect sig-
nificantly the reconstruction of the phyla. Finally, for the pseudoknot-free 5S structures 
we observe a significant predominance of PSMAlign, which confirms an already docu-
mented experiment in which the evaluation framework BRASERO was used [25].

Results
We illustrate the definition of the framework, which is the main result of this paper. This 
includes the construction of the benchmark, which is a fundamental part of the evalu-
ation framework, and how this is to be executed. Then, we also show the results of the 
computations that we obtain applying the framework to the five selected comparison 
methods.

Construction and content of the benchmark

In this paper we use the evaluation framework for assessing the suitability of differ-
ent comparison methods in reconstructing the phylogeny of sets of molecules. To this 
end we selected and processed a benchmark containing all the pseudoknotted 16S and 
23S rRNA secondary structures that were available from the Comparative RNA Web-
site (CRW) version 2 at https://​crw-​site.​chemi​stry.​gatech.​edu/. This database consists of 
entries of ribosomal and intronic RNA molecules obtained by covariance-based compar-
ative sequence analysis [42]. Our choice was mainly motivated by the fact that 16S and 
23S are the molecules for which the taxonomy is better studied. Moreover, we selected 

https://crw-site.chemistry.gatech.edu/
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all the available 5S rRNA secondary structures in order to have a control sub-set and to 
test the framework also on pseudoknot-free structures.

The three groups of selected molecules are formed by 174 entries of 5S, 504 entries of 
16S and 68 entries of 23S. They show an increasing complexity at the level of pseudo-
knots. As complexity measure we consider the concept of PskOrder [29]. 5S molecules 
are the most simple structures in our benchmark as they are pseudoknot-free, i.e., with 
PskOrder equal to zero. All 16S molecules have PskOrder equal to 1, i.e., they are char-
acterized by at most two arcs crossing each other. 23S molecules show a PskOrder in the 
range 2–4, mostly of value 3. This variability of complexity in the benchmark mitigates 
the presence of possible biases in the results of the evaluation due to the particular selec-
tion of molecules that is made. It must be said that the selection, in general, is limited by 
the availability of secondary structures with pseudoknots in public databases.

Statistical information on the benchmark is reported in Table 1. A few of the selected 
structures contained errors in the format or belonged to organisms that were not clas-
sified in the ENA taxonomy. In those cases the structures were excluded from the 
benchmark.

Data processing

We created a unique and stable identifier for each entry in the benchmark. The ID pro-
vides some molecular information and permits the expansion of the benchmark by 
keeping all previous IDs unchanged. The molecular information that is provided, as 
spreadsheets, with the benchmark itself consists of the name of the organism to which 
the molecule belongs together with its phylogenetic information assigned by the ENA 
taxonomy  [39]: the phylum, the class and the order. This choice does not prevent the 
use of other curated taxonomies and also other taxonomic ranks, for instance at lower 
level. Any taxonomy database can be searched, for instance, through the SILVA web-
site https://​www.​arb-​silva.​de using the organism name for getting the relative taxa to be 
used in different executions of the framework.

One of the challenging tasks in the building of the benchmark arose from the fact that 
the comparison tools take various formats as input and sometimes they do not accept 
header information or comments. Therefore, we organized the benchmark into six fold-
ers, each containing a different format: BPSEQ, CT, dot-bracket-letter (db) and the same 
formats without header information or comments (BPSEQ-nH, CT-nH and db-nH). We 

Table 1  Statistical information of the molecules in the benchmark

Life domain Type Number of 
entries

Medium of 
lenghts

Variance of lengths Medium of 
pair numbers

Variance of 
pair numbers

Archaea 5-S 26 124 10 41 5

Bacteria 5-S 71 121 4 39 1

Eukaryota 5-S 77 120 5 37 0

Archaea 16-S 24 1485 180 465 29

Bacteria 16-S 200 588 588 469 60

Eukaryota 16-S 280 1576 117808 433 8298

Archaea 23-S 4 2953 1904 860 118

Bacteria 23-S 43 2914 3018 865 352

Eukaryota 23-S 21 2578 1314895 662 102216

https://www.arb-silva.de
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initially collected the molecules in the BPSEQ and CT formats from the CRW website 
and we converted them into dot-bracket-letter notation using the RNApdbee 2.0 online 
tool [29, 32]. Then we processed all the files to eliminate headers and comments. In the 
files with the header, anyway, the original accession number of the molecule is available 
for searching in other databases. Inside each format folder the molecules are divided 
into the three domain groups: Archaea, Bacteria, and Eukaryota. Each group contains 
the 5S, 16S and 23S subfolders with the actual secondary structure files.

The molecules of the benchmark, together with the spreadsheets reporting the list of 
all the molecules together with their ENA taxonomy information can be freely accessed 
and used at https://​doi.​org/​10.​6084/​m9.​figsh​are.​20731​783.​v1 under the CC-BY 4.0 
License. The evaluation framework and its application to the molecules of the bench-
mark are available at https://​github.​com/​bdslab/​Taxon​Class​ifier under the GNU General 
Public License v3.0.

