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Abstract 

Background  Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and 
streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single prod-
ucts does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures 
in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate 
the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream com-
munity using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms 
were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine 
fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19 
spraying event days in the period from April to July while the remaining four stream mesocosms served as controls. 
The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects, 
physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured.

Results  The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes 
as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate 
the observed effects on the community to specific pesticides applied at certain time points and their associated toxic 
pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of 
population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individ-
ual variation can be seen as a general disturbance measure for the ecosystem.

Conclusions  The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic 
stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesti-
cides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to 
spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective 
risk assessment of pesticides to further reduce negative effects on the environment.
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Background
The EU pesticide risk assessment (RA) is based on a 
tiered approach in order to sufficiently address the risk 
of plant protection products (PPP) for the environ-
ment (pesticide regulation, European Commission No. 
1107/2009) [1]. The tier 1 RA is a laboratory-based eco-
toxicological assessment, which includes several sin-
gle species tests. More complex and environmentally 
realistic evaluations (tier 2 and 3) are usually proposed 
as refinements if the tier 1 RA indicates that the legally 
specified level of acceptability is not met [2].

A conceptual key element of the pesticide RA is the 
derivation of regulatory acceptable concentrations (RAC) 
of PPPs and/ or their active ingredients (AI). For tier 3, 
RACs are derived on the basis of negligible population 
effects or population effects with subsequent ecological 
recovery within a certain time period [2, 3]. In each tier, 
the RAC needs to be higher than the calculated predicted 
environmental concentration (PEC) for edge-of-field 
surface waters [2] in order to conclude on an acceptable 
risk. On the exposure side, the pesticide entries into the 
edge-of-field waterbodies, simulated by the PECs, can 
be reduced by applying mitigation measures such as, e.g. 
using drift-reducing spray nozzle technology or imple-
menting no-spray-zones or vegetated buffer-strips [2].

The complexity of the higher tier pesticide regula-
tion process increased over the years with the inclusion 
of multi-species tests, mesocosm and field studies, as 
well as effect modelling. Some of these studies are usu-
ally proposed to refine the risk by, in theory, introducing 
more realism into the risk assessment, e.g. by estimating 
more accurately the sensitivity and vulnerability of com-
plex ecosystems [2, 4]. Also, mixture toxicity is included 
by considering the interactions between the AIs, safeners, 
synergists, and co-formulants of a single PPP. However, 
this implies that only technical mixtures such as PPP with 
one or more AI are included, while the so-called “coin-
cidental’’ pesticide mixtures, like inter alia tank mixtures 
or pesticide spraying sequences during a growing season, 
are not explicitly considered [1, 5]. The application of a 
series of distinct PPPs with different modes of action, or 
the use of tank mixtures, is a common practice in current 
agriculture, assuring sufficient agricultural yield by avoid-
ing the occurrence of different pests over the growing 
season [6–8]. Consequently, it is questionable if the risk 
assessment based on single PPP is adequate to protect 
non-target organisms from the negative effects of expo-
sure to real-world mixtures and/or spray series of PPPs.

Analysis of field data for pesticides in smaller water-
bodies of rural areas including detailed evaluation of 
large-scale aggregated pesticide data demonstrated 
increasing evidence that for a relevant number of water-
bodies, impacts and risks for aquatic communities due to 

pesticides are indicated [e.g. 9–17]. Therefore, agricul-
tural land use can be considered as a main input path-
way of pesticides into streams [16]. In a comprehensive 
study, Junghans et  al. [18] investigated the risk of pesti-
cide mixtures for aquatic communities in five small agri-
cultural streams in Switzerland. By use of stream water 
for biotests, a high risk for plants, invertebrates and fish 
at all investigated sites was confirmed for most of the 
water samples [18]. Herbicides and fungicides were the 
two pesticide classes most frequently detected in surface 
waters, and especially herbicides were widely present in 
aquatic ecosystems due to their high application rates 
[19, 20]. The analysis of environmental monitoring data 
from different countries displayed a mixture of three to 
five pesticides in median, but also exceeding a mixture of 
ten different compounds in some cases in surface waters. 
Herbicides were the dominant pesticide class found fol-
lowed by fungicides and insecticides [21].

These findings demonstrate that there is a potential dis-
crepancy between the claim and objectives of the plant 
protection regulation [1] and the actual situation in the 
field. There are several reasons why pesticide concentra-
tions above RACs occur in edge-of-field surface waters. 
These reasons include an improper use of PPP, more fre-
quent run-off events than anticipated, lack of or insuffi-
cient wetland vegetation at the riparian zones for input 
reduction, simultaneous PPP application of the same set 
of AIs on different crop areas within a river catchment, 
or application of a series of different PPPs within a crop-
specific spraying sequence. Especially the environmen-
tal risk of spraying sequences of different PPPs has been 
ignored so far by the EU RA [8].

Therefore, the German Environment Agency (UBA) 
performed a stream mesocosm study in order to investi-
gate the effects of a realistic spraying sequence, as applied 
to apple crop in the fruit growing area of Lake Constance 
in southern Germany, on an aquatic stream community 
for 150  days. Application data of a spraying sequence 
originally applied in 2010 were kindly provided by the 
Julius Kuehn Institute (Braunschweig, Germany), which 
documents the extent of spray series application of PPPs 
on conventional crop on the basis of annual surveys [22, 
23].

Since pesticide concentrations in edge-of-field surface 
waters should not exceed the RAC for each AI, RACs 
were chosen to simulate pesticide entries in stream 
mesocosms due to apple crop spray treatments. The use 
of a RAC can be seen as a realistic approach since it was 
derived applying a safety factor that accounts for uncer-
tainties such as extrapolations to other species or from 
laboratory test conditions to field situations [24, 25]. 
However, the occurrence of adverse effects as well as the 
regular exceedances of RACs in the field does frequently 
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raise the question whether a series of PPP spraying 
events leading to concentrations that correspond to the 
RAC values (i.e. a sequence of RACs in time) would still 
be protective for stream communities [18, 26, 27]. There-
fore, we hypothesised that the successive application of 
PPP, each at its RAC, within the spraying sequence of 
apple crop leads to adverse effects on the stream commu-
nity. This hypothesis is based on the fact that the issue 
of multiple PPP applications is not explicitly considered 
in RAC derivation. Thus, there are some uncertainties in 
terms of the protection level ensured in the field. To test 
the hypothesis, the conducted mesocosm study focussed 
on endpoints such as species diversity, abundance of ben-
thos, periphyton, macrophytes, emergence of insects, as 
well as physico-chemical water parameters, and addition-
ally on behaviour (drift) of aquatic macroinvertebrates.

