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Effects of a realistic pesticide spraying B

sequence for apple crop on stream communities
in mesocosms: negligible or notable?
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Abstract

Background Several large-scale studies revealed impacts and risks for aquatic communities of small rural lakes and
streams due to pesticides in agricultural landscapes. It appears that pesticide risk assessment based on single prod-
ucts does not offer sufficient protection for non-target organisms, which are exposed repeatedly to pesticide mixtures
in the environment. Therefore, a comprehensive stream mesocosm study was conducted in order to investigate

the potential effects of a realistic spraying sequence for conventional orchard farmed apples on a stream com-
munity using pesticides at their regulatory acceptable concentrations (RACs). Eight 74-m-long stream mesocosms
were established with water, sand, sediment, macrophytes, plankton and benthic macroinvertebrates. In total, nine
fungicidal, four herbicidal and four insecticidal pesticides were applied in four of the eight stream mesocosms on 19
spraying event days in the period from April to July while the remaining four stream mesocosms served as controls.
The community composition, the abundance of benthos, periphyton and macrophytes, the emergence of insects,
physico-chemical water parameters, and drift measurements of aquatic invertebrates were measured.

Results The pesticide spraying sequence induced significant effects on invertebrates, periphyton, and macrophytes
as well as on the water ion composition especially in the second half of the experiment. It was not possible to relate
the observed effects on the community to specific pesticides applied at certain time points and their associated toxic
pressure using the toxic unit approach. The most striking result was the statistically significant increase in variation of
population response parameters of some taxa in the treated mesocosms compared to the controls. This inter-individ-
ual variation can be seen as a general disturbance measure for the ecosystem.

Conclusions The pesticide spraying sequence simulated by using RAC values had notable effects on the aquatic
stream community in the conducted mesocosm study. The results indicate that the current risk assessment for pesti-
cides may not ensure a sufficient level of protection to the field communities facing multiple pesticide entries due to
spraying sequences and other combined stress. Hence, there is still room for improvement regarding the prospective
risk assessment of pesticides to further reduce negative effects on the environment.

Keywords Regulatory acceptable concentration (RAC), Benthic macroinvertebrates, Periphyton, Macrophytes,
Pesticides, Toxic effects

*Correspondence:

Silvia Mohr

silvia.mohr@uba.de

Full list of author information is available at the end of the article

. ©The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger O pe n permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-023-00739-y&domain=pdf

Mohr et al. Environmental Sciences Europe (2023) 35:35

Background

The EU pesticide risk assessment (RA) is based on a
tiered approach in order to sufficiently address the risk
of plant protection products (PPP) for the environ-
ment (pesticide regulation, European Commission No.
1107/2009) [1]. The tier 1 RA is a laboratory-based eco-
toxicological assessment, which includes several sin-
gle species tests. More complex and environmentally
realistic evaluations (tier 2 and 3) are usually proposed
as refinements if the tier 1 RA indicates that the legally
specified level of acceptability is not met [2].

A conceptual key element of the pesticide RA is the
derivation of regulatory acceptable concentrations (RAC)
of PPPs and/ or their active ingredients (AI). For tier 3,
RACs are derived on the basis of negligible population
effects or population effects with subsequent ecological
recovery within a certain time period [2, 3]. In each tier,
the RAC needs to be higher than the calculated predicted
environmental concentration (PEC) for edge-of-field
surface waters [2] in order to conclude on an acceptable
risk. On the exposure side, the pesticide entries into the
edge-of-field waterbodies, simulated by the PECs, can
be reduced by applying mitigation measures such as, e.g.
using drift-reducing spray nozzle technology or imple-
menting no-spray-zones or vegetated buffer-strips [2].

The complexity of the higher tier pesticide regula-
tion process increased over the years with the inclusion
of multi-species tests, mesocosm and field studies, as
well as effect modelling. Some of these studies are usu-
ally proposed to refine the risk by, in theory, introducing
more realism into the risk assessment, e.g. by estimating
more accurately the sensitivity and vulnerability of com-
plex ecosystems [2, 4]. Also, mixture toxicity is included
by considering the interactions between the Als, safeners,
synergists, and co-formulants of a single PPP. However,
this implies that only technical mixtures such as PPP with
one or more Al are included, while the so-called “coin-
cidental” pesticide mixtures, like inter alia tank mixtures
or pesticide spraying sequences during a growing season,
are not explicitly considered [1, 5]. The application of a
series of distinct PPPs with different modes of action, or
the use of tank mixtures, is a common practice in current
agriculture, assuring sufficient agricultural yield by avoid-
ing the occurrence of different pests over the growing
season [6—8]. Consequently, it is questionable if the risk
assessment based on single PPP is adequate to protect
non-target organisms from the negative effects of expo-
sure to real-world mixtures and/or spray series of PPPs.

Analysis of field data for pesticides in smaller water-
bodies of rural areas including detailed evaluation of
large-scale aggregated pesticide data demonstrated
increasing evidence that for a relevant number of water-
bodies, impacts and risks for aquatic communities due to
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pesticides are indicated [e.g. 9-17]. Therefore, agricul-
tural land use can be considered as a main input path-
way of pesticides into streams [16]. In a comprehensive
study, Junghans et al. [18] investigated the risk of pesti-
cide mixtures for aquatic communities in five small agri-
cultural streams in Switzerland. By use of stream water
for biotests, a high risk for plants, invertebrates and fish
at all investigated sites was confirmed for most of the
water samples [18]. Herbicides and fungicides were the
two pesticide classes most frequently detected in surface
waters, and especially herbicides were widely present in
aquatic ecosystems due to their high application rates
[19, 20]. The analysis of environmental monitoring data
from different countries displayed a mixture of three to
five pesticides in median, but also exceeding a mixture of
ten different compounds in some cases in surface waters.
Herbicides were the dominant pesticide class found fol-
lowed by fungicides and insecticides [21].

