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Competing risk for analyzing survival data
Under the frame work of competing risks modeling the two most commonly used

approaches are the CSH Cox approach and Fine-Gray proportional SDH model

[1]. In the standard survival analysis, Cox proportional hazards model is a semi-

parametric model in which dependence on the explanatory variables is modelled

explicitly but no specific probability distribution is assumed for survival times. An

analogous Cox regression approach can also be applied using CSHs regression when

competing risks are present. In the analysis of times to a certain event k, the CSH

is the instantaneous rate of experiencing cause k amongst those who are event-free

(i.e., have not yet had cause k or any of the competing events). A straightforward

way of applying this CSH approach is to fit a separate Cox model for each cause,

censoring any competing events at their time of occurrence.

The one-to-one correspondence between hazard and survival that exists in the

standard survival analysis does not necessarily hold when competing risks are

present [2]. As a consequence, the effect of a covariate on the CSH for a partic-

ular cause may be different from its corresponding effect on the probability of the

event occurring. To overcome the related problems with interpretation with the

CSHs approach, Fine and Gray [1] introduced the concept of a SDH that has a

one-to-one correspondence with the cumulative incidence of the event. The SDH

can be modeled in a proportional hazard framework using the CIF. The CIF Fk(t)

estimates the probability of failing from cause k before a given time t to provide

information for a certain population or to compare a discrete number of subgroups

descriptively, and denoted by

Fk(t) = P (T ≤ t,D = k), (1)

with T and D being random variables representing the time to the first observed

event and the type of event, respectively. Also, the CIF in a population or in sub-

groups of interest when competing risks are available can be estimated using

F̂k(t) =
∑
i:ti≤t

λ̂cs
k (t)Ŝ(ti−1). (2)

From expression (2), Ŝ(t) is the estimator for the overall survivor function at time

t including all types of event and ti denotes the i
th ordered event time. λ̂cs

k (t) is the

CSH rate given by

λcs
k (t) = lim

∆t→0

P (t ≤ T < t+∆t,D = k|T ≥ t)

∆t
, k = 1, 2, ..., D. (3)

The CSH rate in expression (3) can be estimated by

λ̂cs
k (t) =

dki
ni

, (4)
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where dki is the number of failures from type k at time ti and ni the risk set at

time ti, i.e. the number of patients who were not censored and have not failed from

any cause up to time ti.

Regression models for competing risks

Cause-specific Hazard Regression

The CSH regression model is used to estimate the effect of covariates on the rate

of occurrence of the outcome in those subjects who are currently event free. If the

covariate is continuous or the simultaneous effect of several covariates on cause-

specific failure is of interest, a competing risks analogue of a CPHs model seems

the most logical choice. The estimation of covariate effects on the CSH rate was

proposed by Prentice et al. [3]. In a semi-parametric Cox regression approach [4]

the CSH of cause k for subject with a covariate vector X is modeled using

λcs
k (t|X) = λcs

k,0(t) exp(β
T
kX), (5)

where λcs
k,0(t) is the baseline CSH of cause k and βk is a vector of unknown param-

eters to be estimated for each outcome variable provided k is the cause of failure at

time t.

The CSHs completely determine the competing risks process [5]. Hence, the CIFs

can be estimated from separate CSH regression models for all types of event, for

instance, the CIF for the kth out of K events is

Fk(t|X) =

∫ t

0

λcs
k (s|X) exp(−

k∑
l=1

Λcs
l (s|X))ds, (6)

where Λcs
k (s|X) denotes the cumulative CSH rate for event k at time t for a given

matrix of covariates X defined by

Λcs
l (s|X) =

∫ t

0

λcs
k (s|X).

Sub-distribution Hazard Regression-the Fine and Gray model

The Fine-Gray Model allows us to estimate the effect of covariates on the absolute

risk of the outcome over time [1]. For event k, the SDH is the probability of a

subject to fail from cause k in an inconsiderable small time interval ∆t, given no

event until time t or an event other than k occurred for a subject before time t [6],

λ∗
k(t) = lim

∆t→0

P (t ≤ T < t+∆t,D = k|T > t ∪ (T ≤ t ∩D ̸= k))

∆t
. (7)

Individuals failing before time t other than the cause of interest remain in the risk

set for all future failure times. For events recorded in discrete time with no censoring,

the SDH at time ti can be estimated by

λ̂∗
k(ti) =

dki
n∗
i

, (8)
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where dki denotes the number of failures of type k at time ti and n∗
i the modified

risk set including all subjects who did not experience any event until time ti and all

subjects that failed before ti from a cause other than k. The CIF is used to model

the risk of experiencing a specific event in subjects who have not yet experienced

this event. It denotes the instantaneous risk of failure from the kth event in subjects

who have not yet experienced an event of type k. The basic difference between the

two hazards is related to the risk sets. The risk set is the set of individuals/subjects

under investigation and vulnerable to the event. In CIF, the risk set includes those

who are currently alive as well as those who have previously experienced a competing

event, while the risk set of the CSH function only considers those who are currently

event free.