Methods
Stream mesocosm set‑up and biological establishment
The study was conducted in eight indoor stream meso-
cosms at the field station of the UBA (https://​www.​
umwel​tbund​esamt.​de/​en) in Berlin (Germany). Eight 
flow-through circular stream mesocosms (length 74  m, 
width 1 m, water volume 20.5  m3, glass-fibre reinforced 
polyester material), each equipped with riffle sections 
and four separate pool sections per stream were set up 
[28]. The riffle sections were established with a sand 
bottom. The deeper pool sections were filled addition-
ally with a 7-cm middle layer of a sand and natural sedi-
ment mixture (3:1) from lake Duckwitz (N 53.593894, O 
12.345664; Mecklenburg-Western Pomerania, Germany) 
covered by a 5-cm top sand layer. The systems were 
filled with a mixture of treated ground water (de-ion-
ised) and deionised water up to a water depth of 27 cm 
from the UBA field station´s own waterworks (conduc-
tivity approx. 500 µS−1 cm). Water flow was adjusted to 
0.1 m s−1 and water loss due to evaporation was compen-
sated by adding deionised water. For further details, see 
Mohr et al. [28, 29]. A sketch of the mesocosm set-up is 
shown in Additional file 1: Fig. S1. The systems were illu-
minated with fluorescent tubes (OSRAM LF72) provid-
ing a mean photosynthetically active radiation of about 
50 and 120 μmol m−2 s−1 on the water surface of the rif-
fles and pools, respectively. The light regime followed 
monthly the seasonal daylight length.

One year before the start of the spraying sequence, the 
macrophyte species Elodea canadensis, Potamogeton 
natans, Myriophyllum spicatum, and Sparganium erec-
tum were planted in the four pool sections as structural 
elements in the streams. Eight weeks before the first PPP 
application (start of the experiment), equal aliquots of a 
periphyton suspension obtained from a mesotrophic lake 
(Britzer Garten, N 52.4332, E 13.4160, Berlin, Germany) 

were added to each stream for inoculation. To ensure 
sufficient nutrient supply for the growth of macrophytes 
and periphyton, trace elements and nutrients were added 
in equal concentrations to each of the streams before 
and during the experiment: 1 × mixture of trace ele-
ments (0.1  mg  L−1 H3BO3, 0.02  mg  L−1 MnCl2*4H2O, 
0.001  mg  L−1 Na2MoO4* 2H2O, 0.011  mg  L−1 
ZnCl2,  CuCl2* 2H2O, 0.084  mg  L−1 FeCl3*6H2O), 
5 × phosphate (0.02 mg L−1 PO4-P), 5 × nitrate (1 mg L−1 
NO3-N), and 9 × silicate (4  mg  L−1 Si). Given values for 
addition refer to water concentrations in the mesocosms).

In order to stock the stream mesocosms with benthic 
macroinvertebrates, attraction devices consisting of poly-
ethylene net bags (32 cm × 20 cm, mesh opening 4 mm) 
were filled with 100  g of loose organic triticale straw 
(Eco-village Brodowin, N 52.5439, E 13.5741, Germany). 
Bags were exposed in three different reference streams 
for two weeks and subsequently transferred to the stream 
mesocosms (with an equal number of bags per stream) 
one to two weeks prior to the start of the experiment (for 
details see supplemental information Additional file  1: 
Table  S1). As reference sites, the sub-lacustrine creek 
Barolder Fließ (N 51.9912, E 14.2209, South-Branden-
burg, Germany), the stream Lieberoser Mühlenfließ (N 
51.9864, E 14.3522, South-Brandenburg, Germany), and 
the ditch Lietzengraben (N 52.6551 E 13.4741, North 
of Berlin, Germany) were chosen in order to guarantee 
a broad variety of benthic macroinvertebrate species. 
The ecological condition of the reference streams was 
characterised as good to moderate [30]. After 2–3  days 
of acclimatisation in the stream mesocosms, straw bags 
were opened to allow the loose straw to accumulate into 
10-cm-deep cross-drains, which were evenly distrib-
uted over the sediment bottom acting as hiding spots 
and further detrital based food supply. Further details 
can be found in Mohr et  al. [29]. In addition, macroin-
vertebrates were collected from the creeks Rabener Plane 
(N 52.0463, E 12.5719, South-Brandenburg, Germany) 
and Bardenitzer Fließ (N 52.0675, E 12.9320, South-
Brandenburg, Germany) by means of two polyethyl-
ene net bags (38 × 65 cm, mesh size 4 mm), which were 
filled with ca. 300 g of dried leaves of Alnus glutinosa and 
exposed for two weeks. Macroinvertebrates were then 
separated from leaves using a sieve (10  mm mesh) and 
divided into nine subsamples. Each stream mesocosm 
was stocked with one subsample and the ninth subsam-
ple was immediately fixed in 96% ethanol as a reference 
sample for initial stocking. Furthermore, the mesocosms 
were colonised with different species of Trichoptera lar-
vae and Asellus aquaticus collected by dip nets or hand 
from the stream Fredersdorfer Mühlenfließ (N 52.5675, E 
13.7890, Brandenburg, Germany), as well as with Cloeon 
dipterum and different snail taxa (Theodoxus fluviatilis, 

https://www.umweltbundesamt.de/en
https://www.umweltbundesamt.de/en
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Potamopyrgus antipodarum, Gyraulus sp., Physella sp., 
Lymnaea stagnalis) from outdoor stream and pond mes-
ocosms at the UBA field station. Details of stocking dates 
and number of introduced organisms are given in Addi-
tional file 1: Table S1.