Execution of the framework

Figure 2 shows how the evaluation framework is executed on a selected set of molecules 
that are assigned a known label corresponding to the taxa of a chosen taxonomy rank 
according to a curated biological taxonomy (Fig. 2(1)).

In our experiment, we selected the sets Archaea 16S, Archaea 23S, Archaea 5S, Bac-
teria 16S, Bacteria 23S, Bacteria 5S, Eukaryota 16S, Eukaryota 23S and Eukaryota 5S 
from our benchmark. Each element of the sets was associated with the corresponding 
phylum label from the ENA taxonomy. The folder RNAs/Molecules of the repository 
https://​github.​com/​bdslab/​Taxon​Class​ifier contains a CSV files for all the sets in which 
the required input information is stored.

The molecules of the set must then be compared pairwise using a selected comparison 
method. A CSV file must be constructed from the computed dissimilarity or similarity 
measures containing the distance between any pair of the molecules in the set (Fig. 2(2)). 
Dissimilarity values can be directly interpreted as distances while, in case similarity 
values sim are made available by the comparison method, they can be easily converted 
into dissimilarity ones diss by normalizing them into the interval [0, 1] and considering 
diss = 1− sim.

We executed the comparison for all the sets of our experiment and for all the five 
methods illustrated in “Methods” Section. The computed values could be directly inter-
preted as distances for Genus, PSMAlign, ASPRAlign and PskOrder. For RAG-2D we 
obtained a CSV file containing, for each molecule, a pair of features derived from the 
eigenvalues of the Laplacian matrix of the dual graph associated to the structure (see 
“Methods” Section). The distances among any pair of molecules are then derived from 
these features. The scripts that were used to execute all the methods are available in the 
folder RNAs/Computation of the repository https://​github.​com/​bdslab/​Taxon​Class​
ifier and can be freely reused to compute the comparison on other sets of molecules or 
can be adapted for other comparison methods. The computed distances or features for 
all the sets in our experiment are available in the folder RNAs/Distances of the same 
repository.

The CSV file containing the distances or the features is given as input to an agglom-
erative clustering algorithm that assigns labels to the elements of the set according to 

https://doi.org/10.6084/m9.figshare.20731783.v1
https://github.com/bdslab/TaxonClassifier
https://github.com/bdslab/TaxonClassifier
https://github.com/bdslab/TaxonClassifier
https://github.com/bdslab/TaxonClassifier
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the computed clusters (Fig. 2(3)). We furnish a Python script executing this task using 
scikit− learn , a free software machine learning library for the Python program-
ming language [43, 44]. The script is available at https://​github.​com/​bdslab/​Taxon​
Class​ifier in two versions: ClusterMatrix.py, which processes CSV files contain-
ing distances, and ClusterFeatures.py, which processes CSV files containing 
pairs of features. The clusters are computed using the single, complete and average 
methods, as specified in “Methods” Section. The molecules are clusterized into a 
number of clusters equal to the number of taxa at the taxonomy rank of the cho-
sen taxonomy. This parameter is automatically computed by the script. For instance, 
in our experiment, Archaea 16S are grouped into 3 clusters because in the ENA 

Fig. 2  Execution of the evaluation framework on a set of molecules. Required input is: a list of the molecules 
with the corresponding taxa labels at a chosen taxonomy rank of a curated taxonomy (1); a CSV file with 
the distances between all pairs of molecules in the set, computed with a selected comparison method (2). 
Agglomerative clustering is applied using the given distances to generate a number of clusters equal to the 
number of different input taxa labels. The result is a list of molecules with assigned cluster labels (3). Metrics 
to evaluate how well the generated cluster labels match the original ones are computed and outputted (4)

https://github.com/bdslab/TaxonClassifier
https://github.com/bdslab/TaxonClassifier


Page 9 of 24Quadrini et al. BMC Bioinformatics          (2022) 23:575 	

taxonomy the number of phyla of the molecules present in the benchmark are just 
three: Euryarchaeota, Crenarchaeota, and Nanoarchaeota.

Finally, the script computes and outputs the values of the three metrics rand index, 
homogeneity and completeness (see “Methods” Section) taking as input the original 
labels of the curated taxonomy and the labels computed by the clustering algorithm 
(Fig. 2(4)).

The results of the execution of the framework on our five comparison methods for the 
Archaea 16S, Bacteria 16S and Eukaryota 16S rRNAs are reported in Tables 2, 3 and  4 
where simple, complete and average linkage was used as parameter of the clustering 
algorithm, respectively. Tables 5, 6 and 7 report the results for the 23S rRNAs follow-
ing the same scheme. Finally, Tables 8, 9 and  10 contains the results for the 5S rRNAs, 
which are the pseudoknot-free ones. The same results are available as output of the 

Table 2  Results of the evaluation framework applied to the 16S rRNA benchmark in which 
molecules are divided into Archaea, Bacteria and Eukaryota. Single linkage was used in clustering

The highest score for each row is written in bold

The scores of the three metrics rand index, homogeneity and completeness are shown where the taxa were constructed 
basing on dissimilarity matrices taken from genus topological invariant (Genus), PSM (PSMAlign tool) ASPRA distance 
(ASPRAlign tool), Pseudoknot Order (PSkOrder) and RNA as Graph Fiedler Vector approach (RAG-2D)