These findings demonstrate that there is a potential dis-
crepancy between the claim and objectives of the plant
protection regulation [1] and the actual situation in the
field. There are several reasons why pesticide concentra-
tions above RACs occur in edge-of-field surface waters.
These reasons include an improper use of PPP, more fre-
quent run-off events than anticipated, lack of or insuffi-
cient wetland vegetation at the riparian zones for input
reduction, simultaneous PPP application of the same set
of Als on different crop areas within a river catchment,
or application of a series of different PPPs within a crop-
specific spraying sequence. Especially the environmen-
tal risk of spraying sequences of different PPPs has been
ignored so far by the EU RA [8].

Therefore, the German Environment Agency (UBA)
performed a stream mesocosm study in order to investi-
gate the effects of a realistic spraying sequence, as applied
to apple crop in the fruit growing area of Lake Constance
in southern Germany, on an aquatic stream community
for 150 days. Application data of a spraying sequence
originally applied in 2010 were kindly provided by the
Julius Kuehn Institute (Braunschweig, Germany), which
documents the extent of spray series application of PPPs
on conventional crop on the basis of annual surveys [22,
23].

Since pesticide concentrations in edge-of-field surface
waters should not exceed the RAC for each AI, RACs
were chosen to simulate pesticide entries in stream
mesocosms due to apple crop spray treatments. The use
of a RAC can be seen as a realistic approach since it was
derived applying a safety factor that accounts for uncer-
tainties such as extrapolations to other species or from
laboratory test conditions to field situations [24, 25].
However, the occurrence of adverse effects as well as the
regular exceedances of RACs in the field does frequently
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raise the question whether a series of PPP spraying
events leading to concentrations that correspond to the
RAC values (i.e. a sequence of RACs in time) would still
be protective for stream communities [18, 26, 27]. There-
fore, we hypothesised that the successive application of
PPP, each at its RAC, within the spraying sequence of
apple crop leads to adverse effects on the stream commu-
nity. This hypothesis is based on the fact that the issue
of multiple PPP applications is not explicitly considered
in RAC derivation. Thus, there are some uncertainties in
terms of the protection level ensured in the field. To test
the hypothesis, the conducted mesocosm study focussed
on endpoints such as species diversity, abundance of ben-
thos, periphyton, macrophytes, emergence of insects, as
well as physico-chemical water parameters, and addition-
ally on behaviour (drift) of aquatic macroinvertebrates.

Methods

Stream mesocosm set-up and biological establishment
The study was conducted in eight indoor stream meso-
cosms at the field station of the UBA (https://www.
umweltbundesamt.de/en) in Berlin (Germany). Eight
flow-through circular stream mesocosms (length 74 m,
width 1 m, water volume 20.5 m?, glass-fibre reinforced
polyester material), each equipped with riffle sections
and four separate pool sections per stream were set up
[28]. The riffle sections were established with a sand
bottom. The deeper pool sections were filled addition-
ally with a 7-cm middle layer of a sand and natural sedi-
ment mixture (3:1) from lake Duckwitz (N 53.593894, O
12.345664; Mecklenburg-Western Pomerania, Germany)
covered by a 5-cm top sand layer. The systems were
filled with a mixture of treated ground water (de-ion-
ised) and deionised water up to a water depth of 27 cm
from the UBA field station’s own waterworks (conduc-
tivity approx. 500 uS~! cm). Water flow was adjusted to
0.1 m s~! and water loss due to evaporation was compen-
sated by adding deionised water. For further details, see
Mohr et al. [28, 29]. A sketch of the mesocosm set-up is
shown in Additional file 1: Fig. S1. The systems were illu-
minated with fluorescent tubes (OSRAM LF72) provid-
ing a mean photosynthetically active radiation of about
50 and 120 pmol m~2 s™! on the water surface of the rif-
fles and pools, respectively. The light regime followed
monthly the seasonal daylight length.

One year before the start of the spraying sequence, the
macrophyte species Elodea canadensis, Potamogeton
natans, Myriophyllum spicatum, and Sparganium erec-
tum were planted in the four pool sections as structural
elements in the streams. Eight weeks before the first PPP
application (start of the experiment), equal aliquots of a
periphyton suspension obtained from a mesotrophic lake
(Britzer Garten, N 52.4332, E 13.4160, Berlin, Germany)
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were added to each stream for inoculation. To ensure
sufficient nutrient supply for the growth of macrophytes
and periphyton, trace elements and nutrients were added
in equal concentrations to each of the streams before
and during the experiment: 1Xmixture of trace ele-
ments (0.1 mg L™ H;BO; 0.02 mg L' MnCl,*4H,0,
0.001 mg L' Na,MoO,* 2H,0, 0.011 mg L™
ZnCl,, CuClL* 2H,0, 0.084 mg L~! FeCl,*6H,0),
5x phosphate (0.02 mg L™! PO,-P), 5x nitrate (1 mg L™}
NO;-N), and 9 Xxsilicate (4 mg L1 Si). Given values for
addition refer to water concentrations in the mesocosms).

