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Abstract 

Background:  Boolean Networks (BNs) are a popular dynamical model in biology 
where the state of each component is represented by a variable taking binary values 
that express, for instance, activation/deactivation or high/low concentrations. Unfortu-
nately, these models suffer from the state space explosion, i.e., there are exponentially 
many states in the number of BN variables, which hampers their analysis.

Results:  We present Boolean Backward Equivalence (BBE), a novel reduction tech-
nique for BNs which collapses system variables that, if initialized with same value, 
maintain matching values in all states. A large-scale validation on 86 models from two 
online model repositories reveals that BBE is effective, since it is able to reduce more 
than 90% of the models. Furthermore, on such models we also show that BBE brings 
notable analysis speed-ups, both in terms of state space generation and steady-state 
analysis. In several cases, BBE allowed the analysis of models that were originally intrac-
table due to the complexity. On two selected case studies, we show how one can tune 
the reduction power of BBE using model-specific information to preserve all dynamics 
of interest, and selectively exclude behavior that does not have biological relevance.

Conclusions:  BBE complements existing reduction methods, preserving properties 
that other reduction methods fail to reproduce, and vice versa. BBE drops all and only 
the dynamics, including attractors, originating from states where BBE-equivalent vari-
ables have been initialized with different activation values The remaining part of the 
dynamics is preserved exactly, including the length of the preserved attractors, and 
their reachability from given initial conditions, without adding any spurious behaviours. 
Given that BBE is a model-to-model reduction technique, it can be combined with 
further reduction methods for BNs.
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Background
Boolean networks (BNs) are a popular model in systems biology where the dynamics is 
qualitatively associated with two levels. These may express, for instance, on/off behav-
ior in gene regulation or high/low concentrations of molecular compounds [1]. In a BN, 
the state is defined as a vector of Boolean variables, each representing a distinct compo-
nent of the system under consideration. The time evolution of each variable is governed 
by an update function, i.e., a Boolean expression that encodes how the other variables 
affect the change of state at each (discrete) time step [2–5]. In the main text we focus 
on synchronous BNs whereby the next state is obtained by applying all the update func-
tions to the activation values of the current state. However, in the supplementary mate-
rial we show how our approach can be applied also to BNs with partially asynchronous 
update schema (see, e.g., the priority classes supported by the popular tool GINsim [6] as 
described in [7]).

From a computational viewpoint, BNs are challenging to analyze. For example, the 
state space of the network, known as the state transition graph (STG), has exponential 
size in the number of variables. Thus, a full enumeration of the state space is possible 
only for networks of limited size. Another relevant type of analysis concerns the compu-
tation of attractors, i.e., those sets of states toward which the system tends to evolve and 
remain [8, 9]; these are often associated with biologically intelligible conditions of the 
system under study such as cell differentiation [3, 10]. Attractor identification is NP-hard 
[11] and, even if efficient tools have been developed [12], they do not scale well for large 
BNs.

These computational difficulties have motivated the development of reduction meth-
ods to ease BN analysis. Available techniques can be classified in three families accord-
ing to the type of reduction: (i) by reasoning directly on the BN structure [4, 13–16]; (ii) 
by reducing the underlying STG [5, 17]; (iii) by transforming a BN into other formal-
isms for which specific reduction techniques are available [18, 19]. The latter two classes 
suffer two main limitations. First, STG-based reductions are still subject to state space 
explosion since they require the full enumeration of the state space to start with. Second, 
reductions via other formalisms may not be complete in the sense that the dynamics of 
the original BN and of the transformed model are not equivalent, hence some reductions 
may be missed (see Additional file 1).

In the case of reduction methods at the BN level, popular examples are based on the 
notion of variable absorption, proposed originally in [14, 15]. The main idea is that cer-
tain BN variables can get removed by replacing their occurrences with their update 
functions. This is based on the assumption that those variables evolve over time scales 
that justify that they can be updated first in the model. Other methods remove output/
leaf variables [4, 13] (variables that do not appear in the update functions of other varia-
bles) or frozen ones (variables that stabilize to the same value after some iterations inde-
pendently of the initial conditions) [16].

Here we present a complementary type of reduction method based on the computa-
tion of a partition of the variables in the BN, whereby the future dynamics of variables in 
a block of the partition are equal whenever they start from the same condition. This can 
be convenient, for instance, if one is interested in studying the dynamics due to simul-
taneous activation or deactivation of groups of variables [20] (see also the case studies 
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presented in the Results and discussion section). We call this kind of relation a Boolean 
backward equivalence (BBE) because it is defined analogously to the notion of backward 
bisimulation for Markov chains [21], more recently extended to chemical reaction net-
works [19, 22] and ordinary differential equations [23]. Recently, it has been shown how 
this backward notion can be given also for linear differential algebraic equations (DAE) 
[24, 25]. Using DAE terminology, such backward notion has been related to the preser-
vation of invariant subspaces.

