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Abstract 

Background  Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific 
attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns 
about their possible side effects after direct cell transplantation, including host immune response, time-consuming 
cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in 
clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome 
rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological 
processes, specifically neuro-regeneration.

Main body  Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve dis-
ease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. 
In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mecha-
nisms in the three most prevalent central nervous system disorders, namely Alzheimer’s disease, multiple sclerosis, 
and Parkinson’s disease. The current work aimed to help discover new medicine for the mentioned complications.

Conclusion  The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, 
so it can be considered as a treatment option for which no treatment has been introduced so far.
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Background
Neurodegenerative disorders can be the result of an 
injury to the brain and spinal cord neurons. When the 
body is unable to replace damaged neurons, structural 
damage and function failure lead to neuronal death. Con-
sequently, dementia, mental dysfunction, and movement 
problems occur in neurodegenerative diseases, such as 
Parkinson’s disease (PD) [1], Alzheimer’s disease (AD) 
[2], and multiple sclerosis (MS) [3]. Although the exact 
pathophysiology of neurodegenerative diseases is unclear, 
several studies have suggested that oxidative stress [4], 
environmental pollution [5], aging [6], infection [7], 
chemical exposure [8], and immune dysregulation [9] 
play a role in the accumulation of misfolded proteins 
(such as tau, amyloid-β, α-syncline) [10] over time. Dif-
ferent types of pharmacotherapies were developed to 
treat more common neurodegenerative disorders, like 
AD [11] and PD [12]; among them, acetylcholinesterase 
inhibitors (donepezil and rivastigmine) and N-methyl-
D-aspartate (NMDA) receptor agonists were found to be 
more effective, especially for AD [13]. Regarding PD, only 
one drug, Xadago safinamide, has received FDA approval 
[14]. Despite their ability to alleviate symptoms, these 
drugs cannot stop the disease progression [15]. The avail-
able drugs for MS (glatiramer acetate, cladribine, natali-
zumab, mitoxantrone, and ocrelizumab) are ineffective 
in accelerating tissue repair [16]; therefore, attempts have 
been made to find new effective therapeutic strategies, 
such as stem cell therapy, to treat neurodegenerative dis-
eases [17, 18].

Mesenchymal stromal cells (MSCs) are cells with the 
capacity for self-renewal and differentiation into vari-
ous cell lineages [19]. The International Society of Cell 
Therapy (ISCT) states that MSCs must satisfy three crite-
ria to be labeled as MSCs; these are adipogenesis, chon-
drogenesis, and osteogenesis; plastic adhesion property; 
and positivity of CD90, CD105, and CD73 surface mark-
ers along with negativity for CD45, CD19, CD79a, CD34, 
and human leukocyte antigen (HLA)-DR surface mark-
ers. In contrast to other stem cell groups, the expression 
of CD34 is believed to be challenging [20], and no spe-
cific marker has been developed to identify MSCs [21]. 
Mesenchymal stromal cells can be derived from several 
sources, including bone marrow, adipose tissue, dental 
tissues, placenta, umbilical cord blood, Wharton’s jelly, 
and the brain [22]. Despite meeting the abovementioned 
criteria, these mesenchymal stromal cells from differ-
ent sources differ in several characteristics, such as their 
ability to differentiate into specific cell lineages, their 
cytokine secretion profiles, and surface markers [23, 24].

More than 2000 patients suffering from different stages 
of neurodegenerative diseases received MSCs, and most 
of them achieved promising results [25]. Nonetheless, 

there are several concerns about MSC-based cell ther-
apy, including heterogeneity, potential side effects after 
allogeneic MSC transplantation, and the difficulties in 
choosing proper donors. Heterogeneity could be due to 
differences in MSC sources and cell culture methods [26, 
27]. This fact makes it difficult to compare results from 
clinical trials that have chosen different sources and 
methods. From another point of view, it can be consid-
ered a favorable option in applying MSC to treat differ-
ent conditions by manipulating the culture medium and 
choosing the appropriate source to achieve the optimum 
results.

Another concern is the host immune system’s reaction 
after transplanting MSCs. The use of autogenic MSCs is 
considered an option to avoid this complication; how-
ever, it has certain limitations since the potential thera-
peutic effects of MSCs depend on the donor’s age and 
health [28]. Previous studies have revealed that MSCs 
obtained from patients with obesity [29] and inflamma-
tory diseases did not have normal differentiation and 
proliferation capacity; therefore, they could not produce 
the expected therapeutic effects [30]. The last concern is 
about the growing data suggesting that MSC therapy may 
be ineffective, in particular for neural disorders. One rea-
son may be the weak and transient benefit of MSC ther-
apy in studies of central nerves system (CNS) disorders, 
such as ALS [31], MS [32], and stroke [33]. It could be 
the result of an ineffective transplantation method. After 
intravenous (IV) transfusion, MSCs are trapped in some 
organs, mostly in the lungs [34]. In most cases, they can-
not cross the blood–brain barrier successfully. Applying 
a novel method of MSCs transplantation, such as intral-
esional, intranasal, intra-arterial, or the use of MSC’s 
secretome, solves this issue [35].

The proteins released by cells are a straightforward def-
inition of the secretome. Secretomes derived from MSCs 
include soluble (cytokines and chemokine) and insoluble 
(extra vesicles) factors [36]. MSC-derived secretomes are 
composed of a protein-soluble fraction, like growth fac-
tors and cytokines, and a vesicular fraction, composed 
of microvesicles and exosomes. Insoluble components 
are released into the extracellular environment and par-
ticipate in trafficking, adhesion, and endocrine signal-
ing [37]. Exosomes’ cargo consists of three categories: I. 
proteins, which include signaling peptides, heat-shock 
proteins, vesicular transport proteins, signal transduc-
tion proteins, cytoskeletal proteins, and cell metabo-
lism enzymes [38]; II. lipids, which include ceramides, 
cholesterols, phosphatidylserines, and sphingomyelins; 
III. nucleic acids which include genomic DNA, mito-
chondrial DNA (mtDNA), transfer RNAs (tRNAs) [39], 
messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), 
complementary DNA (cDNAs), and small and long 
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non-coding RNA [40]. Numerous recent studies have 
highlighted the beneficial therapeutic effects associated 
with MSC transplantation to the CNS due to its higher 
paracrine activity than its cell differentiation capacity 
[41]. The presence of immune regulatory and neuro-
trophic factors in MSCs’ secretome plays a crucial role in 
their desirable effects on CNS disorders. Some of these 
neurotrophic factors can increase neuronal proliferation 
and survival, such as nerve growth factor (NGF), glial 
cell-derived neurotrophic factor (GDNF), brain-derived 
neurotrophic factor (BDNF), neurotrophin-3 (NT-
3), NT-4, vascular endothelial growth factor (VEGF), 
hepatocyte growth factor (HGF), fibroblast growth fac-
tor (FGF), pigment epithelium-derived factor (PEDF), 
insulin-like growth factor (IGF)-1, IGF2, transforming 
growth factor-beta 1 (TGF-β1), interleukin (IL)-6, pig-
ment epithelium-derived factor (PEDF), DJ-1, and cysta-
tin-C (Cys-C) [42].