In order to stock the stream mesocosms with benthic
macroinvertebrates, attraction devices consisting of poly-
ethylene net bags (32 cmx 20 cm, mesh opening 4 mm)
were filled with 100 g of loose organic triticale straw
(Eco-village Brodowin, N 52.5439, E 13.5741, Germany).
Bags were exposed in three different reference streams
for two weeks and subsequently transferred to the stream
mesocosms (with an equal number of bags per stream)
one to two weeks prior to the start of the experiment (for
details see supplemental information Additional file 1:
Table S1). As reference sites, the sub-lacustrine creek
Barolder Fliefs (N 51.9912, E 14.2209, South-Branden-
burg, Germany), the stream Lieberoser Miihlenflief} (N
51.9864, E 14.3522, South-Brandenburg, Germany), and
the ditch Lietzengraben (N 52.6551 E 13.4741, North
of Berlin, Germany) were chosen in order to guarantee
a broad variety of benthic macroinvertebrate species.
The ecological condition of the reference streams was
characterised as good to moderate [30]. After 2-3 days
of acclimatisation in the stream mesocosms, straw bags
were opened to allow the loose straw to accumulate into
10-cm-deep cross-drains, which were evenly distrib-
uted over the sediment bottom acting as hiding spots
and further detrital based food supply. Further details
can be found in Mohr et al. [29]. In addition, macroin-
vertebrates were collected from the creeks Rabener Plane
(N 52.0463, E 12.5719, South-Brandenburg, Germany)
and Bardenitzer FlieB (N 52.0675, E 12.9320, South-
Brandenburg, Germany) by means of two polyethyl-
ene net bags (38X 65 cm, mesh size 4 mm), which were
filled with ca. 300 g of dried leaves of Alnus glutinosa and
exposed for two weeks. Macroinvertebrates were then
separated from leaves using a sieve (10 mm mesh) and
divided into nine subsamples. Each stream mesocosm
was stocked with one subsample and the ninth subsam-
ple was immediately fixed in 96% ethanol as a reference
sample for initial stocking. Furthermore, the mesocosms
were colonised with different species of Trichoptera lar-
vae and Asellus aquaticus collected by dip nets or hand
from the stream Fredersdorfer Miihlenflief§ (N 52.5675, E
13.7890, Brandenburg, Germany), as well as with Cloeon
dipterum and different snail taxa (Theodoxus fluviatilis,
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Potamopyrgus antipodarum, Gyraulus sp., Physella sp.,
Lymnaea stagnalis) from outdoor stream and pond mes-
ocosms at the UBA field station. Details of stocking dates
and number of introduced organisms are given in Addi-
tional file 1: Table S1.

Eleven weeks (day 77) after the experimental start with
first PPP application on day 0, all stream mesocosms were
colonised one more time with eight straw bags per sys-
tem, which had previously been exposed for two weeks
in the Lieberoser Miihlenflief3 in order to compensate
for emerged insects and to simulate re-colonisation with
the next generation of insect larvae. For each stocking
event, three bags were immediately fixed in 96% ethanol
to determine the initial macroinvertebrate community in
the mesocosms (Additional file 1: Table S1).

Spray sequence scenario

The original apple crop application scheme, which was
provided by Julius Kuehn Institute, comprised 25 applica-
tion days in the period from March to September 2010
with a total of 23 different PPPs with 21 Al Fungicidal
Als were used 39 times, insecticidal Als 13 times, and
herbicidal Als four times. The spray sequence tested
in this study was slightly adjusted by excluding a virus,
a pheromone, an antibiotic, and a growth regulating
product. In addition, the sequence was shortened due
to technical and organisational reasons by considering
that all remaining PPPs were applied at least once. Thus,
17 PPPs composed of 17 different Als (nine fungicidal,
four herbicidal and four insecticidal AI) were applied on
19 spraying event days in the period from April to July
2015. Information on all applied PPPs, their Als, mode
of action, the producers, used RACs, and sampling dates
are listed in Table 1 and Additional file 1: Table S2. Four
stream mesocosms were used as treatments by applying
the specific RAC of each PPP and by chronologically fol-
lowing the original application sequence as close as pos-
sible. The four remaining stream mesocosms served as
controls. Control and treatment stream mesocosms were
allocated randomly.

Application of plant protection products

The procedures of stock solution preparation are
described in Additional file 1: Sect. 1. For a precise
application of low pesticide concentrations, high preci-
sion micro-dosing rotary piston pumps (IP65 MCP-CPF
with pump head FMI205 QP.Q1.CSC/9003, Ismatec,
Switzerland), equipped with ceramic pistons and cylin-
ders, PTFE seals, stainless-steel tubes, and fittings were
used. During application, pesticide solutions were per-
manently stirred to avoid separation or sedimentation
inside the flask before entering the pump. For rapid mix-
ing of applied PPP over the whole stream water body, the
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duration of the application was adjusted to one complete
water rotation in the circular streams (about 12 min). The
control streams were dosed with the same volume of tap
water by use of a watering can.

Sampling and analysis of active ingredients

Water sampling for pesticide analysis in all streams was
carried out at the beginning and end of the study, to
monitor all applied Als (except dodine). After each appli-
cation event, water sampling started at =240 min using
stationary fixed rotary piston pumps automatically filling
up 1-L samples of stream water during one water rota-
tion in the circular streams. When necessary, additional
buffer solution was added. When a PPP was applied on
several application dates, additional sampling shortly
before re-application was carried out to assess, if there
were any residues from the previous application. All sam-
ples were transported directly to the laboratories in dark
and cool conditions. The Als were analysed by Eurofins
Sofia GmbH (Berlin, Germany) and two chemical labo-
ratories of the UBA. A detailed description of special
PPP solution preparations, sampling, and analysis can be
found in Additional file 1: Section 1.

The RAC:s of the Als were used as references for both,
dosing solutions and stream water, concentrations to cal-
culate chemical recovery (Table 1). In the case of the sec-
ond application of penconazole, the actual concentration
was corrected, based on the measured preload concen-
tration. Specific calculational conversions were made in
case of copper-oxychloride, glyphosate-IPA, and MCPA-
DMA, because analytes (Cu, glyphosate, and MCPA) dif-
fered from the Al in the PPP (e.g. Cu-oxychloride). For
dodine, no water analysis was carried out, since rapid
adsorption on all organic surfaces in the stream meso-
cosms was expected, due to its high soil partition coef-
ficient Ky (range 2,200 to 18,000 kg L") and no sensitive
analytical method was available at the time.