Every reduction technique comes with its own intuitive interpretation. For example, 
if we consider variable absorption mentioned above, it is intuitively based on the idea 
of fast/slow decomposition: it is biologically plausible to absorb a variable in the update 
function of another when the former fires faster than the latter. BBE is based on the fol-
lowing three orthogonal considerations:

•	 BBE allows the modeler to discover chains of variables that, under some initialization 
conditions, describe the same dynamics. This might be interesting, e.g., to estimate 
the quality of a model: large BBE reductions might signal excessive redundancy in the 
model.

•	 As mentioned above, the modeler might be interested only in dynamics where two 
or more variables have simultaneous (de)activation value (see, e.g., [20]). The T-LGL 
case study in section Results and discussion further discusses this.

•	 In [23], it has been shown that this backward notion corresponds to Cardelli’s emula-
tion [26] which enables to relate a complex model with a simpler one. Interestingly, 
[26] discusses how emulation can be given an evolutionary interpretation. In fact, an 
original model can express all the dynamics of the reduced model. In addition, the 
original model can also express all additional dynamics coming from states where 
variables related by emulation have different activation values (not permitted in the 
reduced model because variables related by emulation get collapsed in the same 
reduced one). Given this richer dynamics of the original model, Cardelli uses selected 
case studies in [26] to argue how the original model can be seen as an evolved ver-
sion of the reduced one. We do not further investigate this aspect for BBE. However, 
given that BBE is based as well on the mentioned backward notions, it is not surpris-
ing that there exists a similar relation among the dynamics expressed by the original 
and reduced model (cf Fig. 1).

The criteria for a candidate partition of variables to be a BBE are encoded into a sat-
isfiability problem over the expressions of the BN’s update functions: we synthesise a 
Boolean expression involving BN variables and check whether there exists at least one 
combination of truth values for the variables that makes such expression true. This type 
of test can be effectively implemented using tools known as SAT solvers [27].

If a partition is a BBE, a reduced BN can be obtained by choosing and maintaining 
only a representative variable for each partition block, and renaming all variables in 
the remaining update functions with the representative one from their block. The STG 
of the reduced network exactly preserves the original dynamics for all states that have 
equal values across variables in the same block (Fig. 1). Importantly, however, the reduc-
tion method does not require the generation of the original STG, making it possible to 
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obtain a reduced STG also from instances that would not be analyzable due to their mas-
sive size.

A crucial property satisfied by BBE is that there exists a maximal reduction for each 
BN, i.e., the coarsest BBE partition. This can be computed using a partition-refinement 
algorithm in a similar fashion as in Markov chains [28], reaction networks [22] and dif-
ferential equations [23]. The algorithm essentially builds upon a fundamental result in 
computer science to prove equivalences in formal languages [29]. Given an initial parti-
tion of variables, the algorithm splits the blocks of the partition to compute its coarsest 
refinement that satisfies the BBE criteria. Thus, the maximal reduction is obtained when 
all variables are in the same unique block of the initial partition. However, the possibil-
ity of arbitrarily choosing the initial partition unlocks model-specific reduction queries 
that preserve the dynamics of user-defined variables. For example, in typical BN mod-
els of signaling pathways [30, 31], certain variables may represent the input signals to 
upstream components such as receptors. Formally, inputs may be detected because their 
update functions are constants that represent the values of such inputs. In this case, a 
possibly more biologically relevant initial partition may separate inputs from the other 
variables, obtaining input-separated (IS) reductions.

Our partition-refinement algorithm takes a polynomial number of steps as a function 
of the number of BN variables. At each iteration, it queries a SAT solver to check for 
the BBE criteria. If the query is satisfiable, i.e., the current partition is not a BBE, the 
returned assignment is used to split the current partition and perform another iteration; 
if the query is unsatisfiable, it returns the current partition as the coarsest BBE refine-
ment of the initial one. We fully develop our approach in the Methods section and in 
Additional file 2.

x1(t+ 1) = ¬x3(t) ∨ x1(t)
x2(t+ 1) = x1(t) ∨ x2(t) ∨ ¬x3(t)
x3(t+ 1) = x2(t) ∧ ¬x3(t)

========⇒
x1, x2 : BBE

x1,2(t+ 1) = ¬x3(t) ∨ x1,2(t)
x3(t+ 1) = x1,2(t) ∧ ¬x3(t)