To obtain MSC-derived exosomes, first, MSCs culti-
vated in an exosome production medium, and then the 
supernatant undergoes the isolation methods. The lack of 
standard isolation and purification methods is the main 
obstacle in routing exosomes into the translational clini-
cal application. Although exosome isolation is conven-
tionally performed using ultracentrifugation (differential 
ultracentrifugation, density gradient centrifugation), 
the gold-standard method, other techniques have been 
developed to overcome the ultracentrifugation limita-
tions. The alternative isolation techniques are based on 
isolation by size (ultrafiltration, sequential filtration, exo-
some isolation kits, size exclusion chromatography, flow 
field-flow fractionation, hydrostatic filtration dialysis), 
immunoaffinity capture (enzyme-linked immunosorb-
ent assay, magneto-immunoprecipitation), exosome 
precipitation (polyethylene glycol precipitation, lectin 
induced agglutination), and microfluidic techniques 
(acoustic nano-filter, immuno-based microfluidic isola-
tion). Each isolation method has some advantages and 
disadvantages. For instance, immunoprecipitation yields 
the most efficient recovery rate, while the acoustic nano-
filter method gives the highest purity and requires the 
least sample volume and time. The exosome analysis 
is performed via different methods based on physical 
characteristics (electron microscopy, dynamic light scat-
tering, nanoparticle tracking analysis, tunable resistive 
pulse sensing), chemical, biochemical, and compositional 
characteristics (immunodetection methods such as flow 
cytometry and western blotting, thermophoretic profil-
ing, and mass spectrometry-based proteomic analysis) 
[43].

In this study, the effects of MSCs on cells on CNS injury 
were reviewed. The focus of the study was on secretome 
in three common diseases, namely Alzheimer’s disease, 

Parkinson’s disease, and MS. This was done to explore the 
therapeutic horizons concerning these conditions.

Main text
Mechanism of function
Different mechanisms are considered to explain the ben-
eficial effects of MSC transplantation [44, 45]. In  vivo 
studies have shown that autologous or exogenous MSCs 
could modify tissue structure and function by migrating 
to damaged areas, which involves several steps. Although 
the exact homing mechanism is not fully understood, 
there is a hypothesis based on its similarity to leukocyte 
migration via integrins, selectins, adhesion molecules 
(like VCAM-1), and G-protein signaling pathways [46]. 
Upon migration to the CNS, MSCs interact with sur-
rounding tissues. This leads to neuronal differentiation 
and secretion of cytokines and growth factors involved 
in various mechanisms, such as neuroprotection, immu-
noregulation, angiogenesis, and inhibiting neuronal 
apoptosis [47]. Despite the beneficial features of MSCs, 
they show limited differentiation capacity compared to 
other types of stem cells, like embryonic pluripotent stem 
cells. It is not entirely accepted that MSCs can replace 
all lost neurons through neural differentiation. There-
fore, improvement in neuronal survival following MSC 
administration is possibly due to the secretion of various 
neurotrophic factors by MSCs rather than differentiation. 
Secretion of neurotrophic factors can be increased by 
manipulating culture media [48]. Some priming proto-
cols have been assessed in MSC culture media to induce 
particular alterations, leading to desirable changes [49]. 
For instance, Redondo-Castro et  al. reported that pre-
conditioning treatments of MSCs with inflammatory 
cytokines, like IL-1, prime them for a neurotrophic phe-
notype to release secretomes containing neurotrophic 
and anti-inflammatory cargos in the culture media 
supernatant []. Findings indicated that inducing MSCs to 
overexpress neurotrophic factors like GDNF and BDNF 
resulted in promising outcomes in PD and AD mouse 
models [50]. Moreover, using dynamic culturing condi-
tions in computer-controlled bioreactors induces MSCs 
to produce a higher amount of neurotrophic factor, lead-
ing to a more effective cocktail for therapeutic applica-
tions in neurodegenerative disease [51, 52].

Immune dysfunctionality has been introduced as one 
of the main causes of neurodegenerative diseases such 
as AD, PD, and MS. In this light, glial cells’ hyperactiv-
ity and immune cells’ infiltration into the CNS lead to 
disease progression [3]. But the MSCs’ capacity to affect 
the proliferation and activation of all types of immune 
cells is another promising feature that assures their effi-
cacy in neurodegenerative disorders [53]. MSCs are not 
immunosuppressive by nature, but they need a specific 
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cytokine profile [54]. However, the exact mechanism is 
still under question. Some reports have indicated that 
it occurs directly through cell-cell contact and secret-
ing soluble factors [55]. MSCs interrupt three pivotal 
phases of the immune response: antigen presentation, T 
cell activation and proliferation, and effectors’ responses 
[53], through modulating the behavior of macrophages, 
dendritic cells (DCs), natural killer cells (NK cells), B 
cells, and T cells. It happens mostly through secreting 
certain molecules, including indoleamine 2,3-dioxyge-
nase (IDO), prostaglandin E2 (PGE2), TGF-β1, HLA-G5, 
IL-10, and IL-6 [56]. Besides, the mediators secreted by 
MSCs comprise various cytokines and growth factors 
that mostly play an immunomodulatory role in the cell 
microenvironment. They also actively produce neuro-
trophic factors like BDNF, GDNF, VEGF, NT-3, NGF, and 
IGF, which induce endogenous neurogenesis and raise 
neuronal survival. Numerous studies have confirmed 
the neuro-protective effects of these growth factors [57, 
58]. GDNF, as a well-known trophic factor, was reported 
to exhibit remarkable neuroprotective properties [59]. 
BDNF is the main promoting agent to axonal outgrowth 
in the CNS, since with its removal from the secretome, 
the effect was not observed anymore [60]. Moreover, 
several papers have introduced VEGF as another criti-
cal factor, which induces explicitly axonal outgrowth [61, 
62]. This result was confirmed by Zhou et al. as they pro-
moted neurogenesis and functional recovery following 
VEGF and BDNF co-overexpressed MSC administration 
to the cerebral ischemia model [63].

MSCs can impair antigen presentation by DCs through 
reducing surface markers such as CD-11c, major histo-
compatibility complex (MHC)-class II, and CD83, indi-
rectly leading to the inhibition of adaptive immune cell 
activation [64]. Cross-talk with macrophages, which 
play an imperative role in CNS inflammation under the 
high level of inflammatory cytokines (IFN-γ and TNF-
α), polarizes them toward anti-inflammatory phenotype 
(M2), unlike pro-inflammatory (M1), which can con-
tribute to tissue regeneration by increasing arginase-1 
and IL-10 levels [65]. Microglial cells, which are resident 
macrophages in CNS tissue, can cause inflammation (by 
secreting IL-6, NO, TNF-α, and IL-1β) and are related to 
different pathogens of neurodegenerative disorders [66]. 
MSCs, through secretion of TNF-α, stimulated protein 
6 (TSG-6), suppress microglia activation [67], and exert 
M1 to M2 switch by activating the CX3CL1/CX3CR1 
signaling pathway in these cells [68].