Standard water quality parameters

Standard water parameters namely oxygen, pH, electri-
cal conductivity, and water temperature were measured
weekly with a multi-parameter probe system (Multi
3430, probes FDO 925, SensoLyt 900, TetraCon 925;
each WTW, Germany). For nutrient and major ion anal-
ysis, water samples were taken every two weeks. Water
samples were filtered (0.45 um, cellulose-nitrate filters,
Schleicher & Schuell, Germany) for further analysis. The
major ions fluoride, chloride, bromide, sulphate, lithium,
sodium, potassium, magnesium, and calcium were ana-
lysed using standard methods (TitrIC-system, Metrohm,
Switzerland) [31-33]. Concentrations of o-phosphate,
ammonia, nitrite, nitrate, and silicate were quantified
photometrically using continuous flow analysis (San++,
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Skalar, Netherlands) [34—37]. Dissolved organic carbon
was analysed according to DIN EN 1484 [38] as non-
purgeable organic carbon by catalytic combustion at
680 ‘C and NDIR-detection by use of a TOC 5000A with
ASI 5000A (Shimadzu, Japan) with 3-point calibration
and sample injection.

Periphyton and macrophyte sampling and analysis

For periphyton sampling, each stream was equipped
with a special rack consisting of a stainless-steel frame
holding 56 microscopic slides (7652 mm, soda-lime
glass), which was adjusted in parallel to the water cur-
rent at 13 c¢cm below water surface. For uniform illu-
mination, eight rows of LED strip lights (neutral
white; ~ 122 pmol m™ s™' PhAR at water surface; Co.
Nobilé, Germany) were mounted under a stainless-steel
flat roof.

For periphyton sampling, four colonised glass slides
were taken at each sampling date (11 sampling dates in
total). Prior to sampling, the slide positions were chosen
randomly and the chosen positions were then taken out
equally in all streams. The periphyton on both sides of a
slide was scraped and rinsed off with a plastic Japan spat-
ula and tap water. Periphyton of all four slides per stream
was merged in one sample representing a total surface
area of 237.12 cm?. The suspension was transferred to a
glass bottle and filled with tap water up to a volume of 1 L
for further analysis.

Species identification of periphyton samples preserved
with Lugol’s solution or formalin was done by use of light
microscopy with differential interference contrast (BX51,
Olympus, Japan) using standard preparation techniques
[39] and latest identification keys. Species specific cell
or filament volumes were given as size classes based on
microscopic size measurements and by use of corre-
sponding geometric formulas. Biovolume was calculated
as the product of species number and its specific speci-
men volume. Development of the macrophyte P natans
was monitored once a week by counting all floating
leaves in each stream, starting 10 days before and ending
151 days after the first application event.

Macroinvertebrates sampling

Determination of macroinvertebrate species and their
abundances in the stream mesocosms was carried out
using traps stuffed with different substrates in order to
attract diverse taxonomic groups. Straw (7 g dry weight)
and small ceramic tubes (Eheim, Germany; 400 g) were
filled into two polyethylene net bags (13 cmXx17 cm,
3X4 mm mesh size), respectively. For each sampling,
two benthos traps were placed at two positions in each
stream mesocosm for colonisation. After two weeks,
the traps were sampled and rinsed with tap water over
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a sieve (200 pm mesh size) until all organisms were
washed out and then stored in ethanol (80%) for species
determination.

Emergence samples were taken at four different loca-
tions of each stream as described in Mohr et al. [29]. Each
emergence trap covered a water surface area of 1 m? (pol-
yethylene, 0.5 mm mesh size). Starting four weeks before
the first application of PPP, emergence of merolimnic
insects was quantified weekly for a period of 24 weeks
by emptying and refilling the plastic beaker with 30 ml of
“Renner fixation solution” (mixture of ethanol, distilled
water, glycerine, acetic acid, and detergent) on the open
top of the roof-like trap.

Macroinvertebrate drift was measured as described by
Berghahn et al. [40]. Briefly, 30 min after pesticide dos-
ing, two drift nets (size of the opening: 15 cmX7.5 cm;
mesh size of the funnel: 283 pm; total length: 140 cm)
were placed in the middle of the stream bottom above the
sediment surface (distance between nets approximately
30 m) for 4 h. Furthermore, night drift was measured
employing drifts nets for 14 h (6 pm to 8 am). Drift was
measured on three application dates with estimated high
toxic pressure for benthic macroinvertebrates: (1) day 55:
application of dithianon, penconazole and fenoxycarb;
(2) day 66: application of sulphur, dithianon and spirote-
tramat; and (3) day 83: application of sulphur, dithianon,
fluquinconazole and pyrimethanil (Tables 1, 3). Macroin-
vertebrates caught in the drift nets were preserved in 80%
ethanol for further evaluation.

Taxonomic identification of macroinvertebrates (sam-
ples of initial stocking, sampling and emergence traps
as well as drift net catches) were performed using mag-
nifying glasses and a stereomicroscope (Stemi 2000-C;
Zeiss, Germany). All macroinvertebrates were identified
to lowest practical taxonomic level (mostly genus or fam-
ily level, see Additional file 1: Table S1) using the latest
identification keys (see Additional file 1: section 2). In
the case of samples gained from emergence traps, male
chironomids were identified to subfamily level, whereas
female chironomids were pooled.

Statistical analysis

All statistical analyses were conducted using the sta-
tistical software package R Development Core Team (R
version 3.6.1) [41] with the additional packages vegan
[42] and mvabund [43]. Generalized linear models for
multivariate data (GLM,,,) as described in Szocs et al.
[44] were used to evaluate the effects of multiple expo-
sures of low-level applications of pesticides (control vs.
treatment) on the temporal development of major ions
(i.e. water concentration of measured ions), periphy-
ton community (i.e. biovolume of identified periphy-
ton taxa), macroinvertebrate community (i.e. density of