Fig. 1  Boolean backward equivalence shown on a simple example. (Top-left) BN with three variables 
denoted by x1 , x2 , and x3 . (Bottom-left) The underlying STG. Each node is labelled by a vector that 
defines the state of each variable; a directed edge denotes a transition from a source state to a target 
state by a synchronous application of the update functions. States 110 and 111 form an attractor. 
(Top-right) Variables x1 and x2 can be shown to be BBE-equivalent by inspecting their update functions. If 
they have the same value in a state, i.e. x1(t) = x2(t) , then they will be equivalent for all successor states 
since x2(t + 1) = x1(t) ∨ x2(t) ∨ ¬x3(t) = x1(t) ∨ x1(t) ∨ ¬x3(t) = x1(t) ∨ ¬x3(t) = x1(t + 1) . Based on 
this, a reduced BN can be obtained by considering a representative variable for each block and rewriting 
the corresponding update functions in terms of those representatives (here the representative variable 
is denoted by x1,2 ). (Bottom-right) The underlying STG agrees with the original one on all states that have 
equal values for variables in the same block (purple nodes in bottom-left panel). Instead, any other state 
(i.e. those where variables in the same BBE block have different value), is removed. The criteria for BBE only 
involve checks for the update functions of the original model, such that the generation of original STG can be 
circumvented
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Interestingly, although our algorithm is theoretically as complex as SAT solving, it 
behaves effectively in practice. Using a prototype implementation available within the 
software tool ERODE [32], we demonstrate its performance on a large-scale validation 
across 86 BN models from two well-known repositories [6, 33]. We show that almost 
all BNs can be reduced by BBE, providing speed-ups for the computation of STGs and 
attractors by more than three orders of magnitude. In some cases, BBE could render the 
analysis feasible in instances that originally issued out-of-memory errors or that were 
stopped after long time outs. This comes at the cost that part of the original dynam-
ics is lost. In particular, in the STG we preserve all and only the states where variables 
within the same BBE-block have the same value, and transitions among them. From this, 
and from the properties of BBE, we also get that the method preserves all and only the 
attractors containing at least one preserved state. This confirms that BBE is complemen-
tary to existing reduction techniques for BNs. Indeed, in several areas of science and 
engineering, it is common to have reduction techniques that:

•	 Preserve all dynamics but might add spurious ones. An example is [14] which pre-
serves all attractors but might create new spurious ones. These often come with the 
name of over-approximations (this is because, e.g., [14] might over-approximate the 
set of attractors of a model by computing a larger set containing all original ones, 
plus some spurious ones;

•	 Do not preserve all the dynamics, but guarantee to not add spurious ones, like BBE. 
These often come with the name of under-approximations (this is because, e.g., BBE 
might under-approximate the set of attractors of a model by computing a smaller set 
containing only original ones, but potentially not all).

These two families of techniques are not comparable. They might be jointly used to 
obtain upper-bounds (the case of [14]), and lower-bounds (the case of BBE) on the actual 
number of attractors in a model.

This paper extends the previous conference version [34]. All numerical experiments 
have been redesigned by adding an additional model repository, by performing a large-
scale validation of the analysis speed-ups offered by BBE, and by considering a more 
recent and efficient tool for identification of attractors. We have also performed a new 
large-scale validation on randomly generated BNs. Finally, we have generalised the the-
ory to support also BNs with partially asynchronous update schema, and we have added 
in Additional file 3 a new case study considering one such BN.

Results and discussion
In this section, we perform a large-scale validation of BBE. We first check its reduction 
power on published models from the literature, and then we demonstrate how it facili-
tates the analysis tasks of STG generation and attractor computation. In particular, we 
show how BBE brings important analysis speed-ups, both in terms of STG generation, 
and attractor analysis. In several cases, BBE enables the analysis of models that were 
originally intractable due to their complexity.

After this, we use two selected case studies to show how one can tune the reduction 
power of BBE to preserve or exclude specific dynamics of interest.
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Toolchain. We implemented our method in ERODE [32], a freely available software for 
the modeling, analysis, and reduction of biological systems modelled in terms of BNs 
[34], differential equations [35], and chemical reaction networks [19]. ERODE integrates 
the SAT solver Z3 [36]. Thanks to importing/exporting functionalities, we let ERODE 
interact with the COLOMOTO Notebook [37, 38], which integrates several tools for 
modeling and analysis of BNs. STG generation is performed using the tool PyBoolNet 
[39], while attractor identification is performed using the SAT-based tool BNS [12].1

Configuration. All experiments were conducted on a machine equipped with an Intel 
Xeon(R) 2.80 GHz processor and 32 GB RAM. We imposed an arbitrary timeout of 8 h 
for each task, after which we terminated the analysis. We refer to these cases as time-out, 
while we use out-of-memory if the execution issued a memory error.

We conducted our investigation using two model repositories: GINsim repository 
[6] (http://​ginsim.​org/​models_​repos​itory), which contains 83 models, and the Bio-
models repository [42] (https://​www.​ebi.​ac.​uk/​biomo​dels/), which contains 24 models, 
obtaining overall 98 distinct models (9 appeared in both repositories). From these, we 
restricted only to models with input variables, obtaining 86 models. In other words, we 
considered about 92% of the models available in the two respositories. This selection was 
done to avoid favouring BBE: in BNs without inputs, IS initial partitions correspond to 
the maximal ones, which, as the name says, allow for the best possible BBE reduction 
of a model in terms of aggregation power. Part of these 86 models, 45, are multi-val-
ued networks, i.e. logical models wherein some variables take more than two activa-
tion statuses, e.g., {0, 1, 2} for low, medium, or high concentration respectively (see, e.g., 
[43]). We transform such models in dynamically equivalent BNs by applying a so-called 
booleanization technique [44], supported by GINsim [40].