MSCs suppress lymphocytes via three vital mecha-
nisms: firstly, reducing the proliferation of both T [69] 
and B [70] lymphocytes by arresting the cell cycle in 
the G0/G1 phase even after exposure to allogenic cells; 
secondly, reducing IFN-γ and IL-17 production by 

polarizing the Th0 toward Th2 shift rather than that 
toward Th1 and Th17; and lastly, indirect induction of 
Treg generation [71]. It has been shown that MSCs exert 
further Treg immune suppression activity, probably via 
IL-10 secretion [72]. It could be a reassuring option for 
treating CNS disorders with autoimmune origins, such as 
MS.

Other secretory products, like HLA-G5, TGF-β1, IDO, 
and PGE2, suppress the proliferation, cytokine secretion, 
and cytotoxicity of NK cells. They also inhibit the activ-
ity of NK cells as a bridge between innate and adaptive 
immune responses [73].

To sum up, the beneficial effect of MSCs on neurode-
generative disorders is mostly attributed to the secre-
tion of several cytokines and growth factors involved in 
immune regulation and neuroprotection.

Secretome‑based therapy in neurodegenerative diseases
Gnocchi first discovered the therapy based on MSC 
secretome in 2005 [44], which attracted scientific atten-
tion owing to addressing several concerns about the side 
effects following allogenic or autologous MSC trans-
plantation. In addition to the risk of immune response 
and tumor genesis, culturing MSCs takes too much 
time for cell proliferation and may be associated with 
undesirable differentiation [45, 74]. On the other hand, 
MSC secretomes can be easily collected from commer-
cial culture media without any invasive process [75]. 
Furthermore, in various types of diseases related to the 
damaged structure of different brain parts, administering 
culture media is effective. These reasons, along with the 
high prevalence of central nervous system disorders and 
their low regenerative potential, make these diseases one 
of the critical targets for MSC secretome-based therapy. 
Numerous studies have verified the neuroprotective and 
neurotrophic effects of MSC secretome based on this 
hypothesis [76]. Teixeira et  al. reported that just a sin-
gle administration of MSC secretome, even without cell 
transplantation, increased endogenous neuronal differ-
entiation in the hippocampus region [77]. MSC-derived 
secretomes are flexible according to the state and site 
of the injury [78]. Therefore, they could be regulated by 
various pathological conditions similar to what may be 
observed in different CNS disorders.

In the following sections, the studies conducted on the 
effect of secretome-based therapies in the three main 
neurodegenerative diseases, including AD, PD, and MS, 
are reviewed (Table 1).

Alzheimer’s disease (AD)
AD is a prevalent chronic disease of the central nervous 
system with multifactorial and relatively complex pathol-
ogy. AD patients suffer from the gradual loss of brain 
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Table 1  Therapeutic effects of MSC in animal models of neurodegenerative diseases

AD Alzheimer’s disease, MS Multiple sclerosis, PD Parkinson’s disease, BM-MSCs Bone marrow-derived mesenchymal stem cells, WJ-MSCs Wharton’s Jelly mesenchymal 
stem cells, UCB-MSCs Umbilical cord blood-derived mesenchymal stem cells, MenSCs Menstrual blood-derived mesenchymal stem cells, AD-MSCs Adipose tissue-
derived mesenchymal stem cells, AM-MSCs Amniotic mesenchymal stem cells

Disease Tissue source of MSC Therapeutic effects Refs. Year

AD Rat AD Reduced oxidative stress; alleviated cognitive impairment; promoted neurogenesis; increased the neuroblasts 
numbers

[152] 2014

Human UCB Improved endogenous hippocampal neurogenesis and synaptic activity [153] 2015

Human WJ Improved the spatial learning; mitigated memory decline; reduced Aβ soluble levels and its deposition [154] 2016

Human WJ and UCB Induced neuronal development and neurite outgrowth [155] 2016

Human WJ Reduces the accumulation of ubiquitin-conjugated proteins [156 2017

Human AM Reduced amyloid-β peptide deposition; rescued spatial learning and memory [157] 2017

Mouse BM Reduced Aβ plaque size [158] 2017

Human UCB Mitigated Aβ-induced synaptic dysfunction [159] 2018

Human MenSCs Improved spatial learning and memory; mitigated amyloid plaques; increased Aβ degrading enzymes; modu-
lated panel of proinflammatory cytokines

[160] 2018

Mouse BM Improved cognitive impairment [161] 2020

Mouse BM Reduction β-amyloid deposits [162] 2020

Human UCB Improved the spatial learning; improved memory impairment [163] 2020

Rat BM Improved cognitive impairment [164 ] 2020

Mouse BM Memory recovery; reduced neuro-inflammation; decreased brain amyloidosis; increased neuronal density in 
cortex and hippocampus; diminished hippocampal shrinkage

[165] 2021

Human WJ Reduced cell death; reduced ubiquitin conjugate levels; reduced Aβ levels [166] 2021

MS Mouse BM Improved clinical score [167] 2015

Mouse BM Decreased T helper-17 activation and function [168] 2015

Mouse BM Increased remyelination; decreased demyelination and apoptosis [169] 2015

Mouse AD Reduced disease severity, inflammatory cell infiltration, and demyelination [170] 2017

Rat BM Increased clinical score; declined inflammation [171] 2017

Mouse BM Decreased vascular alteration of vessels, myelin, and neuronal damage [172] 2017

Human BM Diminished demyelination in corpus callosum [173] 2018

Mouse BM Improved therapeutic function [174] 2018

Rat BM Differentiation of oligodendrocyte precursor cells [175] 2019

Mouse BM Improved remyelination; declined microgliosis and astrocytosis [177] 2019

Mouse BM Increased M2 phenotype macrophage; decreased M1 phenotype macrophage [177] 2019

Mouse BM Reduced inflammatory infiltration and demyelination of spinal cord [178] 2020

Mouse BM Increased neurobehavioral outcomes; reduced blood–brain barrier disruption, inflammatory infiltration, and 
demyelination in spinal cord

[179] 2020

Human BM Increased retinal ganglion cell function and motor sensory impairment [180] 2020

PD Rat BM Neuro-protective effects on dopaminergic neurons [181] 2008

Rat BM Partial rescue of dopaminergic pathway [182] 2008

Mouse BM Neuro-protective effects on dopaminergic neurons; reduced blood–brain barrier damage; downregulation of 
neuro-inflammation

[183] 2009

Rat BM Improved viability of striatal/nigral dopaminergic terminals concomitant [184] 2010

Human endometrial Improved dopamine production [185] 2011

Human BM No effect on motor impairment [186] 2015

Human endometrial Enhanced dopamine metabolite concentrations [187] 2015

Rat BM Restored rotational behavior [188] 2015

Rat BM Improved locomotor functions [189] 2017

Rat BM Differentiation into nestin- and neuron-specific enolase-positive cells [190] 2017

Human BM Reduced pro-inflammatory cytokines; restored behavioral function [191] 2020

Human BM Down-regulated pro-inflammatory cytokines; stimulated antioxidant enzymes [193] 2020

Human AT Induced alteration in dopamine transporter expression; promoted neurotrophic factors [192] 2020

Human WJ Restored dopaminergic neurons; enhanced levels of neurotrophic factors [194] 2020
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abilities such as memory and cognitive function. It has 
been estimated that approximately 131 million people, 
even those under the age of 65, will be affected until 2050 
worldwide.