Mohr et al. Environmental Sciences Europe (2023) 35:35

identified invertebrate taxa), and cumulative emergence
of insects (i.e. density of identified taxa of emerging
insects). Treatment effects were expressed and visualised
as deviations from the control (y=0) over time (x-axis).
A general treatment effect considering the whole experi-
mental duration was analysed by comparison of the
model including the time X treatment interaction to the
model with time as sole variable. Significance level was
set to #=0.05 and level for a tendency to a#=0.1. Since
the GLM,, analyses only potential effects on the multi-
variate level, also species weights of the GLM,, model
(as percentage contribution to the deviance of single
taxa, Table 2) were used as tool for the selection of taxa
used for further analyses. In order to evaluate potential
effects of PPPs into more detail, all taxa/parameter with
species weight greater than 5% were used for further
univariate analysis. As density data are usually skewed
and widespread, log(x+1) transformation was applied
before further analysis [45]. Differences in the develop-
ment of the selected taxa over time between control and
treatment were analysed using generalized linear models
(GLM, error distribution=Gaussian). If overdispersion
was detected using the function dispersiontest within
the R package AER [46], the error distribution ‘quasi-
Poisson’ was used to overcome overdispersion. In case
of a significant treatment effect (control vs. treatment)
without a significant time X treatment effect, additionally
sampling date(s) before the first application of a pesticide
were compared. This was done in order to exclude that
a significant difference between control and treatment
already occurred before the first application of PPP for
the respective cases (cf. Table 2). In doing so, a Mann—
Whitney test (in case of only one sampling date before
first PPP application) or a GLM (in case of more than
one sampling date before first PPP application) was used
to evaluate if start conditions were comparable between
control and treatment replicates. For all relevant cases,
no significant difference was found before the first appli-
cation of PPP (p>0.05). We further analysed the vari-
ation of the development of the selected taxa between
control and treatment replicates. For each sampling date
and taxon, the variation was calculated as the absolute
difference between the mean value and single value per
replicate of the control and treatment mesocosms (non-
transformed data), respectively. Statistical analyses were
then carried out as described above for the analyses of
the development of the selected taxa over time.
Similarity of drifting invertebrates for each sampling
date was analysed by non-metric multidimensional
scaling (nMDS). When analysing Bray—Curtis similari-
ties, which compare ranked similarities for differences
between defined groups, square root transformation of
abundance was used to reduce the effect of dominant
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taxa [47]. Differences in invertebrate drift were deter-
mined using PERMANOVA (permutational analysis of
variance), which analyses multivariate data on the basis
of distance measurements using permutations [48, 49].

Species weight (as percentage contribution) of single
species to the differences on the community level in drift-
ing community between control and treatment was esti-
mated using SIMPER [42]. We selected the three species
contributing the most to the differences in drift between
control and treatment for further analyses. For these
three species and for the development in the number of
floating leaves of the macrophyte Potamogeton natans
the same univariate statistical procedures as described
above for standard benthos samples were used.

Toxic units

The toxic units (TU) approach was applied in order to
describe the “toxic pressure” emanating from the pesti-
cide concentrations dosed in this study. TU is commonly
defined as the ratio between the concentration and a
defined effective concentration as determined by eco-
toxicity testing of the respective compound (e.g. ECy).
Hence, a toxic unit of 1 for a given compound would
describe the exposure concentration, at which there is a
50% effect when dealing with e.g. an acute ECy of a cer-
tain biological endpoint. The TU approach can be used to
calculate the toxicity of mixtures for different organisms
[2], assuming concentration—additive behaviour of mix-
ture components as default to obtain a theoretical “mix-
ture toxicity indicator” In this study, the TU approach
was used to describe the theoretical toxicity as overall
impact of the successive applications of the PPPs on the
main biological components (periphyton, benthos) of the
overall species community:

n .

ci
sumTU = E -,
= ECxi

The calculation of TU (TU for each AI) was performed
with “ci”, which refers to the nominal exposure concen-
tration (RAC for each Al tested) in the stream water at
the start of application, corrected by the measured con-
centration in the dosing solution. For TU, the exposure
concentration at the time of application was thus divided
by the 48 h LC;, from acute Daphnia test and the 72 h
EC;, from algae test (as given in EFSA conclusions and
lists of endpoints for the respective Als; https://www.
efsa.europa.eu/en/publications). Both assessments were
made in parallel. The sum of toxic units (sumTU) was cal-
culated weekly as a measure for toxic pressure over time,
which means that TUs can contain PPPs of several appli-
cation dates. TU for PPPs containing sulphur were not


https://www.efsa.europa.eu/en/publications
https://www.efsa.europa.eu/en/publications
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included in the analysis since sulphur is considered toxic
to sediment organisms only.

Results

Analytical recovery of active ingredients in stream
mesocosm water following the spray sequence scenario
for apple crop

Opverall, achieving similar and very low Al concentrations
corresponding to the RAC (some as low as 0.16 pg L™
for 17 PPPs with different physico-chemical properties
in the water of the four treated stream mesocosms was
challenging. Analysis of stream water samples, taken
directly after PPP application, disclosed that 22 of 35
analysed Als were within the recovery range with less
than 20% deviation from nominal concentrations. Hence,
the desired concentrations (RACs) for these PPPs were
reached (Table 1). However, a deviation of more than 20%
above or below RAC was found for 13 Al in stream water.
This was the case for some hydrolytically unstable Als
(dithianon, captan) and for highly adsorptive Als (copper
oxychloride, sulphur). For these substances, target con-
centrations refer to the respective dosing concentration
(Table 1). In case of dodine, dosing solutions reached the
RAC in most cases, but recovery in stream water was not
analysable (see method section). For the substance dithi-
anon, it was not possible to achieve concentrations cor-
responding to the RAC in most of the dosing solutions.
Stream water samples were below limit of quantification
of dithianon (Table 1).

Before the first PPP application, analytical screening of
all organic Als in the eight stream mesocosms revealed
that background concentration levels were always below
the limit of quantification. Only three of the organic Als
were found in water samples of the four treatment repli-
cates at the end of the study after 144 days: dimethena-
mid with 0.15 pg L', penconazole with 1.7 pg L™}, and
methoxyfenozide with 1.8 pug L™". Possibly these Als led
to higher chronic stress responses than the more short-
lived Als.

