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Abstract
The phase-space structure of an ion diffusion tensor in ion temperature gradient (ITG)-driven
turbulence is studied using the newly developed numerical code Numerical Diagnosis of
Transport Matrix. The numerical results show that at both the linear and nonlinear stage, the
diffusion tensor of ITG turbulence presents a typical ballooning structure in the poloidal
direction and a magnetic drift resonance structure in velocity space. The Drr and DrK

components of the diffusion tensor satisfy the Stokes–Einstein relation. It is found that the
phase-space structure of the ion diffusion tensor at the linear stage is induced by the resonance
between ions and ITG eigenmodes, while that at the nonlinear stage is induced by the resonance
between ions and the daughter ballooning modes under the poloidal acceleration of nonlinear
zonal radial electric fields.

Keywords: ITG turbulence, phase-space structure, nonlinear diffusion tensor,
nonlinear resonance, gyrokinetic simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

The anomalous transport induced by plasma turbulence plays
an important role in the evolution of magnetically confined
plasma. Understanding the mechanism and characteristics of
anomalous turbulent transport is one of the most important
issues in fusion plasma physics. The transport in plasma can be
understood as the phase-space convection and diffusion effect

1 These authors contribute equally to this paper.
∗

Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
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[1]. In classical [2] and neo-classical [3] transport, the diffu-
sion is induced by Coulomb collisions between particles; in
anomalous transport, the diffusion is considered as the result of
the interaction between particles and turbulence [4]. In trans-
port theories, the diffusion effect can be described by the dif-
fusion tensor [5, 6]. The phase-space structure of the diffusion
tensor is very important in understanding the anomalous trans-
port phenomena since it determines the macroscopic trans-
port matrix and, consequently, the driving effects of thermo-
dynamic general forces on the transport fluxes. For example,
it is found that the strong ballooning poloidal structure of
an ion diffusion tensor could lead to inward toroidal angu-
lar momentum flux driven by magnetic field curvature [7, 8],
which may play an important role in the generation of plasma
intrinsic rotation [9]; it is also found that the magnetic-drift-
resonance-induced velocity structure of an ion diffusion tensor
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could lead to inward ion heat flux driven by parallel flow [10],
whichmay explain the anomalous reduction in ion thermal dif-
fusivities observed in the TFTR [11] and JT-60U [12].

At present, the quasilinear theory is the most commonly
used method to estimate the phase-space structure of a diffu-
sion tensor, either for explaining the experimental observation
[13, 14] or calculating the macroscopic transport coefficient
used in the integrated modeling of tokamak plasmas [15]. The
quasilinear theory is suitable for investigation of the turbulent
diffusion in the linear stage of turbulence with low amplitude,
during which the nonlinear effects are negligible. However,
when the turbulence evolves to the saturation stage, the nonlin-
ear effects become important, and thus the quasilinear theory
is not applicable in this situation in principle [16]. Therefore,
the characteristics of the phase-space structure of the diffusion
tensor in different types of fully developed plasma turbulence
are still open issues.

Based on the nonlinear phase-space Fokker–Planck
equation [17], a diagnostic code, the Numerical Diagnosis of
Transport Matrix (NDTM), has been developed recently [18],
which could obtain the nonlinear ion phase-space diffusion
tensor and macroscopic transport matrix from the gyrocenter
orbits in the turbulent field found by the nonlinear gyrokinetic
simulations. In a previous publication [18], we have reported
the numerical results of the nonlinear ion transport matrix in
ion temperature gradient (ITG)-driven turbulence obtained
by the NDTM code, but the results of the phase-space ion
diffusion tensor have not been discussed. In this paper, we
report the phase-space structure of a nonlinear ion diffusion
tensor in ITG turbulence obtained by the NDTM code, and a
ballooning structure in the poloidal direction and a magnetic-
drift-resonance structure in velocity space have been observed.
To understand the results, we further investigate the ion dif-
fusion tensor structure in single-n ITG modes (here, n is the
toroidal mode number). We find that the resonance structures
observed are generated by the resonance of ions and ITG
turbulence under the influence of zonal flows.