Eleven weeks (day 77) after the experimental start with 
first PPP application on day 0, all stream mesocosms were 
colonised one more time with eight straw bags per sys-
tem, which had previously been exposed for two weeks 
in the Lieberoser Mühlenfließ in order to compensate 
for emerged insects and to simulate re-colonisation with 
the next generation of insect larvae. For each stocking 
event, three bags were immediately fixed in 96% ethanol 
to determine the initial macroinvertebrate community in 
the mesocosms (Additional file 1: Table S1).

Spray sequence scenario
The original apple crop application scheme, which was 
provided by Julius Kuehn Institute, comprised 25 applica-
tion days in the period from March to September 2010 
with a total of 23 different PPPs with 21 AI. Fungicidal 
AIs were used 39 times, insecticidal AIs 13 times, and 
herbicidal AIs four times. The spray sequence tested 
in this study was slightly adjusted by excluding a virus, 
a pheromone, an antibiotic, and a growth regulating 
product. In addition, the sequence was shortened due 
to technical and organisational reasons by considering 
that all remaining PPPs were applied at least once. Thus, 
17 PPPs composed of 17 different AIs (nine fungicidal, 
four herbicidal and four insecticidal AI) were applied on 
19 spraying event days in the period from April to July 
2015. Information on all applied PPPs, their AIs, mode 
of action, the producers, used RACs, and sampling dates 
are listed in Table 1 and Additional file 1: Table S2. Four 
stream mesocosms were used as treatments by applying 
the specific RAC of each PPP and by chronologically fol-
lowing the original application sequence as close as pos-
sible. The four remaining stream mesocosms served as 
controls. Control and treatment stream mesocosms were 
allocated randomly.

Application of plant protection products
The procedures of stock solution preparation are 
described in Additional file  1: Sect.  1. For a precise 
application of low pesticide concentrations, high preci-
sion micro-dosing rotary piston pumps (IP65 MCP-CPF 
with pump head FMI205 QP.Q1.CSC/9003, Ismatec, 
Switzerland), equipped with ceramic pistons and cylin-
ders, PTFE seals, stainless-steel tubes, and fittings were 
used. During application, pesticide solutions were per-
manently stirred to avoid separation or sedimentation 
inside the flask before entering the pump. For rapid mix-
ing of applied PPP over the whole stream water body, the 

duration of the application was adjusted to one complete 
water rotation in the circular streams (about 12 min). The 
control streams were dosed with the same volume of tap 
water by use of a watering can.

Sampling and analysis of active ingredients
Water sampling for pesticide analysis in all streams was 
carried out at the beginning and end of the study, to 
monitor all applied AIs (except dodine). After each appli-
cation event, water sampling started at t = 240 min using 
stationary fixed rotary piston pumps automatically filling 
up 1-L samples of stream water during one water rota-
tion in the circular streams. When necessary, additional 
buffer solution was added. When a PPP was applied on 
several application dates, additional sampling shortly 
before re-application was carried out to assess, if there 
were any residues from the previous application. All sam-
ples were transported directly to the laboratories in dark 
and cool conditions. The AIs were analysed by Eurofins 
Sofia GmbH (Berlin, Germany) and two chemical labo-
ratories of the UBA. A detailed description of special 
PPP solution preparations, sampling, and analysis can be 
found in Additional file 1: Section 1.

The RACs of the AIs were used as references for both, 
dosing solutions and stream water, concentrations to cal-
culate chemical recovery (Table 1). In the case of the sec-
ond application of penconazole, the actual concentration 
was corrected, based on the measured preload concen-
tration. Specific calculational conversions were made in 
case of copper-oxychloride, glyphosate-IPA, and MCPA-
DMA, because analytes (Cu, glyphosate, and MCPA) dif-
fered from the AI in the PPP (e.g. Cu-oxychloride). For 
dodine, no water analysis was carried out, since rapid 
adsorption on all organic surfaces in the stream meso-
cosms was expected, due to its high soil partition coef-
ficient Kd (range 2,200 to 18,000 kg L−1) and no sensitive 
analytical method was available at the time.

Standard water quality parameters
Standard water parameters namely oxygen, pH, electri-
cal conductivity, and water temperature were measured 
weekly with a multi-parameter probe system (Multi 
3430, probes FDO 925, SensoLyt 900, TetraCon 925; 
each WTW, Germany). For nutrient and major ion anal-
ysis, water samples were taken every two weeks. Water 
samples were filtered (0.45  µm, cellulose-nitrate filters, 
Schleicher & Schuell, Germany) for further analysis. The 
major ions fluoride, chloride, bromide, sulphate, lithium, 
sodium, potassium, magnesium, and calcium were ana-
lysed using standard methods (TitrIC-system, Metrohm, 
Switzerland) [31–33]. Concentrations of o-phosphate, 
ammonia, nitrite, nitrate, and silicate were quantified 
photometrically using continuous flow analysis (San + + , 
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Skalar, Netherlands) [34–37]. Dissolved organic carbon 
was analysed according to DIN EN 1484 [38] as non-
purgeable organic carbon by catalytic combustion at 
680 ℃ and NDIR-detection by use of a TOC 5000A with 
ASI 5000A (Shimadzu, Japan) with 3-point calibration 
and sample injection.

Periphyton and macrophyte sampling and analysis
For periphyton sampling, each stream was equipped 
with a special rack consisting of a stainless-steel frame 
holding 56 microscopic slides (76 × 52  mm, soda-lime 
glass), which was adjusted in parallel to the water cur-
rent at 13  cm below water surface. For uniform illu-
mination, eight rows of LED strip lights (neutral 
white; ~ 122  µmol  m−2  s−1 PhAR at water surface; Co. 
Nobilé, Germany) were mounted under a stainless-steel 
flat roof.

For periphyton sampling, four colonised glass slides 
were taken at each sampling date (11 sampling dates in 
total). Prior to sampling, the slide positions were chosen 
randomly and the chosen positions were then taken out 
equally in all streams. The periphyton on both sides of a 
slide was scraped and rinsed off with a plastic Japan spat-
ula and tap water. Periphyton of all four slides per stream 
was merged in one sample representing a total surface 
area of 237.12  cm2. The suspension was transferred to a 
glass bottle and filled with tap water up to a volume of 1 L 
for further analysis.