Effects on physico-chemical water parameters

During the experimental period, water temperature
increased from 12.7 °C (day-28) in April to 18.5 °C at the
end of May (day 48), and varied between 19 to 24.5 C
until the end of August (day 145). Data of physico-chem-
ical water parameters for each sampling date are summa-
rised in Additional file 1: Tables S3, S4; and Additional
file 1: Fig. S2. GLM,,, analysis of the major ion composi-
tion (i.e. concentration of the analysed ions per replicate
and sampling date) in the stream water of control and
treatment was based on 13 single ions and alkalinity as
sum parameter (Fig. 1A). Considering the whole experi-
mental duration, no general treatment effect was found
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(GLM,,,,, p=0.22), but significant differences in the treat-
ments were found on sampling date day 88 (p=0.024)
and day 101 (p=0.013; Fig. 1A). Calculation of the con-
tribution of single parameters to differences between
control and treatment (as proportion of the deviance of a
respective ion to the overall deviance) revealed eight ions
with a contribution of more than or equal to 5% (nitrate,
nitrite, ammonium, silicate, bromide, sodium, potas-
sium, and phosphate), but none of these single param-
eters showed a significant difference between control and
treatment (Table 2, Additional file 1: Fig. S2).

Effects on periphyton and macrophytes

During the experimental period, 34 taxa of primary pro-
ducers were identified in the periphyton biofilm and
then grouped to analyse effects of the applied pesticide
spraying sequence on periphyton biovolume. A signifi-
cant general treatment effect (i.e. biovolume of identified
periphyton taxa per replicate [control vs. treatment] and
sampling date) was found over the whole experimental
period (GLM,,,, p=0.043, Fig. 1B). Furthermore, GLM,,,,
analysis revealed a tendency for differences on day 75
(p=0.078) and significant differences on day 18, day 89,
day 103, and day 117 (p<0.05, Fig. 1B) in periphyton
community composition.

Six periphyton species contributed to differences
between control and treatment with more than 5%
(Table 2). A significantly higher variation in biovolume
for the species Synechococcus spp. and Chaetophorales
was found over time in the treatment mesocosms, com-
pared to the controls (Table 2, Fig. 2A-B). In turn, for
Fragilaria fasciculata/acus and Nitzschia spp., there was
a significantly higher variation in the control mesocosms.

Since macrophytes standing stock should not be dis-
turbed, only effects on the non-destructive endpoint leaf
development of P. natans were analysed. At the start of
the experiment in spring, P natans shoots had not yet
developed floating leaves (Fig. 3). The number of floating
leaves increased over time and was significantly higher in
the control compared to the treatment (GLM, treatment:
p=0.016, treatment X time interaction: p < 0.001), indicat-
ing a higher net production rate of control macrophytes.

Overall, the toxic pressure of specific PPP applications
expressed as sumTU (Fig. 4) for each application date
could not be related to effects on the periphyton commu-
nity (Fig. 1B) nor to effects on P. natans (Fig. 3).

Effects on the macroinvertebrate community

For statistical analysis, the identified invertebrate taxa
from benthos traps were grouped to higher taxonomic
levels. For the resulting 16 taxa, effects of the pesticide
spraying sequence were analysed. No general treatment
effect (i.e. densities of identified macroinvertebrate taxa
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Fig. 1 Visualisation of results from generalized linear models for multivariate data (GLM,,,,) of the community of A ion composition [i.e. water
concentration of measured ions]; B periphyton [i.e. biovolume of identified periphyton taxa]; C benthic invertebrates [i.e. density of identified
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per replicate [control vs. treatment] and sampling date)
was found for the whole experimental time (GLM,,,,
p=0.41, Fig. 1C). Furthermore, GLM,,, analysis revealed
a significant difference in the community (i.e. densities
of identified macroinvertebrate taxa as described above)
between the treatment and the control at the end of the
study on day 131 (p=0.049, Fig. 1C).

Ten taxa of benthic macroinvertebrates contributed
to the differences between controls and treatments
with more than or equal to 5% (Table 2). The variation
in number of Orthocladiinae, Trichoptera (Table 2), and
Turbellaria (Fig. 2C), were higher in the treatment meso-
cosms, while the variation in the number of Gammarus
spp. showed a significant increase in the treatment meso-
cosms over time (Table 2, Fig. 2D).

Drift of invertebrates

Drift of benthic macroinvertebrates was measured after
three application dates. A significant treatment effect was
detected on the community level only for the pesticide
application event on day 83 (sulphur, dithianon, fluquin-
conazole and pyrimethanil, PERMANOVA, p=0.03,
Table 3), but no significant differences in drift of the

three taxa Tanypodinae, Gammarus spp., and Baetidae,
which contributed the most to the community effect,
were found (Table 3).

Emergence of aquatic insects

In order to analyse effects of the pesticide spraying
sequence on the emergence of aquatic insects, hatched
insects were grouped into 18 taxa. No general treatment
effect (i.e. densities of identified taxa of emerging insects
per replicate [control vs. treatment] and sampling date)
was found for the whole experimental duration (GLM,,,,
p=0.32, Fig. 1D). Furthermore, GLM,, analysis revealed
significant differences in the community composition of
emerging insects at the first sampling date of the experi-
ment before the first pesticide application at day-30
(p<0.05, Fig. 1D) and in the treatment on day 75, day 102,
and day 124 (p <0.05). At the first sampling date (day-30)
only few individuals were found in the emergence traps
indicating stronger random effects.

Ten taxa of emerging insects with a contribution of
more than 5% to differences between control and treat-
ment were identified (Table 2). None of the ten taxa
revealed a significant difference in the cumulative
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Chironominae), and cumulative emergence of all taxa
(sum) showed increasing variation over time in the
treatment (Table 2). Furthermore, cumulative emer-
gence of Baetidae and female Chironomidae displayed
increasing variation over time in the treatment (Fig. 2E,
F) and the variation in cumulative emergence of male
Tanypodinae was significant (Table 2).