The remaining part of this paper is organized as follows: in
section 2, we introduce the fundamentals of the NDTM code;
in section 3, we show the numerical results of the phase-space
structure of the nonlinear ion diffusion tensor in ITG turbu-
lence; in section 4, we show the ion diffusion tensor structure
in single-n toroidal Fourier modes; in section 5, the main res-
ults are summarized.

2. The fundamentals

The collisionless plasma can be described by the nonlinear
Vlasov equation

∂t f(Z, t)+ ∂Z · [Ż(Z, t)f ] = 0, (1)

where f is the distribution function, Z is the phase-space
coordinate, and t is the time. Based on the stationary–
homogeneous assumption of the plasma turbulence, the
nonlinear phase-space Fokker–Planck transport equation
in convection–diffusion form can be derived from
equation (1) [17],

∂tF(Z, t)+ ∂Z ·
[⟨

Ż
⟩
F(Z, t)−D · ∂ZF(Z, t)

]
= 0, (2)

where F(Z, t)≡ ⟨ f(Z, t)⟩= 1
T

´ t+ T
2

t− T
2
f(Z, t ′)dEt ′ is the

ensemble-averaged distribution function, and D(Z, t) is the
ion phase-space diffusion tensor

D(Z, t)=
1
2T

ˆ t+T
2

t− T
2

dEt
′Ż(Z, t ′)

ˆ t+T
2

t− T
2

dLt
′′Ż [Z(t ′′;Z, t ′), t ′′] ,

(3)

where T represents the ensemble-average time; Z(t ′ ′;Z, t ′)
denotes the phase-space coordinate at time t′′ of a particle,
which passes through Z at time t′; dEt ′ denotes the Eulerian
time integral, which means Z in the kernel should be under-
stood as a constant; and dLt ′ ′ denotes the Lagrangian time
integral, which means the integral path should be along the
particle orbit. It can be seen that the phase-space ion diffusion
tensor is determined by the particle orbit in turbulence. In the
electrostatic turbulence with low frequency, the particle orbit
can be described by the gyrocenter Hamiltonian equation

Ż(Z, t) = {Z,H0(Z)+ es ⟨δϕ⟩gyro (X,µ, t)}, (4)

where es is the particle charge, H0(Z) is the unperturbed
Hamiltonian, {,} is the Poisson bracket, and ⟨δϕ⟩gyro (X,µ, t)
is the gyro-averaged turbulence electrostatic potential
obtained from the simulation data. Here, Z= (X,v∥,µ) is
the five-dimensional gyrocenter coordinate, where X is the
gyrocenter position, v∥ is the parallel velocity, and µ is the
magnetic momentum. Note that equation (4) should be integ-
rated along the real orbit. The formula for the phase-space ion
diffusion tensor is illustrated in figure 1.

It should be pointed out that the phase-space ion diffu-
sion tensor D should be toroidally symmetric in a tokamak
configuration. In practical computation, D is the function of
(X,v∥,µ, t). To ensure the exact recovery of toroidal sym-
metry, the phase-space ion diffusion tensor D is toroidally
averaged, which is carried out in practice by taking the average
over 80 uniform toroidal grid points in our simulation.