Species identification of periphyton samples preserved 
with Lugol’s solution or formalin was done by use of light 
microscopy with differential interference contrast (BX51, 
Olympus, Japan) using standard preparation techniques 
[39] and latest identification keys. Species specific cell 
or filament volumes were given as size classes based on 
microscopic size measurements and by use of corre-
sponding geometric formulas. Biovolume was calculated 
as the product of species number and its specific speci-
men volume. Development of the macrophyte P. natans 
was monitored once a week by counting all floating 
leaves in each stream, starting 10 days before and ending 
151 days after the first application event.

Macroinvertebrates sampling
Determination of macroinvertebrate species and their 
abundances in the stream mesocosms was carried out 
using traps stuffed with different substrates in order to 
attract diverse taxonomic groups. Straw (7 g dry weight) 
and small ceramic tubes (Eheim, Germany; 400  g) were 
filled into two polyethylene net bags (13  cm × 17  cm, 
3 × 4  mm mesh size), respectively. For each sampling, 
two benthos traps were placed at two positions in each 
stream mesocosm for colonisation. After two weeks, 
the traps were sampled and rinsed with tap water over 

a sieve (200  µm mesh size) until all organisms were 
washed out and then stored in ethanol (80%) for species 
determination.

Emergence samples were taken at four different loca-
tions of each stream as described in Mohr et al. [29]. Each 
emergence trap covered a water surface area of 1 m2 (pol-
yethylene, 0.5 mm mesh size). Starting four weeks before 
the first application of PPP, emergence of merolimnic 
insects was quantified weekly for a period of 24  weeks 
by emptying and refilling the plastic beaker with 30 ml of 
“Renner fixation solution” (mixture of ethanol, distilled 
water, glycerine, acetic acid, and detergent) on the open 
top of the roof-like trap.

Macroinvertebrate drift was measured as described by 
Berghahn et al. [40]. Briefly, 30 min after pesticide dos-
ing, two drift nets (size of the opening: 15  cm × 7.5  cm; 
mesh size of the funnel: 283  µm; total length: 140  cm) 
were placed in the middle of the stream bottom above the 
sediment surface (distance between nets approximately 
30  m) for 4 h. Furthermore, night drift was measured 
employing drifts nets for 14 h (6 pm to 8 am). Drift was 
measured on three application dates with estimated high 
toxic pressure for benthic macroinvertebrates: (1) day 55: 
application of dithianon, penconazole and fenoxycarb; 
(2) day 66: application of sulphur, dithianon and spirote-
tramat; and (3) day 83: application of sulphur, dithianon, 
fluquinconazole and pyrimethanil (Tables 1, 3). Macroin-
vertebrates caught in the drift nets were preserved in 80% 
ethanol for further evaluation.

Taxonomic identification of macroinvertebrates (sam-
ples of initial stocking, sampling and emergence traps 
as well as drift net catches) were performed using mag-
nifying glasses and a stereomicroscope (Stemi 2000-C; 
Zeiss, Germany). All macroinvertebrates were identified 
to lowest practical taxonomic level (mostly genus or fam-
ily level, see Additional file  1: Table  S1) using the latest 
identification keys (see Additional file  1: section  2). In 
the case of samples gained from emergence traps, male 
chironomids were identified to subfamily level, whereas 
female chironomids were pooled.

Statistical analysis
All statistical analyses were conducted using the sta-
tistical software package R Development Core Team (R 
version 3.6.1) [41] with the additional packages vegan 
[42] and mvabund [43]. Generalized linear models for 
multivariate data (GLMmv) as described in Szöcs et  al. 
[44] were used to evaluate the effects of multiple expo-
sures of low-level applications of pesticides (control vs. 
treatment) on the temporal development of major ions 
(i.e. water concentration of measured ions), periphy-
ton community (i.e. biovolume of identified periphy-
ton taxa), macroinvertebrate community (i.e. density of 
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identified invertebrate taxa), and cumulative emergence 
of insects (i.e. density of identified taxa of emerging 
insects). Treatment effects were expressed and visualised 
as deviations from the control (y = 0) over time (x-axis). 
A general treatment effect considering the whole experi-
mental duration was analysed by comparison of the 
model including the time × treatment interaction to the 
model with time as sole variable. Significance level was 
set to α = 0.05 and level for a tendency to α = 0.1. Since 
the GLMmv analyses only potential effects on the multi-
variate level, also species weights of the GLMmv model 
(as percentage contribution to the deviance of single 
taxa, Table 2) were used as tool for the selection of taxa 
used for further analyses. In order to evaluate potential 
effects of PPPs into more detail, all taxa/parameter with 
species weight greater than 5% were used for further 
univariate analysis. As density data are usually skewed 
and widespread, log(x + 1) transformation was applied 
before further analysis [45]. Differences in the develop-
ment of the selected taxa over time between control and 
treatment were analysed using generalized linear models 
(GLM, error distribution = Gaussian). If overdispersion 
was detected using the function dispersiontest within 
the R package AER [46], the error distribution ’quasi-
Poisson’ was used to overcome overdispersion. In case 
of a significant treatment effect (control vs. treatment) 
without a significant time × treatment effect, additionally 
sampling date(s) before the first application of a pesticide 
were compared. This was done in order to exclude that 
a significant difference between control and treatment 
already occurred before the first application of PPP for 
the respective cases (cf. Table  2). In doing so, a Mann–
Whitney test (in case of only one sampling date before 
first PPP application) or a GLM (in case of more than 
one sampling date before first PPP application) was used 
to evaluate if start conditions were comparable between 
control and treatment replicates. For all relevant cases, 
no significant difference was found before the first appli-
cation of PPP (p > 0.05). We further analysed the vari-
ation of the development of the selected taxa between 
control and treatment replicates. For each sampling date 
and taxon, the variation was calculated as the absolute 
difference between the mean value and single value per 
replicate of the control and treatment mesocosms (non-
transformed data), respectively. Statistical analyses were 
then carried out as described above for the analyses of 
the development of the selected taxa over time.