AD was primarily discovered in 1907 by Alzheimer, 
a neuropathologist specialist [79], and has since been 
divided into sporadic (sAD) and familial (fAD) groups. 
In the fAD group, three common gene mutations were 
reported, namely presenilin 1 (PSEN1), presenilin 2 
(PSEN2) β, and precursor protein (APP) [80]. In sAD, 
apolipoprotein E (APOE), nutrition, lifestyle, and aging 
are known as major risk factors. However, the exact 
underlying mechanism remains ambiguous. Any efficient 
drug or curative method has been investigated. Although 
some current treatment methods, including cholinester-
ase blockers and NMDA receptor antagonists, are effec-
tive in the early stages of the disease, they are not highly 
efficient after a while due to a high number of neuronal 
losses in the hippocampus, the inability of drugs to cross 
the blood–brain barrier (BBB), and the increasing side 
effects following long-term use [81].

The main pathological features in both fAD and sAD 
are chronic accumulation of amyloid-beta (Aβ) plaque 
and neurofibrillary tangles (NFT) enriched by hyper-
phosphorylated protein tau [74]. This accumulation leads 
to the hyperactivation of microglia (MG) and astrocytes 
(AC) as the most involved immune cells in AD pathol-
ogy [82]. Brain neurons of AD patients are permanently 
susceptible to inflammatory conditions induced by these 
immune cells. Although opinions about the role of MG 
and AC are controversial, most researchers consider 
them immunostimulators after exposure to Aβ plaques 
by their toll-like surface receptors (TLRs) (TLR 2, TLR4, 
TLR6, and TLR9) and CD markers (CD36, CD14, and 
CD47) [83, 84]. Expression of these TLRs in different 
cells has been suggested as the initiation of the inflam-
matory response. Thus, increased TLR2 levels are con-
sidered a diagnostic marker for activated MGs [85], and 
TLR4 overexpressing neurons are more prone to degra-
dation after releasing IL-1B, TNFα, and IL-17 [86]. Mod-
ulating the TLRs’ stimulation would be a critical step to 
control MG activation and AC status. In this context, one 
paper showed that hypoxia-preconditioned adipocyte-
derived MSC secretome injection to AD mouse models 
decreased TLR2 and TLR4 expression, similar to astro-
cyte inflammatory cytokines, such as IL-1 and TNFα, 
which increase hippocampus neuronal survival [87].

Secreting inflammatory cytokines by activated MGs 
and ACs plays an important role in disease progression, 
neurotoxicity, and cognitive dysfunction [88]. Using 
IL-17 neutralizing antibodies improved memory function 
in an animal model of AD by preventing pro-inflamma-
tory mediators [89]. On the other hand, some types of 

secretory products are crucial factors that cause resist-
ance to the accumulation of AB plaque in the brain. An 
interesting study examined the expression of inflamma-
tory and anti-inflammatory cytokines in the brains of the 
resistance group. Comparing the control and AD groups 
showed that they expressed different cytokines, which 
prevented neurodegeneration and dementia despite the 
presence of AB plaque [90]. The resistance groups dif-
fered in the number of Aβ plaques and NTFs. Higher 
levels of IL-6, IL-1ra, IL-13, and IL-4 belonged to the 
highest rate group (HP), whereas the dominant cytokines 
in the lowest rate group (LP) were IL-10, IL-6, and IP10. 
Among them, IL-4, IL-13, and IL-10 shifted the acti-
vated MG to M2 form to modulate the inflammatory 
response. The M1 phenotype massively releases inflam-
matory cytokines, which deteriorate CNS damage [91]. 
Conversely, the phenotypical exchange of glial cells in AD 
has been reported in favor of the inflammatory process. 
This has been reported during aging, diabetes, obesity, 
and some other mentioned risk factors associated with 
immune disturbances [92].

The MSC secretome comprises an array of bioactive 
molecules that ameliorate AD-related symptoms through 
different mechanisms (Fig. 1).

Transplantation of hypoxia-preconditioned MSC-
exosomes to app/PS1 mouse models induced phenotypic 
exchanges in the lesion area by decreasing the expression 
levels of IL-1a, IL-1β, and TNF-α and increasing IL-4 and 
IL-10; thus, MSCs can modulate the excessive inflam-
matory responses caused by M1 MGs. Additionally, they 
suppressed the activation of astrocytes and decreased 
AB plaque deposition, leading to improved memory defi-
cits and cognitive AD-related disorders [88]. In line with 
previous studies, MSC-derived CX3CL1 induced MGs 
switch from harmful phenotype M1 to protective form 
M2 through the fractalkine receptor, thereby protecting 
neurons against destructive effects following inflamma-
tory cytokines release [93].

A high concentration of inflammatory products is 
commonly believed a sign of MGs and ACs shifting 
to a harmful form that compromises Aβ clearance. 
However, it seems that it could not be applied to all 
inflammatory cytokines [94]. Multiple studies have 
found TGF-β, IL-6, and other inflammatory cytokines 
accumulating around Aβ plaques in the brains of 
AD patients [2]. According to researchers, these two 
cytokines protect neurons by increasing plaque clear-
ance, which results in improved cognitive and behavio-
ral disorders [29]. IL-6, a pleiotropic cytokine expressed 
at a high rate in both resistance groups (HP and IP), 
was reported to be protective and increase neuronal 
survival. Contrary to normal conditions, IL-6 concen-
tration was shown to be significantly increased during 
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disease progression [95]. However, data in this context 
are controversial since IL-6, as a well-known inflamma-
tory mediator, might either initiate a harmful cascade 
leading to cerebral damage or facilitate the healing 
process via raising angiogenesis and other protective 
mechanisms [96]. In this regard, Yang et  al. indicated 
reduced autophagy in hippocampal neurons induced 
by endogenous MSC-derived IL-6 by inhibiting the 
AMPK/mTOR pathway via the gp130-IL-6R receptor 
complex. They revealed that MSC-derived IL-6 signifi-
cantly decreases Beclin 1 and LC3 II, autophagy-asso-
ciated proteins (Fig. 97) [98]. It was also reported that 
this cytokine could decrease the proliferation of acti-
vated astrocytes by affecting the AMPK/mTOR sign-
aling pathway [99]. Further investigation is needed to 
clarify the reciprocal role of inflammatory cytokines in 
AD.

Lee et  al. injected bone marrow (BM)-derived MSCs 
into the hippocampal region of AD mice and realized 
that BM-derived MSCs could recruit activated MG cells 
to the inflamed area after exposure to Aβ deposition. The 
elevated secretion of CCL5, a chemoattractant factor, 

induced the recruitment of alternatively activated MG. 
Alternatively activated MGs attenuated memory impair-
ment and decreased Aβ plaques through the secretion 
of IL-4 and neprilysin (NEP) [100]. Several beneficial 
effects of IL-4 were previously reported in AD, including 
improved spatial learning and increased Aβ degradation 
in phagocytic cells [101].