We consider two reduction scenarios relevant to input variables, using maximal and 
input-separated (IS) initial partitions like H0 in Eq. (1) and H′

0 in Eq. (2), respectively. In 
Additional file 4 we perform a similar analysis on randomly generated BNs.

Large‑scale validation

Large-scale validation: reduction power. We begin by addressing the reduction power of 
BBE. For this, we consider the reduction ratios (variables in the reduced BN over the 
variables in the original one) obtained on all models.

Figure  2 displays the reduction ratios for both the maximal and IS reductions. We 
observe that almost all models can be reduced by BBE, in particular 93% admit a maxi-
mal reduction, while 91% admit an IS one. The reduction ratios distribute almost uni-
formly from 0.15 to 1.00 (no reduction), with average reduction ratio of 0.70 and 0.77 for 
maximal and IS reductions, respectively. For most models, the maximal and IS reduction 
ratios do not change significantly, meaning that BBE is effective also when we prevent 
input variables from merging with internal variables. All detailed results of this analysis 
can be found in Additional file 5: Table S3.

1  Among the tools available in the COLOMOTO notebook, we could have opted for GINsim [40] and BoolSim [41] for 
STG generation and attractor identification, respectively, for BNs with synchronous update schema. In both cases, we 
have opted for the tools with best performances according to preliminary experiments we conducted, not reported here.

http://ginsim.org/models_repository
https://www.ebi.ac.uk/biomodels/
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Large-scale validation: STG generation speed-up. We hereby demonstrate the speed-
ups that BBE provides to STG generation on a selection of the considered models. 
Figure 3 focuses on the 20 models with more than 10 variables for which the STG gen-
eration succeeded in both the original and reduced models, while Fig. 4 focuses on the 
13 ones where the STG generation failed on the original model and succeeded in the 

Fig. 2  Large-scale validation: reduction power. The x-axis provides model identifiers for the 86 considered 
models (only even ones are shown due to space constraints), while the y-axis refers to reduction ratios 
“reduced variables over original ones”. The green dots denote the reduction ratios, in increasing order, for 
maximal reductions. Using the same ordering, the blue crosses denote the reduction ratios for IS reductions. 
Only 6 models do not admit any BBE reduction, while two more models (33 and 58) do not admit IS 
reduction

Fig. 3  Large-scale validation: STG generation speed-up. Comparison of STG generation between BBE 
reductions and original BNs. We omit models with 10 or fewer variables, where the runtimes are not 
particularly informative because STG generation is trivial. Furthermore, we omit models with more than 60 
variables, where STG generation fails with out-of-memory for both the original models and their reductions. 
Overall, we obtain 33 models, from which here we focus only on the 20 ones for which the STG generation 
succeeded in both the original and reduced models, while Fig. 4 focuses on the remaining 13. The x-axis 
refers to the generation time for original models, while the y-axis refers to that for reduced models, using 
green circles and blue crosses for maximal and IS reductions, respectively. The runtimes are averaged over 3 
runs
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maximal or IS reduction. On the used machine, STG generation failed for models with 
24 or more variables. Therefore, Fig.  3 focuses on models with less than 24 variables, 
while Fig. 4 focuses on models with 24 or more variables for which at least one reduction 
had less than 24 variables.

The red line in Fig. 3 marks the area where the reduction would not bring speed-ups. 
We can see that all points are below the line, with instances showing more than two 
orders of magnitude difference between the original and reduced runtimes. This proves 
that BBE can effectively lead to faster STG generation. All cases where the dots and 
crosses overlap refer to models where the two reductions coincide.

We now consider the 13 models in Fig. 4 where STG generation was not feasible for 
the original models. We note that the generation succeeded for all maximal reductions, 
while it failed for two IS ones. As denoted by the model identifiers in the x-axis, these 
are models 4 and 15 in Fig. 2, where the IS reductions have 34 and 25 variables, respec-
tively. The largest runtime is 441 s for the IS reductions, and 338 s for the maximal ones. 
Detailed results are presented in Additional file 5: Table S4.

Large-scale validation: Attractor computation speed-up Fig.  5 studies the speed-ups 
that BBE provided to the computation of attractors on the models from Fig. 2. The plot 
has the same structure as Fig. 3. We observe that, in several cases, we have significant 
analysis speed-ups. In particular, we note how the dots and crosses spread to the right, 
due to original runtimes in the order of 103 s , while they hardly go up beyond 1 s for 
runtimes on reduced models. Furthermore, models 18 and 29 from Fig. 2 are omitted 
here because the analysis failed on the original models. Instead, the analysis of their 
maximal reductions required at most 0.15 s, and that of their IS reductions at most 2.5 s. 
Detailed results are given in Additional file 5: Table S5.