Toxic pressure over time

The TU approach showed relatively high toxic pressure
on primary producers during the first part of the spray-
ing sequence (weeks 1 to 4; Fig. 4). SumTU exceeded
a value of 0.1 (1/10th ECy;) during week 1, 3, and 4
(Fig. 4), which corresponds to the time of application
of the two fungicides copper and dodine, both being
more toxic to primary producers than to invertebrates
and delivering rather high sumTUs than the four herbi-
cides applied during the second part of the experiment.
In addition, in week 12 and 18, sumTU was also above
a value of 0.1.

The TU approach also indicated a toxic pressure
on invertebrates in the first part (weeks 1 to 6) of the
experiment (Fig. 4). However, the overall toxic pres-
sure exerted on invertebrates was much lower than on
primary producers with a maximum sumTU value of
0.035, at no time exceeding a value of 0.1.

B Algae
O Invertebrates

0 11 12 13 14 15 16 17 18 19

Week of experiment
Fig.4 Sum of toxic units (sumTU) over time for primary producers based on the 72 h EC;, from algae test (dark bars) and invertebrates based on
the 48 h EC,, from acute Daphnia test (bright bars). SumTU values are given as weekly average and consider the concentration at the time of PPP
application (Note: RAC corrected by recovery of dosing solution; values for sulphur are excluded since they are considered as toxic toward sediment

organisms only.)
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Discussion

Effects of the apple crop spraying sequence on the stream
mesocosm community

The applied pesticide concentrations on the basis of reg-
ulatory acceptable concentrations (RAC values) following
an apple crop spraying sequence scenario led to signifi-
cant differences between control and treatment streams
over time, especially towards the end of the study. This
was the case for the endpoints: variation in biovolume
of selected periphyton species, abundance and variation
of abundance of selected benthic macroinvertebrates
and insect emergence, as well as the number of floating
leaves of P. natans (Figs. 1, 2 and 3, Table 2). Changes in
physico-chemical parameters can be used as proxy of the
sum of all photosynthetic and respiratory activities and
therefore act as an indicator for changes in the ratio of
respective processes. In our experiment, it was not possi-
ble to identify a relationship between specific PPP pulses
and their associated toxic pressure exerted over time and
significant biological and/ or ecological effects. Indeed,
the TU approach relates to exposure concentrations at
the time of treatment and acute ecotoxicity (from labo-
ratory testing, i.e. under standardised laboratory condi-
tions, Fig. 4). Thus, its predictive power is limited since
it does not consider (i) potential long-term or delayed
effects of fast dissipating substances or chronic effects of
substances persisting in the water (e.g. copper) nor (ii)
effects of species interactions and additional environ-
mental stressors exerted on field communities and uncer-
tainties related to more sensitive species than Daphnia
and algae. Nevertheless, the community response as
shown in Figs. 1-3 indicates that the repeated low-level
pesticide applications resulted in measurable cumulative
stress for several species and groups, confirming the find-
ings of other studies. In a mesocosm study conducted by
Polazzo et al. [50], field-relevant peak exposure concen-
trations of pesticides resulted in a changed community
composition of zooplankton only at the end of the exper-
iment after 50 days. Our results are also in line with the
review by Altenburger et al. [6] about mixture effects of
substances with different modes of action at concentra-
tions below single species effect thresholds.

The most striking result of the present study was the
statistically significant increase in variation of population
response parameters of selected taxa in the treatment
mesocosms compared to the controls (Table 2, Fig. 2). On
the one hand, variation in species responses has always
been a big issue in ecotoxicology and species tests [51—
53], as it hinders the statistical evaluation of true effects
from background noise with regard to mean values. On
the other hand, there is increasing evidence that inter-
replicate variation of population development param-
eters as a result of genotype plasticity of individuals, can
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be an indicative endpoint for chemical pollution [54]. In
general, ecotoxicological tests are designed to minimise
the variation of possible influencing factors, other than
the stressor under assessment [55]. In mesocosm studies
with multiple populations of different trophic levels act-
ing together, the likelihood of facing significant variation
in species responses is rather high [56]. In the present
study, data variation of most endpoints at the beginning
of the experiment was low in the control and treatment
mesocosms. This indicates that the actions taken to syn-
chronise the community development in the mesocosms
by a thorough and homogenous biological establish-
ment were successful. Therefore, the increased variation
in abundance of selected species observed in the treat-
ment mesocosms might be considered as an effect of
the repeated PPP pulses rather than a general mesocosm
variation.

The observed variation in species response to the 19
times repeated low-dosed PPP application might have
been induced by genotype plasticity of respective species.
The higher the genotype plasticity of species or commu-
nities, the more complex the responses will be in terms
of physiological adaptations such as detoxification pro-
cesses or increased escape responses [53]. In addition,
small differences in concentrations of some pesticides
(see standard deviation of recovery of Al in streams;
Table 1) at the start of the experiment may have further
promoted the variation in species responses. The slightly
different pesticide concentrations in the four treatment
mesocosms may have led to different individual stress
responses, causing cascadic effects in the populations.
This so-called butterfly effect has been described as the
sensitive dependence on initial conditions, in which a
small change in one state of a system can result in large
differences in a later state [57]. In the present study, the
concentration differences might have caused indirect or
hormesis effects on the species communities indicated by
higher abundance values in the treatments (Fig. 2). Espe-
cially hormesis effects have been shown to be trigged
by very low doses of a range of chemicals and physi-
cal agents [58, 59]. In a review by Agathokleous [60],
numerous plant and animal species responses to various
stressors have been linked to hormesis at low stressor
concentrations.

Overall, the increased variation in species response in
the treatment mesocosms of the present study should be
discussed as a general disturbance measure [53, 61], even
if it was not possible to link the results to specific pes-
ticide pulses, to genotype plasticity of the species or the
differences in exposure between replicates. When assess-
ing population health, e.g. in the risk assessment of pes-
ticides, the parameter “inter-replicate variation” should
also be considered. Studies with high variation should
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not per se be considered as unreliable, as this param-
eter might in fact reflect system resistance and resilience
against perturbations or it might serve as an early warn-
ing sign of potential disturbances of communities in the
field [62—-66]. Hence, such results of inter-individual vari-
ation can also be seen as valuable source of information
for the risk assessment [61].