MSCs secretome can indirectly contribute to Aβ 
plaque degradation through the NEP enzyme. Neprily-
sin is a well-known protease enzyme that has an inverse 
relationship with the Aβ level. Recently, it has become a 
new target in the search for novel AD therapies. Cultured 
MSC-derived secretomes have the potential to regulate 
neprilysin’s activity. In  vitro studies have revealed that 
MSC-derived soluble intracellular adhesion molecule-1 
(ICAM-1) [99] and CCL5 [100] induce Aβ plaque degra-
dation by increasing the level of NEP through alternative 
activation of MG cells. However, there is little knowledge 
about this enzyme and it needs further investigation.

MSC secretome not only contains NEP, but can also 
decrease the toxic effects and neuronal apoptosis caused 
by Aβ. MSC-derived secretome significantly reduced 

Fig. 1  Graphical summary of different mechanisms conducted by MSCs secretome to hippocampal neuron protection. MSC products ameliorate 
neurodegeneration related to (A1) astrocyte and (M1) microglia, two major immune cells involved in the pathogenesis of Alzheimer’s disease. 
CX3CL1, IL- 4, IL-13, and IL-10 induced MGs switching from harmful phenotype M1 to protective form M2. Exosomes decrease the expression levels 
of IL-1a, IL-1β, and TNF-α; thus, MSCs can modulate the excessive inflammatory responses. The elevated secretion of CCL5 and ICAM-1 induces Aβ 
plaque degradation by increasing the level of protease enzyme (NEP). VEGF and FGF-2 can decrease neuronal apoptosis by changing the BAX/
BCL-2 balance in favor of cell survival. IL: interleukin, TGF-β: transforming growth factor-beta, Fractalkine R: fractalkine receptor, TLR: Toll-like receptor, 
NEP: neprilysin, Aβ: amyloid beta, BAX: BCL-2-associated X, apoptosis regulator, BCL-2: B cell CLL/lymphoma 2. The images depicted in the figure are 
designed by authors
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neuronal apoptosis by changing the BAX/BCL-2 bal-
ance in favor of cell survival. Aβ plaques induce neuronal 
apoptosis either directly by upregulating the Bax protein 
[102] or indirectly through increasing ROS-induced oxi-
dative stress [103]. Dental pulp stem cell (DPSC)-derived 
secretomes can counteract Bax expression in neuroblas-
toma cell lines through upregulation of the anti-apoptotic 
protein Bcl-2. Scientists believed that it could be related 
to the expression of RANTES, Fractalkine, VEGF, and 
fibroblast growth factor-2 (FGF-2), which can promote 
Bcl-2 expression. Interestingly, it has also been proven 
that DPSCs secrete these cytokines and growth factors 
at higher concentrations than other common sources 
of MSC, like bone marrow and adipocytes [76]. Based 
on the aforementioned data, manipulating some factors 
aiming to upregulate Bcl-2 expression would be a prom-
ising strategy to develop more efficient therapies.

In summary, AD neuropathology is a relatively complex 
disease and requires multi-target therapy approaches. 
The use of MSCs with neuroprotection potential, potent 
immune modulation, and anti-amyloidogenic activities 
could be considered a multi-approach alternative for 
AD model therapy. MSC secretome immunomodulatory 
properties are partially regulated by MG and AC activ-
ity, either by regulating their proliferation potential and 

phenotypic changes from neurodegenerative to neuro-
protective states, or by regulating TLR expression. How-
ever, further clinical trials are required to explain which 
one is precisely responsible for the observed therapeutic 
outcomes and optimize this option.

Multiple sclerosis (MS)
MS is one of the prevalent neurodegenerative disor-
ders affecting approximately 2.5 million people aged 
20–40  years [103]. It is caused by the immune system 
attack through T helper reactive cells (TCD4 +) and 
antibodies against the lipoprotein of nerve fibers, due to 
genetic and environmental backgrounds. Chronic degen-
eration of myelin sheath leads to a progressive disability 
in patients. MS is divided into three stages according 
to clinical symptoms [104]. The most common type is 
relapse-remitting (RR) MS which occurs at an approxi-
mate rate of 85%-90% and is characterized by exacerba-
tion and relative remission cycles [105]. The second phase 
is defined as "secondary progressive" (SP) and character-
ized by aggravated symptoms without remission peri-
ods, affecting 50–60% of MS patients. The third phase 
is defined as "primary progressive" (PP) and presented 
in about 15% of MS patients and is characterized by 
more severe clinical symptoms and chronic progressive 

Fig. 2  MSC-derived IL-6 suppresses the autophagy pathway in injured hippocampal neurons in Alzheimer’s disease through the downregulation 
of the AMPK (mitogen-activated protein kinase) signaling pathway. The AMPK signaling pathway is a downstream target of IL-6. IL-6 binds to 
the gp130-IL-6R receptor complex and induces a downregulation in the AMPK signaling pathway. IL-6 can induce mTOR, a pivotal factor in the 
autophagic signaling pathway, in an AMPK-dependent and STAT3-independent manner, leading to decreasing autophagy-associated proteins like 
Beclin 1 and LC3 II. The images depicted in the figure are designed by authors
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disability with or without exacerbation episodes. Both SP 
and RR are more severe and frequent in women than in 
men [106].

Injury of the blood–brain barrier followed by infil-
tration of immune cells into the brain and spinal cord 
occurs in the early stages of MS [107]. Nevertheless, the 
exact reason behind the immune reaction against the 
nerve fibers remains unclear to date. The major patho-
logical cause is a disturbance of the balance between T 
cell populations (TCD4 + and Treg) and antigen-present-
ing cells (microglia) in favor of inflammation following 
neuronal degeneration. The major subset of autoreactive 
CD4 + cells (Th1, Th17) seems to be critically involved 
in MS pathogenesis and its experimental animal model, 
experimental autoimmune encephalomyelitis (EAE) 
[108]. Hence, transferring Th17/Th17 cells to healthy rats 
causes EAE. Th1 and Th17 negatively affect immune tol-
erance, leading to inflammatory damage in MS, Th17 by 
producing inflammatory cytokines such as IL-17a, IL-
17F, IL-21, IL-22, and Th1 by secreting TNF-α and IFN-γ 
[109]. Thus, these cytokines are abundantly expressed in 
the inflammation area. Although the healing process of 
neurons occurs naturally, it is not enough to compensate 
for neuronal loss and prevent disease progression. The 
current treatment methods (anti-inflammatory drugs, 
antioxidants, steroidal hormones, and corticosteroids) 
are available only for RR patients and reduce the num-
ber of relapses through immune system suppression [17, 
110]. Nonetheless, they cannot stop degradation and 
replace lost neurons. Moreover, in the case of using this 
kind of therapies the potential side effects, such as sec-
ondary autoimmune disease and increased risk of infec-
tion, should be seriously considered [111].