The SDH (hazard of the cumulative incidence) for each cause supposed as the

hazard for an individual who either fails from cause k or does not can be written

as

λ∗
k(t|X) =

fk(t)

1− Fk(t)
. (9)

Under the proportional hazard, Fine-Gray Model [7] can be specified as

λ∗
k(t|X) = λ∗

k,0(t) exp(β
∗T
k X), (10)

where λ∗
k,0(t) denotes the baseline SDH for the cause of k. The SDH rates are

assumed to be proportional for the included covariates and also directly linked to

the CIF in a way known from the standard survival analysis with one possible

endpoint given by

Fk(t|X) = 1− exp(−Λ∗
k(t|X)) = 1− exp(−

∫ t

0

λ∗
k(s|X)ds). (11)

Hence, the CIF for the event of interest can be estimated directly from the regression

coefficients obtained by a Fine and Gray model without explicit consideration of

the covariate effects on competing events.

Model Comparison for the CSH and SDH regressions

In the presence of two possible types of failure, the relationship between cause-

specific and sub-distribution hazards [5] can be derived using expressions (6) and

(11) to get

λcs
1 (t|X) = (1 +

F2(t|X)

S(t|X)
).λ∗

1(t|X), (12)

where S(t|X) denotes the probability of being free of any event until time t given

X. Also, for each covariate the relative difference (RD) of the hazard ratios [8] can

be computed by

RD =
SDHR− CSHR

CSHR
× 100% (13)



Page 4 of 6

Estimation of parameters

The partial likelihood are employed to estimate the coefficients vector [9]. Let 0 <

t1k < t2k < ... < tuk be ordered distinct time points at which failures of any causes

occur for the risk k. Assume that only one failure can happen at each failure time,

i.e. there are no tied failure times in the data. The partial likelihood [9] for specific

hazard k is given by

Lk(βk) =

nk∏
k=1

exp(βT
kXik(tik))∑

l∈R(tik)
exp(βT

kXlk(tlk))
, (14)

where nk is the number of individuals in specific hazard k, Xik is a vector of

covariates for individual i specific to k-type risk at time t, the vector βk represents

the regression coefficients of cause k to be estimated. Since the same variables could

have different effects on the different risks, βk is independent of each other for each

k and the set of individuals at risk at time tik is R(tik) = {l|tlk ≥ tik}. Using

expression (14), the overall partial likelihood function is

L(β) =

K∏
k=1

Lk(βk). (15)

Estimation of parameters in the Fine-Gray model uses the partial likelihood ap-

proach by incorporating weights [10] given by

L(β) =

n∏
i=1

exp(βTXi)∑
l∈R(ti)

wil exp(β
TXl)

, (16)

where β̂1 β̂2 . . . β̂p are estimation of the regression parameters for event type k,

Xi1 Xi2 . . . Xip are predictor variables for subject i event type k. A collection of

risks R(ti) defined by adding weights, which is based on non-censored subjects and

can be concluded that collection of risks are formed based on the event of interest

as R(ti) = {l;Tl ≥ t or (Tl ≤ t) and an individual in a competing risk}.
Also, wil in expression (16) is the weight of the subject i in the event of interest

defined by

Wki =
Ĝ(tk)

Ĝ(min(ti, tk))
, (17)

where Ĝ(ti) is estimate of survival function from survival time i subject, Ĝ(min(ti, tl))

is estimation of the survival function from the minimum value between the survival

time of the subject i and the subject on the event l or event of interest. The weight

will be 1 if the subject has a survival time ti ≤ tl and has a value ≤ 1 if tl > ti [11].

Once the likelihood is formulated, the goal is to choose the values of parameters

that maximize the likelihood.
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Model Diagnostics

The main assumption when modeling survival data is the proportionality of hazards.

When the Fine-Gray model is used, the hazards of the CIF must be proportional,

whereas, in the CPH model, it is the CSHs that need to be proportional [11].

The proportionality assumption is the most common in competing risk regression

models, which consider the sub-distribution with covariates X as a constant shift

on the complementary log-log scale from a baseline sub-distribution function. If the

curves do not cross with each other, then we say that the model does not violate

the assumption of proportionality [12].

Once the data arrangement was accomplished all the statistical analysis was done

using the survival and cmprsk packages of the R statistical software (version 4.2.1).

Result:Tables and Figures

Table 1 Test of proportionality assumptions of CSH model for LTFU

Variables Chi-square Dof P-value
Sex 1.6196 1 0.20
Residence 1.2639 1 0.26
Patient category 2.5079 3 0.47
Weight loss 0.4959 1 0.48
Types of TB 1.2511 2 0.53
HIV status 0.0349 1 0.85
Contact history 0.2741 1 0.60
Age in years 3.1131 3 0.37
Baseline weight in kg 0.9545 4 0.92
GLOBAL TEST 10.6044 17 0.88
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Figure 1 Cause-specific hazard proportionality for sex in (a), HIV in (b), and contact history in (c)
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Figure 2 Plot of the proportionality for the hazard of CIF for sex in (a), HIV status in (b) and
contact history in (c)
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