Large-scale validation: Interpretation. BBE can successfully reduce a large amount 
of models. For the original models, the state space explosion prevents full state space 

Fig. 4  Large-scale validation: STG generation speed-up. STG generation time for the maximal and the IS 
reductions. We consider the 13 models omitted in Fig. 3 because the STG generation failed for the original 
models. The x-axis refers to the model identifier from Fig. 2, while the y-axis refers to the generation time for 
the reduced models, using green circles and blue crosses for maximal and IS reductions, respectively. The 
runtimes are averaged over 3 runs
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exploration in many cases, and hampers the identification of the attractors. This is miti-
gated in practice by BBE, with extreme cases where BBE made analysis feasible whereas 
the original models were intractable. As shown in Additional file 5: Table S5, part of the 
attractors are lost in the reduced models, namely those not involving constant states on 
the computed BBE (see Methods section). Table  S5 shows cases like model 18 or 29, 
whose attractors could not be computed at all without BBE reduction. At the same time, 
the table shows that, by using the default IS or maximal initial partitions, a large part of 
the attractors might be lost (because, according to our theory, involve STG states where 
variables belonging to the same BBE block have different value). In Additional file  4: 
Fig. S7 we provide this information graphically for the BNs from the two repositories, 
and for randomly generated ones. This can be mitigated by devising refined initial parti-
tions for the model and problem at hand. This is exemplified and discussed in greater 
detail in the next section where we show how a modeler can easily devise refined ini-
tial partitions that may allow to preserve more attractors, or drop those that are not of 
interest.

Case studies

In the previous part of this section we studied the aggregation power and the analysis 
speed-ups offered by BBE on 86 models from the literature. Here, instead, we use two 
selected case studies (MAPK, T-LGL) to show how one can tune, or refine the reduction 
power of BBE using model-specific information to preserve all dynamics of interest, and 
selectively exclude behavior that does not have biological relevance. Nevertheless, for 
completeness, we provide in Table 1 information on the analysis runtimes on all models 
(and their reductions) discussed in this section. We consider analysis runtimes on the 
models (Original), and on their IS (IS) and maximal (Maximal) reductions as done in 

Fig. 5  Large-scale validation: Attractor computation speed-up. Attractor computation time of the original 
models versus the one of maximal and IS reductions. Out of the 86 models from Fig. 2 we select the 78 
admitting both maximal and IS reduction. The figure further omits models 18 and 29 from Fig. 2 for which the 
analysis failed for the original model due to time-out. The x-axis refers to the analysis time for original models, 
while the y-axis refers to that for reduced models, using green circles and blue crosses for maximal and IS 
reductions, respectively. The runtimes are averaged over 3 runs
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the large-scale validation. Furthermore, we consider an additional reduction obtained 
using a refined initial partition discussed in the corresponding sections (Refined). STG 
generation failed on all models and reductions because they all have more than 24 vari-
ables. Indeed, we have previously discussed how, on the used machine, STG generation 
fails for models with 24 or more variables. Instead, attractor analysis succeeded on all 
models, with important speed-ups obtained for all reductions. For both models, the IS 
and Maximal cases have a particularly low analysis runtime. This is because, as we shall 
discuss next, several attractors are discarded in these reductions. Notably, despite the 
Refined reductions have speed-up factors of about two, as we shall see they preserve all 
attractors for MAPK, and all attractors of interest for T-LGL.

MAPK case study We consider a BN model for Mitogen-Activated Protein Kinase 
(MAPK) from [45]. The model consists of tightly interconnected signalling pathways 
involved in diverse cellular processes, such as cell cycle, survival, apoptosis and dif-
ferentiation. The BN is depicted in Fig. 6. It contains 53 variables, 4 of which being 
inputs ( EGFR_stimulus , FGFR3_stimulus , TGFBR_stimulus , and DNA_damage ), and 
has 40 attractors.

MAPK: Maximal and IS reduction The maximal BBE reduction of this model has 
39 variables. The discovered blocks are visualized in Fig. 6 using different background 

Table 1  Analysis runtimes (in seconds) for the models in section Case Studies

MAPK T-LGL

Original IS Maximal Refined Original IS Maximal Refined

STG generation Out-of-memory Out-of-memory

Atractor analysis 0.55 0.16 0.16 0.35 2.66 0.10 0.11 1.17

Fig. 6  Graphical representation of the MAPK BN using GINsim. The background colors denote blocks of the 
maximal BBE (white background denotes singleton blocks). Instead, the blue dashed shapes denote blocks of 
the refined initial partition, vertical IS, where we omit the fifth large block containing all remaining nodes
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colors. In particular, we note that the yellow block contains all inputs and five non-
inputs variables, three related to TGFBR_stimulus , and two related to DNA_damage . 
Instead, the IS reduction has 41 variables, the only difference being that the block 
with inputs from the maximal reduction (Fig. 6) is split in three blocks: one for the 
inputs, one for the two non-input variables directly connected to the two right-most 
inputs, and one for the remaining non-input variables. In both cases, the reduced BNs 
have 17 attractors.