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.514 0.594 0.920 0.601 0.547

Homogeneity 0.037 0.288 0.833 0.118 0.127

Completeness 0.073 0.427 0.778 0.230 0.099

Bacteria

Rand index 0.407 0.495 0.461 0.302 0.696
Homogeneity 0.100 0.357 0.276 0.074 0.240

Completeness 0.206 0.843 0.564 0.279 0.215

Eukaryota

Rand index 0.410 0.450 0.457 0.237 0.611
Homogeneity 0.110 0.234 0.231 0.065 0.218

Completeness 0.296 0.591 0.560 0.406 0.311

Table 3  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 16S rRNA benchmark where complete linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.565 0.721 0.746 0.601 0.547

Homogeneity 0.134 0.833 0.833 0.118 0.128

Completeness 0.198 0.541 0.559 0.230 0.100

Bacteria

Rand index 0.453 0.847 0.818 0.302 0.707

Homogeneity 0.146 0.811 0.684 0.074 0.253

Completeness 0.272 0.631 0.582 0.279 0.212

Eukaryota

Rand index 0.450 0.734 0.768 0.248 0.782
Homogeneity 0.122 0.455 0.474 0.074 0.302

Completeness 0.295 0.476 0.520 0.413 0.272
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Table 4  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 16S rRNA benchmark where average linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.565 0.431 0.746 0.601 0.547

Homogeneity 0.134 0.180 0.833 0.118 0.128

Completeness 0.198 0.147 0.559 0.230 0.100

Bacteria

Rand index 0.453 0.759 0.823 0.302 0.704

Homogeneity 0.146 0.618 0.661 0.074 0.247

Completeness 0.272 0.713 0.613 0.279 0.210

Eukaryota

Rand index 0.450 0.688 0.729 0.248 0.761
Homogeneity 0.122 0.332 0.380 0.074 0.289

Completeness 0.295 0.499 0.483 0.413 0.277

Table 5  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 23S rRNA benchmark where single linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 1.0 1.0 1.0 1.0 1.0

Homogeneity 1.0 1.0 1.0 1.0 1.0

Completeness 1.0 1.0 1.0 1.0 1.0

Bacteria

Rand index 0.458 0.403 0.403 0.470 0.584
Homogeneity 0.242 0.155 0.155 0.248 0.216

Completeness 0.500 0.320 0.320 0.510 0.230

Eukaryota

Rand index 0.776 0.829 0.843 0.695 0.800

Homogeneity 0.601 0.575 0.676 0.498 0.571

Completeness 0.551 0.604 0.726 0.548 0.655

Table 6  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 23S rRNA benchmark where complete linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 1.0 1.0 1.0 1.0 1.0

Homogeneity 1.0 1.0 1.0 1.0 1.0

Completeness 1.0 1.0 1.0 1.0 1.0

Bacteria

Rand index 0.487 0.889 0.828 0.473 0.591

Homogeneity 0.202 0.858 0.649 0.221 0.223

Completeness 0.307 0.823 0.697 0.387 0.220

Eukaryota

Rand index 0.776 0.857 0.857 0.695 0.810

Homogeneity 0.601 0.650 0.667 0.445 0.536

Completeness 0.551 0.683 0.689 0.467 0.559
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scripts in the folder RNAs/Benchmark of the repository https://​github.​com/​bdslab/​
Taxon​Class​ifier. The outputs obtained in our experiment are illustrated and discussed in 
“Discussion” Section.

Discussion
The evaluation framework, as it is presented in this work, can be considered a first step 
towards a larger benchmarking that would provide a standard in the field of comparing 
different methods that include pseudoknots. In this paper the selection of the dataset 
has been done with the task of reconstructing the phylogeny in mind. However, in gen-
eral, a different selection can be made to evaluate a different choice of methods against 
other tasks, e. g., the classification of the known function or other known features of 
non-coding RNAs. The general approach of using dissimilarity measures and clustering 

Table 7  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 23S rRNA benchmark where average linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 1.0 1.0 1.0 1.0 1.0

Homogeneity 1.0 1.0 1.0 1.0 1.0

Completeness 1.0 1.0 1.0 1.0 1.0

Bacteria

Rand index 0.487 0.633 0.830 0.473 0.591

Homogeneity 0.202 0.542 0.653 0.221 0.223

Completeness 0.307 0.718 0.742 0.387 0.220

Eukaryota

Rand index 0.776 0.857 0.843 0.695 0.810

Homogeneity 0.601 0.650 0.676 0.445 0.536

Completeness 0.551 0.683 0.726 0.467 0.559

Table 8  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 5S rRNA benchmark where single linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.631 1.0 0.48 0.631 0.677

Homogeneity 0.017 1.0 0.164 0.017 0.042

Completeness 0.052 1.0 0.130 0.052 0.075

Bacteria

Rand index 0.423 0.747 0.553 0.423 0.423

Homogeneity 0.031 0.557 0.181 0.031 0.031

Completeness 0.079 0.720 0.463 0.079 0.079

Eukaryota

Rand index 0.486 0.569 0.486 0.486 0.486

Homogeneity 0.093 0.269 0.093 0.093 0.093

Completeness 0.323 0.725 0.323 0.323 0.323

https://github.com/bdslab/TaxonClassifier
https://github.com/bdslab/TaxonClassifier
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to reconstruct homogeneous groups of molecules would remain the same. The only 
changes would be in the dataset and in the labels of the clusters. Other possible tasks 
to test using the framework could be, for instance, the classification of molecules hav-
ing the same kind of pseudoknots or studying how different classes of pseudoknotted 
RNAs can be considered similar notwithstanding the different kind of pseudoknots they 
contain.