As mentioned previously, the role of immune cells is 
undeniable in MS pathogenesis. Accordingly, targeting 
these immune cells and recovering from immune hemo-
stasis can be an effective and promising strategy for treat-
ing this disease. MSC-derived secretome can justify the 
unbalanced immune response in MS through different 
mechanisms. These factors also exhibit neuroprotective 
effects that inhibit neuronal degeneration after the dis-
ease’s progression. The following paragraphs describe dif-
ferent mechanisms induced by MSC secretome (Fig. 3).

MSC-derived cytokines can induce Th0 differentiation 
to other T cell subsets. IL-10 and TGF-β are competent 
representatives of these cytokines. Following investiga-
tions of the underlying mechanisms, it was observed 
that co-cultured BM-MSC with CD62Lhigh CD44low 
CD4 + CD25low T cell population reduced differentia-
tion of Th0 toward Th17 through downregulation of the 
RORγT-related signaling pathway. Researchers have 
demonstrated that the increase in IL-10 secretion might 
play a key role in this action, so that IL-10 neutralization 

could significantly restore the Th17 population [112]. 
Svobodova et  al. co-cultured the alloantigen-stimulated 
spleen cells with TGF-β releasing MSCs to examine the 
effect of MSC-derived TGF-β on the naïve T cell dif-
ferentiation. They confirmed that TGF-β reciprocally 
regulated Th17 development and its secretory cytokine, 
IL-17, as well as two crucial transcription factors, Foxp3 
and RORγT []. As a result, inducing Th0 differentiation 
into the Treg cell population instead of Th17 is known 
as another chief function of the mentioned cytokines, 
resulting in changing the Treg/Th17 ratio in favor of tis-
sue hemostasis. Tregs also suppress the DC-induced Th17 
differentiation [113].

Inhibition of T cell proliferation is another critical 
mechanism induced by MSC mediators. HGF exerts its 
indirect T cell anti-proliferative role by regulating c-met 
receptors in antigen-presenting cells, especially DCs [76]. 
However, the direct suppression effect of this receptor on 
Th17 remains unclear. In addition to the HGF functional 
assessment, another study designed by Bai et al. demon-
strated improved memory deficit and functional recovery 
following the infusion of HGF-induced MSC secretome 
to EAE mouse models. Their results revealed that HGF 
is a pleiotropic cytokine with neurotrophic and immu-
nomodulatory effects [114]. PGE2, as another potent 
immunomodulatory product of MSC, can prevent the 
Th1 and Th17 proliferation and secretion of their inflam-
matory cytokines [115]; meanwhile, it could be con-
troversial depending on lymphocyte maturation status 
[116]. IDO specifically released by human MSCs, exerts 
an anti-inflammatory role by inducing the production of 
kynurenine, a toxic metabolite against T cell proliferation 
and apoptosis [117].

MSC-derived cytokines inhibit T cell migration 
through the BBB. In addition to preventing the antigen 
presentation to T cells and limiting their proliferation 
capacity, MSC secretomes have other functional meth-
ods to inhibit neuronal degradation and disease progres-
sion in MS. Autoreactive T cells can break the BBB and 
migrate to the CNS neurons using matrix metalloprotein-
ase (MMP)-9, a well-known proteolytic enzyme involved 
in the MS and EAE pathogenesis, which lyses the myelin 
sheath [118]. Considering these data, inhibiting MMPs 
is a potential concept to develop a novel therapeutic 
method for neuroinflammatory diseases, especially MS 
[119]. Researchers have indicated that MSC secretomes 
could relieve disease severity by preventing MMP activity 
[120, 121]. In this regard, another study introduced MSC-
secreted tissue inhibitors of metalloproteinase (TIMPs) 
as a potent inhibitor of MMP [122].

The immunomodulatory effect of MSCs can be partly 
explained by inflammasome inactivation. NALP3 
is a well-known inflammasome involved in various 
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autoimmune diseases, including MS [122]. This eluci-
dates the therapeutic effect of PDLSC-derived secretome 
in MS, acting similarly to the conventional immuno-
suppressant drugs, such as interferon-beta (IFN-β), and 
suppressing the NALP3 inflammasome and the NFkβ 
signaling pathway via secreting cytokines such as IL-10 
and TGF-β [123]. The inhibitory effect of IL-10 on acti-
vated macrophages via inhibiting NALP3 was previously 
confirmed [124]. It was reported that the main effect of 
IFN-β is immunomodulation and enhancement of BDNF 
levels [125].

In conclusion, MSCs can induce neuroprotection and 
endogenous neurogenesis at injury sites by secreting 
neurotrophic mediators to improve neuronal survival. 
Since the levels of neurotrophic factors are dramatically 
reduced in the CNS of MS patients, increasing their rate 
or at least maintaining their physiologic level seems to be 
a valuable therapeutic option [126].

Parkinson’s disease (PD)
Following AD, PD is known to be the most prevalent 
neurodegenerative disease, discovered by James Parkin-
son in 1817. It affects approximately 1%-3% of the pop-
ulation above the age of 60 [1]. Among different factors 
involved in PD pathogenies, including disruption of the 
protein cleanup pathway, mitochondrial dysfunction, oxi-
dative stress, and genetic mutation, the accumulation of 
α-synuclein protein in the Lewy bodies (LBs) is the most 
well-known pathological feature in the disease develop-
ment [127]. Following damage to the mitochondria, the 
toxic effect of LBs induces apoptosis in dopaminergic 
(DA) neurons, specifically in the substantia nigra [128]. 
The progressive degeneration of DA neurons develops 
several symptoms of motor dysfunction, including pos-
tural instability, bradykinesia, and rigidity [129].

The current accepted standard therapy for PD is levo-
dopa (L-DOPA). Though it alleviates the major symp-
toms, its dosage should be increased due to the inability 
to replace DA neurons, thus increasing its side effect. 

Fig. 3  Graphical summary of immunomodulation and neuroprotective effects of MSCs in MS. MSC-derived secretome justifies the unbalanced 
immune response through secretion of different cytokines and growth factors. These products inhibit the proliferation, differentiation, and 
migration of Th1 and Th17 to the CNS and increase the Th0 differentiation to Treg instead. MSC secretome also comprises an array of neurotrophic 
factors which induce endogenous neurogenesis; this compensates lost neurons. MMP9: matrix metalloproteinases9, TIMP: tissue inhibitor of 
metalloproteinase, IL: interleukin, IFN-γ: interferon-gamma, PGE2: prostaglandin E2, IDO: indoleamine 2,3-dioxygenase. HGF: hepatocyte growth 
factor, BDNF: brain-derived neurotrophic factor, GDNF: glial cell-derived neurotrophic, BFGF: basic fibroblast growth factor, IGF: insulin-like growth 
factors, VEGF: vascular endothelial growth factor, KYN: kynurenine, FOXP3: forehead box P3, STAT5: signal transducer and activator of transcription 5, 
C-met: hepatocyte growth factor receptor, BBB: blood–brain barrier. The images depicted in the figure are designed by authors
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Additionally, its short half-life necessitates the use 
of other treatment methods [130]. To the best of our 
knowledge and according to the US National Institutes 
of Health website (http://​www.​clini​caltrials.gov), there 
are just two studies that reported cell-based treatment 
for PD. Li et  al. reported that after fetal mesencephalic 
dopaminergic neuron transplantation to two PD patients, 
the neurons survived for over 10 years. However, it was 
revealed that the newly engrafted neurons were also 
affected by pathological conditions following α-synuclein 
accumulation in LBs [131]. In contrast, in seven patients 
who had BM-MSC autologous engraftment to the sub-
lateral ventricular zone via surgery, three of them showed 
significant improvements, and two others had their med-
icine dosage reduced; no evidence of tumor growth was 
observed in the MRI after 12–36  month. Other papers 
focused mainly on animal models of PD [132]. As the 
preparation step of stem cell therapy is time-consum-
ing and the procedures for keeping the engrafted cells 
alive in the transplantation zone are difficult to manage, 
secretome-based therapy for PD has attracted remark-
able attention over the past few years.