MAPK: Refined reduction with vertical IS We propose a third model-specific ini-
tial partition that considers inputs also indirectly. Intuitively, variables like TGFBR 
depend only on the value assigned to an input ( TGFBR_stimulus ). This reasoning can 
be iterated downward through the pathway, allowing to add also TAK1 , and SMAD , 
until variables that depend on other (input) variables are met. In some sense, we can 
see TGFBR , TAK1 , and SMAD as indirect inputs. This is because, in a few iterations 
the value assigned to the corresponding input will be propagated to them, and they 
will not change value anymore. In other words, we use a block per input, each con-
taining the input and all non-input variables only positively affected by the input or 
by variables in the block. That way, we obtain an initial partition denoted by the blue 
dashed shapes in Fig. 6, plus an additional fifth block containing all other variables. 
The rationale is that a variable only affected by an input will have the same truth value 
of the input, therefore it can be considered as a sort of indirect input. The obtained 
BBE is depicted in Fig. 7. The reduced BN contains 42 variables and preserves all 40 
attractors.

T-LGL case study We consider a BN model for T-LGL from [20]. It refers to the 
disease T-LGL leukemia which features a clonal expansion of antigen-primed, com-
petent, cytotoxic T lymphocytes (CTL). This BN is a signalling pathway, constructed 
empirically through extensive literature review, and determines the survival of CTL. 

Fig. 7  Graphical representation of the MAPK BN. Background colors denote blocks of the BBE obtained using 
the refined initial partition (white background denotes singleton blocks)
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The BN, depicted in Fig. 8, consists of 60 variables, 6 of which are inputs (the yellow 
nodes in Fig. 8). The model has 264 attractors.

T-LGL: Maximal and IS reduction The maximal and IS BBE coincide, as depicted in 
Fig. 8. We have only two non-singleton blocks: one consisting of all the inputs, and one 
consisting of FasT  , A20 , TNF  , and RANTES . The reduced BN has 52 variables and 6 
attractors, which means that most of the attractors are lost.

T-LGL: Refined reduction In [20], the authors discover that the simultaneous activation 
of the two input variables IL15 and PDGF  is sufficient to produce all dynamics of inter-
est to them (namely, all the known so-called deregulations and signalling abnormalities).

In terms of initial partitions for BBE, we can encode the notion of contemporary acti-
vation or deactivation of the two inputs by using a model- and problem-specific initial 
partition where IL15 and PDGF  form a block. Furthermore, we assign every input to a 
singleton block, while all non-input variables belong to the same block, for a total of 56 
blocks. It turns out that this initial partition is actually a BBE, which therefore does not 
get refined by our algorithm. The reduced BN has 120 attractors.

Conclusion
Boolean backward equivalence (BBE) is an automatic reduction technique for Boolean 
networks (BNs) which exactly preserves dynamics of interest to the modeler by collaps-
ing variables that are proven to have equal values in all states. The method, based on 
a partition refinement algorithm, can be tuned on a model- and problem-specific way 
by specifying which variables should be preserved using an appropriate choice of the 
initial partition. The approach is complementary to the state of the art. Roughly, in [4, 
13], reduction is achieved by replacing variables with constants and propagating those 
in the transitions of somehow richer STGs or across the network, respectively. Thus, 
the reduced model cannot be used to investigate how changes in those variables affect 
the dynamics. In a BBE reduction, instead, variables are collapsed into blocks and the 
original dynamics is exactly recovered whenever variables in the same block are assigned 

Fig. 8  Graphical representation of the T-LGL BN using GINsim. Background colors denote blocks of both the 
maximal and IS BBE, which coincide (white background denotes singleton blocks)
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equal values. These studies [4, 13] additionally remove the output [4] variables (also 
called leaf variables [13]). However, output variables sometimes are used to denote dif-
ferent “responses” by the modelled system [4, 30], therefore their removal might not 
always be appropriate.

In variable absorption [14, 15], the main assumption is that there are variables that 
are updated faster than others, therefore one class of variables can be assumed to be 
constant and absorbed if focusing on the dynamics of the other class. Unlike BBE, this 
can only increase the number of attractors. In particular, variable absorption preserves 
exactly all steady states (single-state attractors), while it might change the length of 
other attractors. Furthermore, new spurious attractors might be added. Instead, BBE 
might decrease the number of attractors (it discards all and only the attractors involving 
states where BBE-equivalent variables have different activation values), but all preserved 
attractors are preserved exactly, including their length and reachibility from (preserved) 
initial states, and no spurious ones are added. Regarding other relevant work, in [16], 
the authors identify variables that have the same value in attractors only, but, differently 
from BBE, might behave differently in other states of the STG.