Relevance of chosen apple spray scenario

and implementation for the risk assessment

In Germany, 48.8% of the fruit cultivation area was used
for apple production in 2008 [22], and in 2017 about
10 Mio tons of apples were harvested from approx.
473.550 ha [67]. The worldwide production of apples
was 83.1 Mio tons in 2017 [68]. Apple orchards are regu-
larly treated with pesticides, often only for a high-qual-
ity visual appearance of the fruits to increase the sales
value. Fungicides represent the most dominant pesticide
group with more than 80% of Al applications per grow-
ing season [8, 69, 70] used mainly to prevent apple scab
and other fungal infections. Captan and dithianon have
been listed as two of the most frequently used fungicides
[8, 71] and were also applied several times in the spray-
ing sequence of the present study. In a survey on applica-
tion of chemical pesticides in apple farming, RofSberg and
Harzer [71] reported that the treatment frequency index
(TFI), which quantifies the number of registered PPP
applied to apple crop, was 28 TFI in 2001 and increased
continuously to 33 in 2013. In France, between 2006 and
2008, the mean TFI was 35 for conventional and 26 TFI
for organic apple orchards with scab-susceptible apple
cultivar [72]. For the shortened apple spraying scenario
used in this study, 19 treatments with 17 different AI were
applied, which can be considered as a “light to moderate”
case scenario for standard practice in Germany [8, 71].
Thus, potential effects on natural communities in streams
and rivers in agricultural areas facing multiple stressors
in addition to the PPP spraying scenarios such as other
chemicals, habitat degradation, and nutrient stress over
the years, might be more pronounced [e.g. 73]. Also, the
exposure concentrations limited to the RAC values used
in this study may not represent a realistic exposure sce-
nario of pesticide entries in rural areas. Liess et al. [27]
identified an exceedance of RAC values for at least one
pesticide concentration in agricultural streams in Ger-
many for 81% of the water samples tested.

The present study reinforces mounting evidence, that
the current environmental risk assessment in the context
of the authorisation of PPP may not be safe for ecosys-
tems and their communities, when facing multiple pesti-
cide entries of spraying sequences applied year after year.
Indeed, risk assessment is currently restricted since it
refers to individual PPP. In other words, it is questionable
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whether the use of RAC values derived for individual
PPPs are enough in view of the typical agricultural prac-
tice of applying pesticide tank mixtures and/or spray
series. This issue has also been raised by, e.g. Weber et al.
[74], Junghans et al. [18], or Covert et al. [75]. Unfortu-
nately, experimental studies investigating effects of real-
istic spray sequences scenarios are still very rare since it
is very difficult to get real application scheme data from
farmers. In laboratory studies, Panico et al. [76] discov-
ered strong effects to invertebrates in soils, facing mix-
tures of pesticides conventionally used on agricultural
fields. To our knowledge, until now only three meso-
cosm studies have assessed complex realistic exposure to
pesticides used on bulb, potato, and apple crop, respec-
tively [77-79]. Wijngaarden et al. [77] and Arts et al. [78]
revealed significant effects on pond/ditch communities
at higher spray application rates, but concluded that risk
assessment based on single pesticides seems to suffi-
ciently protect freshwater ecosystems. Both studies had a
different experimental approach using pesticide concen-
trations based on a realistic application and spray drift
scenario, but the amount of pesticides and application
times were lower than in the present study. Talk et al.
[79] used a similar set-up as in this study, but focussed
on fungal endpoints in pond mesocosms. The authors
could not identify effects on fungal communities or leaf
litter decomposition. Overall, more experimental stud-
ies applying realistic exposure scenarios are needed, even
though implementing them is a challenge and very time
consuming. An intensive field study by Schifers et al.
[26] investigating invertebrate communities in differently
treated apple orchards in the German region Altes Land
revealed that invertebrate communities were significantly
affected by pesticide use, depending on exposure pres-
sure. This was confirmed in a larger monitoring study
in Germany showing that (i) 83% of agricultural streams
did not meet the pesticide-related ecological targets; (ii)
agricultural nonpoint source pesticide pollution was the
major driving force in the reduction of vulnerable insect
populations in aquatic invertebrate communities and (iii)
the risk resulting from exposure to pesticide mixtures
and to frequent successive pesticide applications needs to
be better addressed [17, 27].

Conclusions

The repeated tiny dose makes the poison—meaning
that the results of this mesocosm study provide further
evidence for notable effects on aquatic stream com-
munities following exposure to repeated low pesticide
concentrations simulating a realistic spraying sequence
for apple crop. Indeed it induced disturbances for
some invertebrates and primary producers. Albeit the
observed differences between control and treatment
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were rather small, our results support concerns that
the current risk assessment for PPPs may not ensure a
sufficient level of protection to field communities fac-
ing multiple pesticide entries from spraying sequences
or other combined pesticide stress. The current frame-
work for single PPP allows risk assessment refinements
that claim for more realism. However, it ignores impor-
tant aspects such as multiple exposure and effects of
additional stressors, both natural and anthropogenic,
which typically increase the sensitivity of organisms to
pesticides [80, 81]. Therefore, it is still very challeng-
ing to realistically assess the risk. Obviously, the actual
regulatory convention focussing on RAC values derived
for individual Als only, is not sufficient to ensure that
no adverse effects on populations might occur in the
field in view of multiple chemical (pesticides and other
chemicals) exposures as well as further environmental
stressors. As a consequence, legally binding protec-
tion goals may not be fulfilled. Applying for example
an additional mixture assessment factor (MAF) in
risk assessment, which has frequently been suggested
[82], is one option to better address the issue of mix-
ture exposure occurring in the field. Given the inherent
and remaining uncertainties of any (however complex)
risk assessment, our findings might support the impor-
tance of an ambitioned pesticide reduction strategy as
recently brought forward in the European Green deal
with the Farm-to-Fork strategy [83, 84], too.
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