The findings of several studies on animal models 
revealed that MSC-derived secretomes hold significant 
potential for PD treatment. Different strategies, such as 
inducing neuronal differentiation, increasing prolifera-
tion, raising density, and increasing neuronal viability, 
were reported by different research groups as having 
effectively improved motor dysfunctions. The discov-
ery of the regenerative and protective effects of MSC 
secretomes on DA neurons has attracted a great deal of 
scientific attention to this new therapeutic aspect. Teix-
eira et  al. revealed that injecting secretomes into rats’ 
dentate gyrus enhanced the endogenous proliferation 
of hippocampal neurons after seven days. They incu-
bated human umbilical cord perivascular cells-derived 
secretomes with human telencephalon neural progenitor 
cells for five days and reported that neuronal differentia-
tion and density increased in both mature and immature 
cells. NGF and FGF-2 levels increased simultaneously 
in that region [77]. Sakane and Miyamoto introduced 
CHD2 as an important modulator molecule in DA neu-
ron differentiation and proliferation through the regula-
tion of the Wnt-β-catenin signaling pathway [133].

Some evidence has confirmed that MSC secretome-
mediated functional recovery in DA neurons. In mouse 
models of PD, DA neurons progressively degenerated, 
and accordingly, motor coordination was impaired. The 
researcher verified the motor performance improvement 
following injecting the MSC-derived secretomes com-
pared to the control group. However, its effects gradually 
decreased as time passed, probably due to local consump-
tion. They also showed that the tyrosine hydroxylase 

(TH) + neurons increased in the test groups compared 
to those in the control group [57]. The increased num-
ber of TH + neurons could be considered one of the 
factors involved in improving functional balancing. Fol-
lowing the detection of possible contributing factors in 
this action, Fábio and Teixeira introduced 21 proteins, 
namely BDNF, VEGF, IL-6, GDNF, cystatin-C, porcine 
epidermal growth factor (PEGF), galectin-1, heat-shock 
protein (HSP)-27, TRX1, UCHL1, semaphorin 7a (SEMA 
7A), stromal cell-derived factor (SDF)-1, clustrin, CypA, 
CypA, CypC, DJ-1, cadherin (CDH)-2, PRDX1, UBE3A, 
and MMP2 by mass spectrometry [134]. Similarly, Cerri 
et  al. confirmed GDNF, BDNF, VEGF, and IL-6 as the 
most effective molecules in restoring the functional bal-
ance of the dopaminergic system [135].

Strong evidence has emphasized the effect of neuronal 
growth factors on neuronal viability following secretome 
therapy. It was reported that BDNF expression is reduced 
in the substantia nigra pars compacta (SNC) in the early 
stages of PD [136]. Researchers have also introduced this 
molecule as an essential factor in the development and 
plasticity of DA neurons preventing neurodegeneration 
and increasing neuron viability and survival [137, 138]. 
Hence, knocking down the BDNF gene is associated 
with increased susceptibility and neuronal loss in DA 
neurons [139]. GDNF is another neurotrophic molecule 
involved in the viability and survival of DA neurons [140] 
through upregulating Bcl-x and Bcl-2 anti-apoptotic pro-
teins [141]. As a potent antioxidant, GDNF inhibits ROS-
mediated degeneration by increasing antioxidant enzyme 
activity [142]. IL-6, a scavenger of superoxide radicals, 
upregulates ROS activity, contributing to DA neurons’ 
protection [143]. In addition, IL-6 exerted protective 
effects on DA neurons against MPP + -mediated toxic-
ity [144]. Thus, knocking down the IL-6 gene makes DA 
neurons more sensitive to methyl-phenyl-tetrahydropyri-
dine neurotoxicity [145].

Several growth factors produced after secretome 
therapy have been recognized as having either a direct 
or indirect neuroprotective role in Parkinson’s dis-
ease. In addition to increasing neuronal viability, BDNF 
and GDNF can directly protect the dopaminergic sys-
tem [146]. The indirect protection is provided by other 
growth factors like FGF-2 and EGF [147]. Furthermore, 
certain VEGF subtypes exert protective effects in a dose-
dependent manner through both mentioned mecha-
nisms. In response to acute damages to the dopaminergic 
system, another important neurotrophic molecule, called 
PDEF [148, 149], has a better functional outcome and 
easier delivery compared to other therapeutic meth-
ods using secreted molecules like GDNF [150]. PDEF 
exerts its effect by inducing the NF-kB signaling pathway. 
NF-kB, as a transcription factor, increases the expression 

http://www.clinical
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of other neurotrophic molecules, such as BDNF and 
GDNF [], thereby indirectly increasing neuronal viability 
and survival.

The aforementioned data shed light on the fact that 
secretomes can relatively compensate for neuronal loss 
in PD without requiring further cell transfer. Compar-
ing MSC engraftment and secretome to the animal mod-
els of PD showed that the secretome is more efficient in 
increasing the number and density of TH + neurons in 
the striatum and neural progenitor cells area, which is 
probably the cause of the low survival rate of the MSCs in 
these regions [151].

Preclinical studies and clinical trials
The therapeutic effects of MSC therapy and MSC-
derived exosomes in animal models of neurode-
generative diseases are presented in Tables  1 and 2, 
respectively. While the preclinical results are promis-
ing, the safety and efficacy of MSC-derived secretomes 
in humans have not been confirmed yet.

Over the past decade, the therapeutic potential of 
MSC therapy in neurodegenerative diseases has been 
evaluated in various clinical trials. Table 3 presents all 
the clinical trials of MSC therapy in AD, PD, and MS 
patients listed in the US National Institutes of Health 
Clinical Trials Database (www.​clini​caltr​ials.​gov) till 
September 2022. Although various phase I and II clini-
cal trials were conducted to assess the safety and effi-
ciency of MSC therapy in neurodegenerative disease, 
the results should be warranted by phase III trials.

Despite all preclinical studies demonstrating the effi-
ciency of MSC-derived exosomes in neurodegenerative 
diseases, their clinical utility has yet to be demon-
strated. There are just phase I and II clinical trials ini-
tiated to evaluate the safety and efficacy of exosomes 
secreted from allogeneic adipose tissue-derived MSC in 
AD patients (NCT04388982).