Similarity of drifting invertebrates for each sampling 
date was analysed by non-metric multidimensional 
scaling (nMDS). When analysing Bray–Curtis similari-
ties, which compare ranked similarities for differences 
between defined groups, square root transformation of 
abundance was used to reduce the effect of dominant 

taxa [47]. Differences in invertebrate drift were deter-
mined using PERMANOVA (permutational analysis of 
variance), which analyses multivariate data on the basis 
of distance measurements using permutations [48, 49].

Species weight (as percentage contribution) of single 
species to the differences on the community level in drift-
ing community between control and treatment was esti-
mated using SIMPER [42]. We selected the three species 
contributing the most to the differences in drift between 
control and treatment for further analyses. For these 
three species and for the development in the number of 
floating leaves of the macrophyte Potamogeton natans 
the same univariate statistical procedures as described 
above for standard benthos samples were used.

Toxic units
The toxic units (TU) approach was applied in order to 
describe the “toxic pressure” emanating from the pesti-
cide concentrations dosed in this study. TU is commonly 
defined as the ratio between the concentration and a 
defined effective concentration as determined by eco-
toxicity testing of the respective compound (e.g. EC50). 
Hence, a toxic unit of 1 for a given compound would 
describe the exposure concentration, at which there is a 
50% effect when dealing with e.g. an acute EC50 of a cer-
tain biological endpoint. The TU approach can be used to 
calculate the toxicity of mixtures for different organisms 
[2], assuming concentration–additive behaviour of mix-
ture components as default to obtain a theoretical “mix-
ture toxicity indicator”. In this study, the TU approach 
was used to describe the theoretical toxicity as overall 
impact of the successive applications of the PPPs on the 
main biological components (periphyton, benthos) of the 
overall species community:

The calculation of TU (TU for each AI) was performed 
with “ci”, which refers to the nominal exposure concen-
tration (RAC for each AI tested) in the stream water at 
the start of application, corrected by the measured con-
centration in the dosing solution. For TU, the exposure 
concentration at the time of application was thus divided 
by the 48 h LC50 from acute Daphnia test and the 72 h 
EC50 from algae test (as given in EFSA conclusions and 
lists of endpoints for the respective AIs; https://​www.​
efsa.​europa.​eu/​en/​publi​catio​ns). Both assessments were 
made in parallel. The sum of toxic units (sumTU) was cal-
culated weekly as a measure for toxic pressure over time, 
which means that TUs can contain PPPs of several appli-
cation dates. TU for PPPs containing sulphur were not 

sumTU =

n∑

i=1

ci

ECxi
.

https://www.efsa.europa.eu/en/publications
https://www.efsa.europa.eu/en/publications
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included in the analysis since sulphur is considered toxic 
to sediment organisms only.

Results
Analytical recovery of active ingredients in stream 
mesocosm water following the spray sequence scenario 
for apple crop
Overall, achieving similar and very low AI concentrations 
corresponding to the RAC (some as low as 0.16 µg L−1) 
for 17 PPPs with different physico-chemical properties 
in the water of the four treated stream  mesocosms was 
challenging. Analysis of stream water samples, taken 
directly after PPP application, disclosed that 22 of 35 
analysed AIs were within the recovery range with less 
than 20% deviation from nominal concentrations. Hence, 
the desired concentrations (RACs) for these PPPs were 
reached (Table 1). However, a deviation of more than 20% 
above or below RAC was found for 13 AI in stream water. 
This was the case for some hydrolytically unstable AIs 
(dithianon, captan) and for highly adsorptive AIs (copper 
oxychloride, sulphur). For these substances, target con-
centrations refer to the respective dosing concentration 
(Table 1). In case of dodine, dosing solutions reached the 
RAC in most cases, but recovery in stream water was not 
analysable (see method section). For the substance dithi-
anon, it was not possible to achieve concentrations cor-
responding to the RAC in most of the dosing solutions. 
Stream water samples were below limit of quantification 
of dithianon (Table 1).

Before the first PPP application, analytical screening of 
all organic AIs in the eight stream mesocosms revealed 
that background concentration levels were always below 
the limit of quantification. Only three of the organic AIs 
were found in water samples of the four treatment repli-
cates at the end of the study after 144 days: dimethena-
mid with 0.15 µg L−1, penconazole with 1.7 µg L−1, and 
methoxyfenozide with 1.8 µg L−1. Possibly these AIs led 
to higher chronic stress responses than the more short-
lived AIs.

Effects on physico‑chemical water parameters
During the experimental period, water temperature 
increased from 12.7 ℃ (day-28) in April to 18.5 ℃ at the 
end of May (day 48), and varied between 19 to 24.5 ℃ 
until the end of August (day 145). Data of physico-chem-
ical water parameters for each sampling date are summa-
rised in Additional file  1: Tables S3, S4; and Additional 
file 1: Fig. S2. GLMmv analysis of the major ion composi-
tion (i.e. concentration of the analysed ions per replicate 
and sampling date) in the stream water of control and 
treatment was based on 13 single ions and alkalinity as 
sum parameter (Fig. 1A). Considering the whole experi-
mental duration, no general treatment effect was found 

(GLMmv, p = 0.22), but significant differences in the treat-
ments were found on sampling date day 88 (p = 0.024) 
and day 101 (p = 0.013; Fig. 1A). Calculation of the con-
tribution of single parameters to differences between 
control and treatment (as proportion of the deviance of a 
respective ion to the overall deviance) revealed eight ions 
with a contribution of more than or equal to 5% (nitrate, 
nitrite, ammonium, silicate, bromide, sodium, potas-
sium, and phosphate), but none of these single param-
eters showed a significant difference between control and 
treatment (Table 2, Additional file 1: Fig. S2).

Effects on periphyton and macrophytes
During the experimental period, 34 taxa of primary pro-
ducers were identified in the periphyton biofilm and 
then grouped to analyse effects of the applied pesticide 
spraying sequence on periphyton biovolume. A signifi-
cant general treatment effect (i.e. biovolume of identified 
periphyton taxa per replicate [control vs. treatment] and 
sampling date) was found over the whole experimental 
period (GLMmv, p = 0.043, Fig. 1B). Furthermore, GLMmv 
analysis revealed a tendency for differences on day 75 
(p = 0.078) and significant differences on day 18, day 89, 
day 103, and day 117 (p < 0.05, Fig.  1B) in periphyton 
community composition.