We validated BBE on 86 BNs from two model repositories, providing reductions and 
analysis speed-ups in almost all cases. In some, BBE enabled the analysis of models 
which would be otherwise intractable. There were also instances for which the reduced 
model could not be analyzed. This calls for further research into more aggressive reduc-
tions; for example, in its current implementation multi-valued BNs are first translated 
into ordinary BNs, but this causes a blow-up in the number of variables. It is worth 
investigating approaches that circumvent the intermediate translation to reduce dimen-
sionality. Another area of research concerns the different semantic interpretations of a 
BN. Currently, BBE supports BN with synchronous and partially asynchronous updates; 
we plan to investigate variants of BBE for probabilistic BNs.

Methods
Here we explain the key steps of the reduction procedure on the BN in Fig. 9. Its cus-
tomary graphical representation allows one to distinguish different kinds of variables 
depending on whether they appear in the update functions of other variables (as indi-
cated by the green arrows). In the example, TLR5 can be interpreted as an input because 
its state remains constant and unaffected by other variables. Inputs, which often denote 
external stimuli [4], are explicitly set by the modeler to perform experiment campaigns. 
Conversely, IRAK4 and PIK3AP1 can be considered output variables because they do 
not appear in the update functions of other variables.

Step 1: initial partition. Our reduction algorithm starts with the specification of an ini-
tial partition of variables. The idea behind initial partitions is that the modeler can force 
our algorithm to not collapse given variables, by placing them in different initial blocks. 
In the case studies presented in the Results and discussion section we see examples of 
user-specified initial partitions enabling analyses of interest on the considered models. 
This is how initial partitions shall be used, devising case-by-case useful ones. In order to 
favour a systematic large-scale validation of our approach, here we consider two exam-
ples of initial partitions whose computation can be easily automated: the maximal parti-
tion, where all variables are placed in the same block; and the input-separated (IS) one, 
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where the inputs are separated from the other variables, i.e., we use an initial partition 
with two blocks, one for input variables and one for the other variables. ,2 In the exam-
ple, these are respectively given by the partitions:

and

Iterative step: splitting by the BBE condition. At every iteration, the algorithm checks the 
BBE condition on the current partition. Formally, BBE is defined as a partition X of vari-
ables that renders the following formula valid:

(1)H0 =
{

{xTLR5, xTICAM1, xMyD88, xIRAK4, xPIK3AP1}
}

(2)H
′

0 = {xTLR5}, {xTICAM1, xMyD88, xIRAK4, xPIK3AP1} .

(3)�H
≡









�

Hi∈H

x,x′∈Hi

�

x = x′
�









−→

�

Hi∈H

x,x′∈Hi

�

fx = fx′
�

Fig. 9  Excerpt of the BN from [30]. It refers to the receptor TLR5 and its signalling to the four following 
genes: TICAM1, MyD88, IRAK4, PIK3AP1. When a virus infects an organism, the receptor TLR5 receives the 
relevant antigen stimuli becoming active (the value of xTLR5 turns from 0 to 1), and the signal is subsequently 
propagated to the other connected genes. (Top) The update functions of the BN. (Bottom-left) Variables 
are commonly depicted as nodes in a network while directed links represent influences between them. A 
directed link from a source variable to a target variable denotes that the source variable exists in the update 
function of the target variable. (Bottom-right) The corresponding STG, where we use purple to denote 
attractors

2  We refer to [34] for a third example of initial partition, input-distinguished where inputs were further separated from 
each other. As exemplified in the case studies in the Results and discussion section, initial partitions should be defined 
by the modeler depending on the model at hand and on the properties to be studied. We discuss the maximal and IS 
partitions here to enable the large-scale validation of BBE discussed in the same section.
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This is a Boolean formula for: whenever all variables in the same block have same value, 
they will not be distinguished in the next state. In other words, �H says that if for all par-
tition blocks Hi the variables in Hi are equal, then the evaluations of update functions 
of variables in the same block stay equal. A SAT solver can determine if �H is valid by 
checking the unsatisfiability of its negation. For example, given the H′

0 partition in Eq. 2, 
one can obtain that ¬�H

′

0 is satisfiable (i.e., H′

0 is not a BBE) because there exists the 
assignment s given by

for which, as it can be seen in the STG of Fig. 9, the next state s′ is

This assignment proves that variables xTICAM1 , xMyD88 , xIRAK4 , and xPIK3AP1 cannot 
belong to the same block of a partition that satisfies the BBE criteria because despite 
having the same value (0) in the source state s, they differ in the target state s′ . In addi-
tion, the assignment s suggests to split that block into two sub-blocks for which that 
assignment does not disprove the BBE condition: xTICAM1 and xMyD88 have same value in 
s′ , as well as xIRAK4 and xPIK3AP1 . Thus the algorithm will perform a new iteration with 
the refined partition

With this, ¬�H
′

1 is unsatisfiable, implying that H′

1 is a BBE partition. In Theorem 2 from 
Additional file 2, we prove that this algorithm returns, for any initial partition, its unique 
coarsest refinement that satisfies the BBE condition (3). Overall, the algorithm takes at 
most n steps, where n is the number of BN variables; at every step, it iterates through the 
provided SAT assignment, if any is provided, to perform the splitting. Thus, overall the 
algorithm is as hard as SAT solving; however, the numerical evaluation presented in the 
Results and discussion section will show how it can effectively tackle BN models from 
the literature.