Regarding the particular experiments presented in this paper, let us now discuss the 
values of the metrics obtained for the phylum reconstruction of 5S, 16S and 23S of 
Archaea, Bacteria and Eukaryota. We first observe that, in the case of comparisons based 
on Genus and PskOrder, as expected, the results are highly independent from the linkage 
method of clustering because the clusters that are computed are essentially the equiva-
lence classes of the molecules with the same Genus or the same PskOrder. Moreover, in 

Table 9  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 5S rRNA benchmark where complete linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.631 1.0 0.480 0.631 0.677

Homogeneity 0.017 1.0 0.164 0.017 0.042

Completeness 0.052 1.0 0.130 0.052 0.075

Bacteria

Rand index 0.423 0.930 0.709 0.423 0.423

Homogeneity 0.031 0.854 0.455 0.031 0.031

Completeness 0.079 0.816 0.602 0.079 0.079

Eukaryota

Rand index 0.486 0.902 0.486 0.486 0.486

Homogeneity 0.093 0.784 0.093 0.093 0.093

Completeness 0.323 0.871 0.323 0.323 0.323

Table 10  Results of the evaluation framework applied to the three life domains (Archaea, Bacteria 
and Eukaryota) of 5S rRNA benchmark where average linkage was used in clustering

The highest score for each row is written in bold

Genus PSMAlign ASPRAlign PskOrder RAG-2D

Archaea

Rand index 0.631 1.0 0.480 0.631 0.677

Homogeneity 0.017 1.0 0.164 0.017 0.042

Completeness 0.051 1.0 0.130 0.051 0.075

Bacteria

Rand index 0.423 0.830 0.709 0.423 0.423

Homogeneity 0.031 0.700 0.455 0.031 0.309

Completeness 0.079 0.784 0.602 0.079 0.079

Eukaryota

Rand index 0.485 0.800 0.485 0.485 0.485

Homogeneity 0.092 0.576 0.092 0.092 0.092

Completeness 0.323 0.841 0.323 0.323 0.323



Page 13 of 24Quadrini et al. BMC Bioinformatics          (2022) 23:575 	

the case of Archaea 23S rRNAs all methods reach the maximum performance 1.0. This 
was also expected because in that case all the structures belong to organisms that have 
the same phylum in the ENA taxonomy. We retained these molecules for completeness 
as they were the only 23 S Archaea present in the CRW database from which we selected 
the benchmark.

We also observe that the performances of Genus and PskOrder methods are fre-
quently less than the others. This might be due to the high level of abstraction that 
these two methods apply on the information available in the secondary structures. 
Actually, as mentioned above, they essentially create equivalence classes. The other 
methods, ASPRAlign, PSMAlign and RAG-20, also make abstractions on the struc-
tures, but in a milder way: ASPRAlign neglects the primary sequence completely, but 
considers the whole structure of the molecule, PSMAlign considers also the shape, 
but not precisely (several bonds are excluded by the heuristic) and partially uses the 
sequence information, RAG-2D neglects the primary sequence as ASPRAlign, but 
does not consider the precise structure of the molecule making, instead, a topologi-
cal-based evaluation of its complexity.

Let us now focus on the values obtained for 16S structures, which are the ones that 
are considered more conserved by evolution and are therefore the best candidates for 
taxonomy reconstruction. The performance of PSMAlign, ASPRAlign and RAG-2D 
can be considered similar in most cases, varying w.r.t. the different linkage methods 
and the metric used for the evaluation. Considering the three domains, in the case 
of Archaea, ASPRAlign always shows the best performance, while for Bacteria both 
PSMAlign and ASPRAlign provide the best performance, with the exception of single 
linkage parameter and random index metric in which RAG-2D performs better. It has 
to be noted, however, that the differences in the scores of these three methods are 
generally low. Similar consideration applies for Eukaryota, in which scores are similar 
and the best performance is reached by the three methods varying the linkage and the 
metric. However, taxonomy reconstruction for Eukaryota with the proposed methods 
seems to be slightly harder because the best performance scores in several cases are 
lower than the ones obtained for Archaea and Bacteria. These results might suggest 
that milder abstractions on the information contained in the secondary structures 
generally produce comparison methods that perform better, with a balance to be 
found in abstracting the primary sequence and the shape of the secondary structure. 
Moreover, we can say that the complexity of the organisms and the number of clusters 
to be reconstructed play an important role in the performance of the considered com-
parison methods. This suggests to continue the investigation by trying to reconstruct, 
surely for Eukaryota, but also for Bacteria, a taxonomy rank lower than phylum, i.e., 
class or order. This would permit to consider a lower number of molecules and could 
decrease the differences among them due to the reduction of the difficulty of the clus-
tering when similar complex organisms are involved.