Six periphyton species contributed to differences 
between control and treatment with more than 5% 
(Table  2). A significantly higher variation in biovolume 
for the species Synechococcus spp. and Chaetophorales 
was found over time in the treatment mesocosms, com-
pared to the controls (Table  2, Fig.  2A-B). In turn, for 
Fragilaria fasciculata/acus and Nitzschia spp., there was 
a significantly higher variation in the control mesocosms.

Since macrophytes standing stock should not be dis-
turbed, only effects on the non-destructive endpoint leaf 
development of P. natans were analysed. At the start of 
the experiment in spring, P. natans shoots had not yet 
developed floating leaves (Fig. 3). The number of floating 
leaves increased over time and was significantly higher in 
the control compared to the treatment (GLM, treatment: 
p = 0.016, treatment × time interaction: p < 0.001), indicat-
ing a higher net production rate of control macrophytes.

Overall, the toxic pressure of specific PPP applications 
expressed as sumTU (Fig.  4) for each application date 
could not be related to effects on the periphyton commu-
nity (Fig. 1B) nor to effects on P. natans (Fig. 3).

Effects on the macroinvertebrate community
For statistical analysis, the identified invertebrate taxa 
from benthos traps were grouped to higher taxonomic 
levels. For the resulting 16 taxa, effects of the pesticide 
spraying sequence were analysed. No general treatment 
effect (i.e. densities of identified macroinvertebrate taxa 
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per replicate [control vs. treatment] and sampling date) 
was found for the whole experimental time (GLMmv, 
p = 0.41, Fig. 1C). Furthermore, GLMmv analysis revealed 
a significant difference in the community (i.e. densities 
of identified macroinvertebrate taxa as described above) 
between the treatment and the control at the end of the 
study on day 131 (p = 0.049, Fig. 1C).

Ten taxa of benthic macroinvertebrates contributed 
to the differences between controls and treatments 
with more than or equal to 5% (Table  2). The variation 
in number of Orthocladiinae, Trichoptera (Table 2), and 
Turbellaria (Fig. 2C), were higher in the treatment meso-
cosms, while the variation in the number of Gammarus 
spp. showed a significant increase in the treatment meso-
cosms over time (Table 2, Fig. 2D).

Drift of invertebrates
Drift of benthic macroinvertebrates was measured after 
three application dates. A significant treatment effect was 
detected on the community level only for the pesticide 
application event on day 83 (sulphur, dithianon, fluquin-
conazole and pyrimethanil; PERMANOVA, p = 0.03, 
Table  3), but no significant differences in drift of the 

three taxa Tanypodinae, Gammarus spp., and Baetidae, 
which contributed the most to the community effect, 
were found (Table 3).

Emergence of aquatic insects
In order to analyse effects of the pesticide spraying 
sequence on the emergence of aquatic insects, hatched 
insects were grouped into 18 taxa. No general treatment 
effect (i.e. densities of identified taxa of emerging insects 
per replicate [control vs. treatment] and sampling date) 
was found for the whole experimental duration (GLMmv, 
p = 0.32, Fig. 1D). Furthermore, GLMmv analysis revealed 
significant differences in the community composition of 
emerging insects at the first sampling date of the experi-
ment before the first pesticide application at day-30 
(p < 0.05, Fig. 1D) and in the treatment on day 75, day 102, 
and day 124 (p < 0.05). At the first sampling date (day-30) 
only few individuals were found in the emergence traps 
indicating stronger random effects.

Ten taxa of emerging insects with a contribution of 
more than 5% to differences between control and treat-
ment were identified (Table  2). None of the ten taxa 
revealed a significant difference in the cumulative 

Fig. 1  Visualisation of results from generalized linear models for multivariate data (GLMmv) of the community of A ion composition [i.e. water 
concentration of measured ions]; B periphyton [i.e. biovolume of identified periphyton taxa]; C benthic invertebrates [i.e. density of identified 
invertebrate taxa], and D emerging insects [i.e. density of identified taxa of emerging insects]. Open circles indicate sampling dates with significant 
differences (α = 0.05) in the treatment mesocosms from the controls. Grey circles indicate a level for a tendency to α = 0.1. Day 0 represents the day 
of the first application of a pesticide. Vertical dashed lines indicate the start (left) and the end (right) of the PPP application period
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Fig. 2  Development of biovolume of the periphyton taxa A Synechococcus spp; B Chaetophorales; development of abundance of the benthic 
invertebrate taxa; C Turbellaria; D Gammarus spp; cumulative emergence of the merolimnic insect taxa; E Baetidae; F female Chironomidae during 
the experimental period. Grey and white boxplots represent treatment and control, respectively. Day 0 represents the day of the first pesticide 
application. X-axes are with different scaling for better visual resolution



Page 14 of 20Mohr et al. Environmental Sciences Europe           (2023) 35:35 

number of emerging insects in the treatment over time, 
when compared to the control. However, variations in 
the cumulative emergence of some chironomid taxa 
(i.e. female Chironomidae, male Orthocladiinae, male 

Chironominae), and cumulative emergence of all taxa 
(sum) showed increasing variation over time in the 
treatment (Table  2). Furthermore, cumulative emer-
gence of Baetidae and female Chironomidae displayed 
increasing variation over time in the treatment (Fig. 2E, 
F) and the variation in cumulative emergence of male 
Tanypodinae was significant (Table 2).

Toxic pressure over time
The TU approach showed relatively high toxic pressure 
on primary producers during the first part of the spray-
ing sequence (weeks 1 to 4; Fig.  4). SumTU exceeded 
a value of 0.1 (1/10th EC50) during week 1, 3, and 4 
(Fig.  4), which corresponds to the time of application 
of the two fungicides copper and dodine, both being 
more toxic to primary producers than to invertebrates 
and delivering rather high sumTUs than the four herbi-
cides applied during the second part of the experiment. 
In addition, in week 12 and 18, sumTU was also above 
a value of 0.1.