Table 2  Therapeutic effects of MSC-derived exosomes in animal models of neurodegenerative diseases

AD Alzheimer’s disease, MS Multiple sclerosis, PD Parkinson’s disease, BM-MSCs Bone marrow-derived mesenchymal stem cells, AD-MSCs Adipose tissue-derived 
mesenchymal stem cells, UCB-MSCs Umbilical cord blood-derived mesenchymal stem cells

Disease Source of exosomes Therapeutic effect Refs. Year

AD Mouse BM-MSCs Improved cognitive behavior [195] 2018

Human UCB-MSCs Ameliorated cognitive decline; attenuated neuro-inflammation [196] 2018

Human UCB-MSCs Ameliorates neural impairment [195] 2018

Human UCB-MSCs Alleviated neuro-inflammation; reduced amyloid-beta deposition [197] 2018

Human UCB-MSCs Repaired cognitive dysfunctions [197] 2018

Mouse BM-MSCs Reduced Aβ plaque burden [198] 2019

Mouse BM-MSCs Reduced amount of dystrophic neurites in both the cortex and hippocampus [198] 2019

Mouse BM-MSCs Recovered cognition impairment [199] 2019

Not mentioned Restored cognitive function; increased learning abilities [200] 2019

Human, purchased Enhanced neurogenesis; restored cognitive function [201] 2019

Mouse BM-MSCs Reduced Aβ deposition; improved cognitive function recovery [202] 202

Human AT-MSCs Induced neurogenesis; ameliorated cognitive dysfunction [203] 2020

Human UCB-MSCs Improved cognitive function [164] 2020

Human BM-MSCs Decreased microglia activation; increased dendritic spine density [204] 2020

Rat BM-MSCs Improved in destructive structural changes in the taste buds and their innervations [205] 2020

MS Rat BM-MSCs Decreased neural behavioral scores [206] 2019

Human BM-MSCs Reduced disease severity [207] 2019

PD Rat BM-MSCs Reverted motor phenotype and the neuronal organization [208] 2017

Rat AT-MSCs Induced neuroprotection; Increase neuronal plasticity [209] 2017

Rat BM-MSCs Neuroprotective effect on dopaminergic neuron [210] 2019

Human AT-MSCs Ameliorated neurological complications [211] 2019

Human UCB-MSCs Improved neurogenesis and cognitive function [212] 2020

Rat BM-MSCs Attenuated of dopaminergic neuron loss; Improved dopamine levels in the striatum [212] 2020

Rat BM-MSCs Improved motor function [213] 2020

Mouse AT-MSCs Suppressed autophagy and pyroptosis [214] 2021

Mouse AT-MSCs Promoted angiogenesis of human brain microvascular endothelial cells [215] 2021

Human BM-MSCs Reduced number of α-synuclein inclusions [216] 2021

http://www.clinicaltrials.gov
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Table 3  Therapeutic effects of MSC in human models of neurodegenerative diseases

Disease NCT and Phase Participants Stage Tissue source of MSC Findings

AD NCT01297218 (I) 9 Completed Allogeneic UCB Feasible; safe; well tolerated

NCT01696591
(Long-term follow-up of NCT01297218)

9 Unknown Allogeneic UCB Not yet published

NCT02054208 (I/IIa) 45 Completed Allogeneic UCB Not yet published

NCT03172117
(Long-term follow-up of NCT02054208)

45 Unknown Allogeneic UCB Not yet published

NCT03117738 (I/II) 21 Completed Autologous AD Not yet published

NCT04228666 (I/IIa) 24 Withdrawn Autologous AD Not yet reported

NCT02600130 (I) 33 Active Longeveron NA

NCT04855955 1 Available Autologous AD NA

NCT02833792 (IIa) 40 Recruiting Allogeneic
(not mentioned)

NA

NCT04040348 (I) 6 Recruiting Allogeneic UCB NA

NCT02899091 (I/IIa) 24 Recruiting Allogenic placenta NA

NCT04684602 (I/II) 5,000 Recruiting Allogenic UCB NA

NCT04482413 (IIb) 80 Not yet recruiting Autologous AD NA

NCT01547689 (I/II) 30 Unknown Allogenic UCB NA

NCT02672306 (I/II) 16 Unknown Allogenic UCB NA

MS NCT01745783 (I/II) 26 Completed Autologous BM Safety and efficacy

NCT02326935 (I) 2 Terminated Autologous AD NA

NCT03799718 (II) 20 Completed Autologous BM Not yet published

NCT01854957 (I/II) 20 Recruiting Autologous BM NA

NCT01364246 (I/II) 20 Recruiting Allogeneic UC NA

NCT01377870 (I/II) 22 Completed Autologous BM Not yet published

NCT00395200 (I/II) 10 Completed Autologous BM Safe; feasible;
positive therapeutic outcomes

NCT02403947 (I/II) 1 Terminated Autologous BM NA

NCT01895439 (I/II) 13 Completed Autologous BM NA

NCT01933802 (I) 20 Completed Autologous BM Safe; well tolerated;
minor adverse events included tran-
sient fever and mild headaches

NCT02034188 (I) 20 Completed Allogeneic UC Feasible; safe

NCT02035514 (I/II) 9 Completed Autologous BM Not applicable

NCT02239393 (I) 31 Completed Autologous BM Safety and efficacy

NCT01056471 (I/II) 30 Completed Autologous AT Not yet published

NCT03326505 (I/II) 60 Completed Allogeneic UC Not yet published

NCT01730547 (I/II) 15 Recruiting Autologous BM Not yet published

NCT02495766 (I/II) 8 Completed Autologous BM Not yet published

NCT02166021 (II) 48 Completed Autologous BM Well-tolerated;
induced short-term beneficial effects

NCT01606215 (I, II) 21 Completed Autologous BM Not yet published

NCT00781872 (I, II) 24 Completed Autologous BM Clinically feasible; safe;
induced immunomodulatory effects

NCT03069170 (I) 50 Recruiting Autologous BM Not yet published

NCT02157064 (NA) 221 Unknown Autologous AT NA
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Conclusion
MSC-derived secretomes can be used as a promising 
therapeutic approach in the treatment of neurodegenera-
tive disorders for which no treatment has yet been intro-
duced. This cell-free strategy can solve complications due 
to MSCs’ migration to the injury site and their differen-
tiation. Because MSCs’ beneficial properties are depend-
ent on their ability to deliver their content, MSC-derived 
secretomes can be as effective as MSCs transplantation 
in activating the pro-survival and anti-apoptotic signals, 
leading to improved tissue neuron regeneration. Indeed, 
MSC-derived secretomes serve as an information trans-
porter from MSCs to neurons.
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NCT04928287 (II) 24 Not yet recruiting Allogeneic AT NA

NCT04995081 (II) 60 recruiting Allogeneic AT NA

NCT03684122 (I/II) 10 Not yet recruiting Allogeneic UCB NA

NCT04146519 (II/III) 50 Recruiting Autologous
(not mentioned)

NA

NCT05094011 (I) 9 Not yet recruiting Autologous AT NA

NCT04876326 (NA) 15 Recruiting Autologous AT,
Allogeneic UC

NA
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