Let us now analyze the results of 23S structures. Here we can make considerations 
similar to the ones for 16S molecules, with two exceptions. First, the best perfor-
mance scores between Eukaryota and Bacteria are very similar, so the complexity of 
the organism, for 23S, seems not to be a fundamental factor in taxonomy reconstruc-
tion. Second, in the case of Bacteria with single linkage parameter in clustering the 
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best scores are shown by PskOrder and RAG-2D, while PSMAlign and ASPRAlign 
show lower scores. Genus has scores very similar to PskOrder. It is difficult to inter-
pret these results, we can only say that a direction of investigation is to search for a 
relation between the single linkage parameter for clustering and a higher abstraction 
of the secondary structures.

Finally, let us consider the results on 5S structures. Being these structures pseudoknot-
free the results show a significant difference w.r.t. the others. The first fact to notice is 
that PSMAlign always shows the best performance in the reconstruction of the phy-
lum. This reflects the results presented by Chiu and Chen in [25], where PSMAlign was 
shown to outperform other comparison techniques on 16S pseudoknot-free second-
ary structures using the BRASERO framework [37]. Our results confirm this capability 
of PSMAlign that, in the case of Archaea, reconstructs the phylum exactly with score 
1.0 for any parameter of the clustering. In the case of Bacteria and Eukaryota the best 
score is significantly greater than the other scores in all cases. We also note that Genus, 
PskOrder and RAG-2D in all cases show very similar or equal scores. This reflects the 
fact that pseudoknot-free structures do not have differences in their topology, therefore 
methods based on topology perform exactly in the same way. In the case of ASPRAlign, 
which is not based on the topology of the structures, but on a tree algebraic representa-
tion of their arc-diagram, there are better results, but worse than PSMAlign. This might 
be a consequence of the fact that ASPRAlign neglects the primary sequence completely, 
while PSMAlign considers it together with the relationships among the stems of the 
structure.

Conclusions
We have proposed an evaluation framework for comparison methods of pseudoknot-
ted RNA secondary structures. The framework performs the evaluation of a given com-
parison method by firstly using it to obtain a similarity/dissimilarity measure between 
any pair of molecules in a set of a given benchmark. Then, this measure is used by an 
agglomerative clustering algorithm to group the molecules into clusters that should cor-
respond to groups having similar features. Finally, rand index, homogeneity and com-
pleteness metrics are used to evaluate how well the groups have been reconstructed.

To illustrate the framework we have defined a dataset of 16S, 23S and 5S rRNA mol-
ecules of Archaea, Bacteria and Eukaryota and we have used it to reconstruct the taxa 
of a selected taxonomy rank of a curated biological taxonomy. In particular we have 
reconstructed the phylum according to the ENA taxonomy. We have evaluated the com-
parison methods Genus, PSMAlign, ASPRAlign, PskOrder and RAG-2D for which the 
computed metrics have been reported and discussed.

As future work, we intend to use the evaluation framework, with the same dataset, 
to see if the considered comparison methods perform better on taxonomy ranks lower 
than phylum, especially for Bacteria and Eukaryota. Moreover we plan to extend the 
benchmark with other functional RNA families in order to continue the investigation on 
this phylogeny-based approach to evaluation. Different and new comparison methods, 
for instance [28], could also be included in our experiments. Finally, we want to use dif-
ferent curated taxonomies, e.g., SILVA [10, 11] and LTP [45], in order to compare the 
results with those obtained with ENA.
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Another direction for future work is that of using the BRASERO [37] approach to con-
front the considered comparison methods with the ones for pseudoknot-free structures. 
Of course, in this case, we would use the BRASERO evaluation method and its bench-
marks. As mentioned above this was done in [25] for PSMAlign and our results on pseu-
doknot-free 5 S structures confirm their results.

BRASERO uses an approach completely different from the one considered in this 
paper. In its case, to evaluate a comparison method, the benchmark consists of collec-
tions of molecules which are divided in three sets: reference set R, positive set P and 
negative set N. Molecules in sets R and P belong to the same family, while molecules in 
set N are chosen outside the considered family. Distances are computed between the 
molecules in P and N with molecules in R and the values are ordered. Then the mol-
ecules with the higher n values, where n = |P| , are classified as belonging to the family 
and the others as not belonging. A receiver operating characteristic (ROC) curve is then 
plotted to estimate the quality of the classification. A future project could be to define a 
framework that operates in this way for pseudoknotted structures.

Another important direction of future work is to use the framework to evaluate the 
capability of different methods to compare and classify the most probable secondary 
structures (with and without pseudoknots) relative to one specific sequence. This set can 
be defined using different folding methods, which may consider different parameters or 
different ranges of minimum free energy, on the same sequence. The folded secondary 
structures are not very stable and may refold or fold into different structures accord-
ing to different environments. Therefore, the evaluation of the capability of different 
comparison methods of characterizing the probable secondary structures is certainly an 
interesting investigation.