The TU approach also indicated a toxic pressure 
on invertebrates in the first part (weeks 1 to 6) of the 
experiment (Fig.  4). However, the overall toxic pres-
sure exerted on invertebrates was much lower than on 
primary producers with a maximum sumTU value of 
0.035, at no time exceeding a value of 0.1.

Fig. 3  Development (mean ± SD) of floating leaves of Potamogeton 
natans during the experimental period. Grey and white points 
represent treatment and control, respectively. Day 0 represents the 
day of the first pesticide application

Fig. 4  Sum of toxic units (sumTU) over time for primary producers based on the 72 h EC50 from algae test (dark bars) and invertebrates based on 
the 48 h EC50 from acute Daphnia test (bright bars). SumTU values are given as weekly average and consider the concentration at the time of PPP 
application (Note: RAC corrected by recovery of dosing solution; values for sulphur are excluded since they are considered as toxic toward sediment 
organisms only.)
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Discussion
Effects of the apple crop spraying sequence on the stream 
mesocosm community
The applied pesticide concentrations on the basis of reg-
ulatory acceptable concentrations (RAC values) following 
an apple crop spraying sequence scenario led to signifi-
cant differences between control and treatment streams 
over time, especially towards the end of the study. This 
was the case for the endpoints: variation in biovolume 
of selected periphyton species, abundance and variation 
of abundance of selected benthic macroinvertebrates 
and insect emergence, as well as the number of floating 
leaves of P. natans (Figs. 1, 2 and 3, Table 2). Changes in 
physico-chemical parameters can be used as proxy of the 
sum of all photosynthetic and respiratory activities and 
therefore act as an indicator for changes in the ratio of 
respective processes. In our experiment, it was not possi-
ble to identify a relationship between specific PPP pulses 
and their associated toxic pressure exerted over time and 
significant biological and/ or ecological effects. Indeed, 
the TU approach relates to exposure concentrations at 
the time of treatment and acute ecotoxicity (from labo-
ratory testing, i.e. under standardised laboratory condi-
tions, Fig. 4). Thus, its predictive power is limited since 
it does not consider (i) potential long-term or delayed 
effects of fast dissipating substances or chronic effects of 
substances persisting in the water (e.g. copper) nor (ii) 
effects of species interactions and additional environ-
mental stressors exerted on field communities and uncer-
tainties related to more sensitive species than Daphnia 
and algae. Nevertheless, the community response as 
shown in Figs. 1–3 indicates that the repeated low-level 
pesticide applications resulted in measurable cumulative 
stress for several species and groups, confirming the find-
ings of other studies. In a mesocosm study conducted by 
Polazzo et al. [50], field-relevant peak exposure concen-
trations of pesticides resulted in a changed community 
composition of zooplankton only at the end of the exper-
iment after 50 days. Our results are also in line with the 
review by Altenburger et al. [6] about mixture effects of 
substances with different modes of action at concentra-
tions below single species effect thresholds.

The most striking result of the present study was the 
statistically significant increase in variation of population 
response parameters of selected taxa in the treatment 
mesocosms compared to the controls (Table 2, Fig. 2). On 
the one hand, variation in species responses has always 
been a big issue in ecotoxicology and species tests [51–
53], as it hinders the statistical evaluation of true effects 
from background noise with regard to mean values. On 
the other hand, there is increasing evidence that inter-
replicate variation of population development param-
eters as a result of genotype plasticity of individuals, can 

be an indicative endpoint for chemical pollution [54]. In 
general, ecotoxicological tests are designed to minimise 
the variation of possible influencing factors, other than 
the stressor under assessment [55]. In mesocosm studies 
with multiple populations of different trophic levels act-
ing together, the likelihood of facing significant variation 
in species responses is rather high [56]. In the present 
study, data variation of most endpoints at the beginning 
of the experiment was low in the control and treatment 
mesocosms. This indicates that the actions taken to syn-
chronise the community development in the mesocosms 
by a thorough and homogenous biological establish-
ment were successful. Therefore, the increased variation 
in abundance of selected species observed in the treat-
ment mesocosms might be considered as an effect of 
the repeated PPP pulses rather than a general mesocosm 
variation.

The observed variation in species response to the 19 
times repeated low-dosed PPP application might have 
been induced by genotype plasticity of respective species. 
The higher the genotype plasticity of species or commu-
nities, the more complex the responses will be in terms 
of physiological adaptations such as detoxification pro-
cesses or increased escape responses [53]. In addition, 
small differences in concentrations of some pesticides 
(see standard deviation of recovery of AI in streams; 
Table 1) at the start of the experiment may have further 
promoted the variation in species responses. The slightly 
different pesticide concentrations in the four treatment 
mesocosms may have led to different individual stress 
responses, causing cascadic effects in the populations. 
This so-called butterfly effect has been described as the 
sensitive dependence on initial conditions, in which a 
small change in one state of a system can result in large 
differences in a later state [57]. In the present study, the 
concentration differences might have caused indirect or 
hormesis effects on the species communities indicated by 
higher abundance values in the treatments (Fig. 2). Espe-
cially hormesis effects have been shown to be trigged 
by very low doses of a range of chemicals and physi-
cal agents [58, 59]. In a review by Agathokleous [60], 
numerous plant and animal species responses to various 
stressors have been linked to hormesis at low stressor 
concentrations.

Overall, the increased variation in species response in 
the treatment mesocosms of the present study should be 
discussed as a general disturbance measure [53, 61], even 
if it was not possible to link the results to specific pes-
ticide pulses, to genotype plasticity of the species or the 
differences in exposure between replicates. When assess-
ing population health, e.g. in the risk assessment of pes-
ticides, the parameter “inter-replicate variation” should 
also be considered. Studies with high variation should 
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not per se be considered as unreliable, as this param-
eter might in fact reflect system resistance and resilience 
against perturbations or it might serve as an early warn-
ing sign of potential disturbances of communities in the 
field [62–66]. Hence, such results of inter-individual vari-
ation can also be seen as valuable source of information 
for the risk assessment [61].