BBE properties As discussed in Fig. 1, given a BBE it is possible to construct a reduced 
BN where each variable represents a partition block (Proposition  4 from Additional 
file  2). The STG of the reduced BN agrees with the original STG on all, and only on, 
states that are constant on the partition, i.e., whose variables in the same block have 
the same value (Proposition 4 from Additional file 2). The reduction also preserves any 
attractor of the original BN which contains at least one state that is constant on the 
partition (Theorem 5 from Additional file 2). Thus, in particular the reduced BN main-
tains the exact length of the attractors that are preserved without introducing spurious 
dynamical behavior. Instead, all states non constant on the partition are dropped, as well 
as all attractors not containing any state constant on the BBE partition.

We use two examples to better explain the exact preservation of part of the attrac-
tors. Considering preserved attractors, we have seen in Fig. 1 that the two-states attrac-
tor of the original model (Fig. 1 bottom-left) is preserved in a two-states attractor in the 
reduced model (Fig.  1 bottom-right). This is the case for any preserved attractor; the 
number of states is preserved.

s = (sxTLR5 , sxTICAM1
, sxMyD88 , sxIRAK4

, sxPIK3AP1) = (1, 0, 0, 0, 0)

s′ = (s′xTLR5 , s
′

xTICAM1
, s′xMyD88

, s′xIRAK4
, s′xPIK3AP1

) = (1, 1, 1, 0, 0).

H
′

1 =
{

{xTLR5}, {xTICAM1, xMyD88}, {xIRAK4, xPIK3AP1}
}

.
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As regards attractors that are not preserved, we provide in Fig. 10 (top-left) a simple 
BN with 3 variables ( x1 , x2 , and x3 ) and 4 attractors (steady-states, Fig. 10, bottom-left). 
Figure 10 (top-right) shows a BBE reduction of the model where x1 and x2 get collapsed. 
We can see in Fig. 10 (bottom-right) that 2 attractors are preserved in the BBE reduc-
tion, while the other 2 attractors belong to the part of the STG that is not preserved, and 
therefore are not present in the reduced BN. In particular, according to our theory, the 
two attractors where x1 and x2 are both 1 or both 0 are preserved. Instead, the other two 
attractors have different values for x1 and x2 , and therefore are not preserved.

Partially asynchronous BNs In Additional file 2, we show how BBE can also be applied 
to partially asynchronous BNs. Here, we equip a BN with a partition K of its variables 
that we name synchronization partition. A new state is obtained by selecting one of the 
blocks K of K , and then applying of the update functions of the variables in K only. The 
activation values of the other variables are not modified. Notably, this synchronization 
schema is supported, e.g., by popular BN analysis tools like GINsim [6] under the name 
of priority classes [7].3 In particular, BBE can be applied to such BNs with the caveat that 
the initial partition must be K or refinements of it. In Additional file 3 we apply BBE to a 
BN with partially asynchronous update schema.

Abbreviations
BN	� Boolean network
BBE	� Boolean backward equivalence
STG	� State transition graph

Fig. 10  Boolean backward equivalence shown on a simple example: not all attractors are preserved. 
(Top-left) BN with three variables denoted by x1 , x2 , and x3 . (Bottom-left) The underlying STG. The model has 4 
steady-state attractors (nodes 100, 010, 000, and 111). Two have same activation values for x1 and x2 (000, 
and 111), two have not. (Top-right) Variables x1 and x2 can be shown to be BBE-equivalent by inspecting 
their update functions. If they have the same value in a state, i.e. x1(t) = x2(t) , then they will be equivalent 
for all successor states. Based on this, a reduced BN can be obtained by considering a representative variable 
for each block and rewriting the corresponding update functions in terms of those representatives (here the 
representative variable is denoted by x1,2 ). (Bottom-right) The underlying STG agrees with the original one on 
all states that have equal values for variables in the same block (purple nodes in bottom-left panel). Notably, 
the two attractors having same activation value for x1 and x2 are preserved, while the other two are dropped, 
as expected by our theory

3  The dynamics of BNs considered in this paper are less general than those offered by GINsim using priority classes, as 
they also further allow to assign different priorities to the classes, and to update the variables within them asynchro-
nously.
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