The phase-space ion diffusion tensor includes multiple
components, in which the transport in ITG turbulence is
mainly determined by the properties of the Drr and DrK com-
ponents. Following equation (3), one can write theDrr andDrK

components immediately,

Drr(Z, t) =
1
2T

ˆ t+ T
2

t− T
2

dEt
′ṙ(Z, t ′)

×
ˆ t+ T

2

t− T
2

dLt
′ ′ṙ [Z(t ′ ′;Z, t ′), t ′ ′] , (5a)

DrK(Z, t) =
1
2T

ˆ t+ T
2

t− T
2

dEt
′ṙ(Z, t ′)

×
ˆ t+ T

2

t− T
2

dLt
′ ′K̇ [Z(t ′ ′;Z, t ′), t ′ ′] , (5b)

where K= 1
2miv2∥ +µB is the gyrocenter energy, mi is the ion

mass, and B is the magnetic field. Note that equations (5a)
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Figure 1. An illustration of the formula of the ion phase-space
diffusion tensor. Black curves denote different particle orbits. Black
points denote the points with the same phase-space position Z but
different time t′, while white points denote different phase-space
positions Z but the same time t± T

2 . Each orbit can be calculated by
integrating equation (4) from black points forward and backward to
white points using the simulation data, ⟨δϕ⟩gyro (X,µ, t). Here,
D(Z, t) is calculated by the gyrocenter velocity at the black
points Ż(Z, t ′) and the displacement of white points
∆Z(t;Z, t ′) =Z(t+ T

2 ;Z, t
′)−Z(t− T

2 ;Z, t
′).

and (5b) are definitions of Drr and DrK in nonlinear theory,
respectively.

In quasilinear theories, the ion diffusion tensor can be writ-
ten as [6, 10]

Dql = ∂t⟨G1G1⟩ε, (6)

with the generating vector given by

GX
1 =− b0

B∗
∥
×∇S1 −

B∗

B∗
∥

∂S1
∂v∥

, (7a)

G
v∥
1 =

B∗

B∗
∥
·∇S1, (7b)

the gauge function S1 given by(
d
dt

)
0

S1 = ⟨δϕ⟩gyro , (8)

where ( d
dt )0 denotes the derivative along the unperturbed

orbit; the gauge function S1 can be obtained by integrat-
ing the gyro-averaged turbulence electrostatic potential along
the unperturbed orbit, in which the potential is considered
as a linear eigenmode with constant frequency and growth
rate.

It can be seen by comparing equations (3) and (6) that both
the quasilinear and the nonlinear ion diffusion tensor reflect

the response of the particle orbit to the turbulence field. Note
thatGX

1 ,G
v∥
1 are the deviation of the gyrocenter from the unper-

turbed orbit. It should be pointed out that the essence of the
quasilinear theory is that the deviation (GX

1 , G
v∥
1 ) from the

unperturbed orbit can be found perturbatively by integrating
along the unperturbed orbit, since the perturbation is weak
enough. However, when the perturbation is strong (in the non-
linear stage), the real orbit cannot be found by using a perturb-
ation method; in this case, the deviation from the unperturbed
orbit must be found by integrating the Hamiltonian equation
along the real orbit.

Based on the nonlinear Fokker–Planck equation, we have
developed the NDTM code. The NDTM code reads the non-
linear discrete time-dependent turbulent field simulated by a
gyrokinetic turbulence code, evolves the nonlinear gyrocen-
ter orbit in the turbulent field, and computes the ion diffusion
tensor using equation (3). To validate the NDTM code, we
have computed the macroscopic transport fluxes in ITG turbu-
lence using the NDTM code; the results agree well with those
obtained using the NLT code [18].

3. Phase-space structure of nonlinear ion diffusion
tensor in ITG-driven turbulence

3.1. The numerical simulation of ITG turbulence

As in the previous work [18], the discrete ITG turbulent field
used for the NDTM is simulated by the gyrokinetic turbulence
code NLT. Based on the numerical Lie-transform method and
the finite differencemethod, the NLT code solves the nonlinear
gyrokinetic Vlasov equation [6, 19] and the gyrokinetic quasi-
neutrality equation, respectively. The field-aligned coordinate
is used [20] and, recently, the simulation domain includes the
magnetic axis in the NLT [21]. Compared with the numer-
ical results of other widely used global gyrokinetic codes, the
linear and nonlinear NLT simulations of ITG instability have
been verified [20, 22].