A final interesting research direction is to consider other approaches to classify RNA 
secondary structures based on intersection graph or structural patterns [46–48] or take 
into account other abstractions like the one introduced in [49].

Methods
Methods for comparing RNA secondary structures with pseudoknots

In order to be included within our evaluation framework, a comparison method is 
required to handle pseudoknotted RNA secondary structures and to produce, for any 
given pair of molecules, a similarity/dissimilarity measure as a real number. More in 
detail, using the classification originally introduced by Evans in  [50] and used by Blin 
and Touzet in [51], we assume that the comparison method is able to handle structures 
classified as NESTING or CROSSING, not falling in the UNLIMITED class. Note that 
this requirement does not limit the application of the framework in presence of multi-
ple strands or complexes. In these cases the different components can simply be concat-
enated and considered as one.

We considered the available methods in the literature, described in “Background” Sec-
tion, that satisfy the requirements above and for which a publicly available, currently 
working, software tool or website exists. Among these, we chose the five methods that 
are briefly described in the following for applying our evaluation framework. More pre-
cise details about each method can be found in the given references.
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ASPRA distance

Algebraic ASPRA distance is a dissimilarity measure based on an algebraic representa-
tion of RNA secondary structures able to represent arbitrary pseudoknots using three 
operators: concatenation ( ⊙ ), nesting ( ⋓ ) and crossing ( ⊲⊳ ). The full algebraic definition 
of the operators can be found in  [26]. Here, we briefly recall the main concepts. The 
operators are used to represent complex structures starting from single bonds (arcs in 
the arc-diagram). The concatenation operator permits to represent a structure that is 
followed by another one. Figure 1c shows a concatenation between two simple bonds. 
Nesting formalises the insertion of a structure into an arc (Fig. 1d shows the nesting of 
an arc into another arc), while the crossing operator models the crossing interactions 
among arcs, as illustrated in Fig. 1e.

The combination of these three operators permits to define structural RNA 

trees, which represent the structure of the molecule dropping the information 
about the primary sequence. For building the structural RNA tree of a structure, the idea 
is to select the arc having the rightmost paired nucleotide and to determine the rela-
tion (i.e, concatenation, nesting or crossing) between the considered arc with the rest 
of the structure. In the case of crossing, it is necessary to determine also the number 
of crossing that the arc performs with the remaining sub-structure. The left children of 
the root corresponds to the root of the sub-tree that represents the remaining structure. 
This process continues until the sub-structure becomes a single arc. The ASPRA dis-
tance is obtained by aligning the two structural RNA trees of the involved structures by 
using the classical tree alignment algorithm by Jiang et al. [52]. Let S1 and S2 be two RNA 
secondary structures and let t1 and t2 be their structural RNA trees. The ASPRA distance 
between S1 and S2 , is defined as follows:

The scoring function σs is defined on the nodes of the alignment tree of two structural 
RNA trees and, as usual, assigns different costs to the different edit operations: replace-
ment, deletion and insertion.

The tool ASPRAlign [27] can be used to compute the ASPRA distance between two or 
more molecules and is freely available at https://​github.​com/​bdslab/​aspra​lign. To apply 
our framework we ran the tool on all pairs of structures in the benchmark and inter-
preted the obtained distance as a dissimilarity measure between them.

Progressive stem matching

In  [25], Chiu and Chen faced the same problem of ASPRA distance, i.e., the develop-
ment of a comparison method that would be efficiently applied to secondary structures 
with arbitrary pseudoknots. Also in their case, the key point was the high conservation 
of structures w.r.t. sequences so they could focus more on aligning the structural part 
of the molecules. The idea was that of considering conserved stem patterns, i.e., subsets 
of the bonds that define a stem and their structural relationships: concatenation (called 
parallel), nesting and crossing (called pseudoknot). These stems and their relationships 
are encoded in a stem graph and then the minimum cost error-correcting graph match-
ing (mcECGM) [53] is computed between the two graphs of a given pair of structures. 
However, since ECGM is in general NP-complete, the authors created an heuristic, 

daspra(S1, S2) = min{σs(L) | L is an alignment of t1 and t2}

https://github.com/bdslab/aspralign
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called Progressive Stem Matching (PSM), to reduce the number of vertices in the graphs 
to be considered. In this way they could computationally treat large RNA molecules such 
as 16S and 23S rRNAs.

This approach was implemented in the tool Progressive Stem Matching Alignment 
(PSMAlign) available at http://​homep​age.​cs.​latro​be.​edu.​au/​ypchen/​psmal​ign/. In  [25], 
the ability of PSMAlign to identify similar structures was measured using BRASERO [37] 
on 16S rRNAs and signal recognition pattern datasets. PSMAlign was compared with 
RNAforester  [3, 13], MiGaL  [15] and Gardenia  [17]. The authors showed that PSMA-
lign over-performed the other tools. However, since such tools do not accept structures 
with pseudoknots the comparison could only be done on pseudoknot-free structures. 
For testing pseudoknotted structures, in absence of a dedicated benchmark, the authors 
randomly selected some 23S RNAs molecules and compared the times for computing 
the alignments using PSMAlign and the times for computing plain classical sequence 
alignment using the Needelman-Wunsh algorithm [54].