Relevance of chosen apple spray scenario 
and implementation for the risk assessment
In Germany, 48.8% of the fruit cultivation area was used 
for apple production in 2008 [22], and in 2017 about 
10 Mio tons of apples were harvested from approx. 
473.550  ha [67]. The worldwide production of apples 
was 83.1 Mio tons in 2017 [68]. Apple orchards are regu-
larly treated with pesticides, often only for a high-qual-
ity visual appearance of the fruits to increase the sales 
value. Fungicides represent the most dominant pesticide 
group with more than 80% of AI applications per grow-
ing season [8, 69, 70] used mainly to prevent apple scab 
and other fungal infections. Captan and dithianon have 
been listed as two of the most frequently used fungicides 
[8, 71] and were also applied several times in the spray-
ing sequence of the present study. In a survey on applica-
tion of chemical pesticides in apple farming, Roßberg and 
Harzer [71] reported that the treatment frequency index 
(TFI), which quantifies the number of registered PPP 
applied to apple crop, was 28 TFI in 2001 and increased 
continuously to 33 in 2013. In France, between 2006 and 
2008, the mean TFI was 35 for conventional and 26 TFI 
for organic apple orchards with scab-susceptible apple 
cultivar [72]. For the shortened apple spraying scenario 
used in this study, 19 treatments with 17 different AI were 
applied, which can be considered as a “light to moderate” 
case scenario for standard practice in Germany [8, 71]. 
Thus, potential effects on natural communities in streams 
and rivers in agricultural areas facing multiple stressors 
in addition to the PPP spraying scenarios such as other 
chemicals, habitat degradation, and nutrient stress over 
the years, might be more pronounced [e.g. 73]. Also, the 
exposure concentrations limited to the RAC values used 
in this study may not represent a realistic exposure sce-
nario of pesticide entries in rural areas. Liess et  al. [27] 
identified an exceedance of RAC values for at least one 
pesticide concentration in agricultural streams in Ger-
many for 81% of the water samples tested.

The present study reinforces mounting evidence, that 
the current environmental risk assessment in the context 
of the authorisation of PPP may not be safe for ecosys-
tems and their communities, when facing multiple pesti-
cide entries of spraying sequences applied year after year. 
Indeed, risk assessment is currently restricted since it 
refers to individual PPP. In other words, it is questionable 

whether the use of RAC values derived for individual 
PPPs are enough in view of the typical agricultural prac-
tice of applying pesticide tank mixtures and/or spray 
series. This issue has also been raised by, e.g. Weber et al. 
[74], Junghans et al. [18], or Covert et al. [75]. Unfortu-
nately, experimental studies investigating effects of real-
istic spray sequences scenarios are still very rare since it 
is very difficult to get real application scheme data from 
farmers. In laboratory studies, Panico et al. [76] discov-
ered strong effects to invertebrates in soils, facing mix-
tures of pesticides conventionally used on agricultural 
fields. To our knowledge, until now only three meso-
cosm studies have assessed complex realistic exposure to 
pesticides used on bulb, potato, and apple crop, respec-
tively [77–79]. Wijngaarden et al. [77] and Arts et al. [78] 
revealed significant effects on pond/ditch communities 
at higher spray application rates, but concluded that risk 
assessment based on single pesticides seems to suffi-
ciently protect freshwater ecosystems. Both studies had a 
different experimental approach using pesticide concen-
trations based on a realistic application and spray drift 
scenario, but the amount of pesticides and application 
times were lower than in the present study. Talk et  al. 
[79] used a similar set-up as in this study, but focussed 
on fungal endpoints in pond mesocosms. The authors 
could not identify effects on fungal communities or leaf 
litter decomposition. Overall, more experimental stud-
ies applying realistic exposure scenarios are needed, even 
though implementing them is a challenge and very time 
consuming. An intensive field study by Schäfers et  al. 
[26] investigating invertebrate communities in differently 
treated apple orchards in the German region Altes Land 
revealed that invertebrate communities were significantly 
affected by pesticide use, depending on exposure pres-
sure. This was confirmed in a larger monitoring study 
in Germany showing that (i) 83% of agricultural streams 
did not meet the pesticide-related ecological targets; (ii) 
agricultural nonpoint source pesticide pollution was the 
major driving force in the reduction of vulnerable insect 
populations in aquatic invertebrate communities and (iii) 
the risk resulting from exposure to pesticide mixtures 
and to frequent successive pesticide applications needs to 
be better addressed [17, 27].

Conclusions
The repeated tiny dose makes the poison—meaning 
that the results of this mesocosm study provide further 
evidence for notable effects on aquatic stream com-
munities following exposure to repeated low pesticide 
concentrations simulating a realistic spraying sequence 
for apple crop. Indeed it induced disturbances for 
some invertebrates and primary producers. Albeit the 
observed differences between control and treatment 
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were rather small, our results support concerns that 
the current risk assessment for PPPs may not ensure a 
sufficient level of protection to field communities fac-
ing multiple pesticide entries from spraying sequences 
or other combined pesticide stress. The current frame-
work for single PPP allows risk assessment refinements 
that claim for more realism. However, it ignores impor-
tant aspects such as multiple exposure and effects of 
additional stressors, both natural and anthropogenic, 
which typically increase the sensitivity of organisms to 
pesticides [80, 81]. Therefore, it is still very challeng-
ing to realistically assess the risk. Obviously, the actual 
regulatory convention focussing on RAC values derived 
for individual AIs only, is not sufficient to ensure that 
no adverse effects on populations might occur in the 
field in view of multiple chemical (pesticides and other 
chemicals) exposures as well as further environmental 
stressors. As a consequence, legally binding protec-
tion goals may not be fulfilled. Applying for example 
an additional mixture assessment factor (MAF) in 
risk assessment, which has frequently been suggested 
[82], is one option to better address the issue of mix-
ture exposure occurring in the field. Given the inherent 
and remaining uncertainties of any (however complex) 
risk assessment, our findings might support the impor-
tance of an ambitioned pesticide reduction strategy as 
recently brought forward in the European Green deal 
with the Farm-to-Fork strategy [83, 84], too.
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