In order to apply our framework we ran PSMAlign on all the pairs of structures in our 
benchmark and collected the alignment costs. We interpreted such costs as a dissimilar-
ity measures between the input structures.

Genus topological invariant

The genus of an RNA secondary structure is a measure of its complexity. It can be 
defined as the minimum number of handles that we need to attach to a sphere to get a 
surface where the arc-diagram of the structure can be drawn without any crossing, still 
preserving the property that all the arcs are attached to the backbone from the same 
side, like in the plane. An arc-diagram that does not present any crossing can be drawn 
on a sphere with no handles.

Full details on how the genus of a structure is defined and computed can be found 
in [19, 20, 55]. The Genus for Biomolecules database [56, 57] at https://​genus.​fuw.​edu.​
pl permits to compute the genus trace plot of a molecule. We defined a Python script 
implementing the algorithm presented in [58], which is able to compute the genus of a 
structure. The script is available at the https://​github.​com/​bdslab/​Taxon​Class​ifier repos-
itory and was used to determine the genus of all the molecules of the benchmark. Since 
the genus is just a feature of a molecule, then molecules with the same genus can be con-
sidered belonging to the same equivalence class (or group). Thus, the taxa that can be 
computed by this method are essentially these equivalent classes. However, to apply our 
framework we had to formally satisfy the requirement of having a similarity/dissimilar-
ity measure. We simply defined a trivial dissimilarity between two different structures as 
the absolute value of the difference of their genera.

Pseudoknot order

The pseudoknot order, introduced in [29], is a measure to quantify the structural com-
plexity of a secondary structure with pseudoknots. It is defined as the minimum number 
of regions that should be eliminated from a structure in order to get a pseudoknot-free 
one. Here a region is a set of nested pairs in which there are not unpaired nucleotides, 
that is stacks of helices with no bulges or inner loops. Every region is assigned an order, 
which is 0 if it does not cross with any other region and greater than 0 if it forms a 

http://homepage.cs.latrobe.edu.au/ypchen/psmalign/
https://genus.fuw.edu.pl
https://genus.fuw.edu.pl
https://github.com/bdslab/TaxonClassifier
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crossing. The regions assigned with order 1 are those that cross with the ones of order 0. 
Then the regions assigned with order 2 are those that cross with the ones of orders 0 and 
1 previously determined. The process continues until all the regions are assigned with an 
order. The higher order that is found is considered the pseudoknot order of the whole 
structure.

In  [31], the authors showed that the pseudoknot order is useful in understanding 
the hierarchy of RNA folding. In particular, it is assumed that pairs with order 0, the 
pseudoknot-free ones, are formed first. Then, bonds of order 1 are formed, followed 
by the ones of order 2 and so on.

The algorithms to compute the orders have improved over the years. In [30], graph-
based algorithms are proposed, among which the MILP (mixed-integer linear pro-
gramming) one, which is shown to be the most performant in terms of quality of the 
computed solutions. We used the MILP approach on all the molecules of the bench-
mark to determine their pseudoknot order. Similarly to the genus topological invari-
ant, in order to fit in our evaluation framework, we defined a dissimilarity measure as 
the absolute value of the difference of the pseudoknot orders of two molecule.

RAG‑2D: RNA As Graph

Graph theory has been used to represent RNA secondary structures in various sce-
narios [59, 60]. In the last two decades, Schlick and co-workers have used dual graphs 
to formalize RNA secondary structures with pseudoknots [33–35] within the RNA As 
Graph approach (RAG-2D—http://​www.​bioma​th.​nyu.​edu/?q=​rag/​home). To convert 
an RNA secondary structure into its dual graph, RNA structural elements—i.e., helix 
or stem, bulges, hairpin loops, internal loops, and multi-loops—and their relations 
are considered as follows:

•	 Each RNA stem is represented as a vertex of the graph;
•	 An edge represents any single strand that has more than one unpaired nucleotide 

and occurs in segments connecting structural elements;
•	 The 3′ and 5′ ends do not have any representation.

Dual graphs describe the connectivity without specifying the geometric aspects of the 
secondary structure. Moreover, they do not specify the exact sequence or the length 
of the considered RNA molecule.

The connectivity of a graph is described by its Laplacian matrix. The Laplacian matrix 
is defined as the difference between the degree matrix D and the adjacency matrix A. The 
degree matrix D is an n× n diagonal matrix with diagonal entries dii equal to the num-
ber of edges incident on vertex i. The adjacency matrix A for a dual graph has entries aij 
equal to the number of edges between vertex i and j, and aii = 2 if there is a self-loop 
on vertex i. By construction, the Laplacian matrix is positive semidefinite with �1 = 0 as 
its smallest eigenvalue and associated eigenvector µ1 = (1, 1, . . . , 1)T . Since the graphs 
that are considered are connected, the second smallest eigenvalue of L, the Fiedler 
value �2 , is positive and increases with the compactness of the graph. The Fiedler value 
describes the algebraic connectivity of a graph. However, using it alone is insufficient to 

http://www.biomath.nyu.edu/?q=rag/home


Page 19 of 24Quadrini et al. BMC Bioinformatics          (2022) 23:575 	

distinguish graphs. As proposed in [36], to develop characteristics that better reflect the 
graph topology, two features, s and e, are defined as follows: 

1	 Calculate the normalized Fiedler vector µ2 = (µ2,1,µ2,2, . . . ,µ2,n)
T of the Laplacian 

matrix L;
2	 Sort the Fiedler vector components {µ2,i}

n
i=1 in ascending order and denote the 

ordered components {vi}ni=1;

3	 Scale each vi to be ṽi = vi(n−1)
vn−vi

;
4	 Perform linear regression on the points (1, ṽ1), (2, ṽ2), . . . , (n, ṽn) to obtain slope s 

and mean squared error e.

We computed the dual graphs of all the molecules of the benchmark and the corresponding 
s and e features. Then these two features were used to define a distance between two mol-
ecules by considering the Euclidean distance.

Agglomerative clustering

Agglomerative clustering is a hierarchical clustering method of cluster analysis based on a 
bottom-up approach. It starts taking singleton clusters that contain only one data object per 
cluster at the bottom level. It continues merging pairs of clusters at a time to build the hier-
archy of the groups [61]. Such hierarchy can be interpreted using the standard binary tree 
terminology. The root or level 0 represents all data and forms the apex, and each other level 
corresponds to some set of clusters. The child entries (i.e., nodes) correspond to the clusters 
and identify subsets of the entire dataset. The group elements correspond to the leaves (i.e., 
singleton points) of the sub-tree having the current node as root. This cluster hierarchy is 
called a dendrogram, the same structure used in phylogenetics for phylogenetic trees. The 
main advantage of using a hierarchical clustering method is that it allows for cutting the 
hierarchy at any given level and obtaining the clusters correspondingly. This feature makes 
it a suitable clustering method in automatic taxonomy construction.

More in detail, the algorithm consists of the steps reported in Algorithm 1. First, a dis-
similarity matrix is constructed, either given as input, e.g. as a distance matrix, or computed 
from a proximity/similarity measure. All the data points are then assigned to their own sin-
gleton cluster. At each iteration the closest clusters pairs are merged and the dissimilarity 
matrix is updated correspondingly. This process continues until the final maximal cluster 
that contains all data is achieved. Various clustering schemes share this general procedure, 
but they differ in the way in which the measure of inter-cluster dissimilarity is updated after 
each step. The most common methods are: single, complete, average, and ward linkage. Sin-
gle link clustering computes the similarity of the two groups as the similarity between their 
most similar (nearest neighbor) members. Complete link clustering measures the similarity 
of two clusters as the similarity of their most dissimilar members. Average linkage deter-
mines the distance between two clusters as the average distance between all pairs of indi-
viduals from each group. Ward linkage measures the similarity of two clusters as the sum 
of squared differences within all clusters. However, ward linkage can be applied only when 
the dissimilarity matrix contains Euclidean distances, which is typically not the case in the 
values computed by comparison methods. 
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Metrics for clustering evaluation

Evaluating the performance of a clustering algorithm is not trivial. Evaluation metrics 
should be used that define separations of the data similar to some ground truth set of 
classes. Moreover, such metrics should satisfy some assumptions such that members of 
the same group are more similar than members of different clusters according to some 
similarity metric. In our work, we use three metrics: rand index [40], homogeneity and 
completeness  [41]. They will be used on two assignments, i.e., the sets of labels clas-
sified by the clustering algorithm and the sets of labels present in the chosen curated 
taxonomy. The obtained number of each metric is in the interval [0,  1] and gives the 
performance of the method. 1 is the maximal performance, i.e., the computed clusters 
coincide with the known ones.

Rand index

A rand index R is a function that measures the similarity of two assignments. It com-
putes the measure between two clusters by considering all pairs of samples and counting 
pairs that are assigned in the same or different clusters in the predicted and the knowl-
edge of the ground truth class assignments. Let S = {e1, e2, . . . , en} be a set of elements 
that are clusterised and let X, Y be two clusterings of S. Let a be the number of pairs of 
elements in S that are in the same subset in X and in the same subset in Y. Let b be the 
number of pairs of elements in S that are in different subsets in X and different subsets 
in Y. Let c be the number of pairs of elements in S that are in the same subset in X and 
different subsets in Y. Let d be the number of pairs of elements in S that are in different 
subsets in X and the same subset in Y. The rand index is defined as

Homogeneity

The homogeneity score, h, measures how much the elements in a clustering are similar. 
The score is defined using Shannon’s entropy

where H(C|K) and H(C) are the conditional entropy of the classes given the cluster 
assignments and the entropy of the classes, respectively. Formally,

R =
a+ b

a+ b+ c + d

h = 1−
H(C|K )

H(C)
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where n is the total number of samples, nc and nk are the number of samples respectively 
belonging to class c and cluster k and where nc,k is the number of samples from class c 
assigned to cluster k.

Completeness

The completeness score, c, measures how much similar elements are put together. Like 
to the homogeneity score, it is defined in terms of Shannon’s entropy

where H(K|C) and H(K) are conditional entropy of clusters given the class and the 
entropy of clusters, respectively.
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