The Cyclone-base-case (Cbc) test parameter [23], with
R0 = 1.67m, a= 0.6m, B0 = 1.9Tesla, is used, where R0 and
a are the major radius and minor radius of plasmas, respect-
ively; B0 is the magnetic field at the magnetic axis. The equi-
librium temperature and density profile are set as

Ti = Te≡T(r) = T0exp

[
−κT

a
R0

∆Ttanh

(
(r− r0)/a

∆T

)]
,

Ni = Ne≡N(r) = N0exp

[
−κN

a
R0

∆Ntanh

(
(r− r0)/a

∆N

)]
,

where T i and Te denote the ion and the electron temperature,
respectively; N i and Ne denote the ion and the electron dens-
ity, respectively; T0 = 1.97keV, N0 = 1019 m−3, κT = 6.96,
κN = 2.23, ∆T =∆N = 0.3, r0 = 0.5a. The ion charge is set
as ei = e, where e is the elementary charge; the ion mass is set
as mi = 2mp, where mp is the proton mass. The safety factor
profile is set as
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Figure 2. Effective heat diffusivity simulated by NLT. The
quasilinear time t1 and nonlinear time t2 are labeled with black solid
lines. The quasilinear time range t1 ± T

2 and nonlinear time range
t2 ± T

2 , the time integral domain in equation (3), are labeled with
black dashed lines, where T is the interval for the time average.
Here, nall means contribution from all the toroidal Fourier modes,
and n20 and n22 mean contributions from the toroidal Fourier
modes n= 20 and n= 22, respectively.

q(r) = 0.86− 0.16
r
a
+ 2.45

( r
a

)2
,

where r is the radial coordinate. The Coulomb collisions and
external heating source are not considered in the simulation.
The phase-space coordinate grid number is set as Nr×Nθ ×
Nα ×Nv∥ ×Nµ = 189× 16× 141× 64× 16. A toroidal filter
is applied to eliminate the perturbation with wave numbers
higher than Nα/3, and the system is considered symmetric in
the toroidal direction with the period π; therefore, the toroidal
Fourier modes with the number n= 0,2, . . . ,40 are kept in the
simulation.

The effective heat diffusivity is shown in figure 2, which is
defined as

χNLT
eff =

Qr/ni
−∂rTi

=

´
1
B2 (−∇⟨δϕ⟩gyro ×B) ·∇rδfKd3v

−ni∂rTi
. (9)

The fluctuating electrostatic potential at t1 and t2, which will
be used to compute the phase-space ion diffusion tensor at the
corresponding times by using the NDTM code, is shown in
figure 3. The results at the quasilinear time t1 are mainly used
to compare with the quasilinear theories, while the results at
the nonlinear time t2 are used to analyze the characteristics of
the phase-space structure of the ion diffusion tensor in fully
developed turbulence, which cannot be predictedby the quasi-
linear theories.

3.2. Poloidal structure of the ion diffusion tensor

The components of the phase-space ion diffusion tensor Drr

and DrK are the functions of the phase-space coordinate
(r,θ,ζ,v∥,µ), and we first analyze the structure in the θ direc-
tion in this section. The radial calculation position is chosen
as r= 0.45a, around where the turbulence intensity is the
highest. The velocity is chosen as (v̄∥ = 1, v̄⊥ = 0.3) and (v̄∥ =
0.3, v̄⊥ = 1.4): the typical velocity of the passing ion and the

Figure 3. The mode structure of the fluctuating electrostatic
potential of ITG turbulence, in which the magnetic surface of
r= 0.45a is labeled with a black line. (a) Linear stage (t1);
(b) nonlinear stage (t2). R= R0 + rcosθ, where θ is the poloidal
coordinate.

trapped ion, respectively, where v̄∥ = v∥/vT, v̄⊥ = v⊥/vT,
where vT is the ion thermal velocity.

The poloidal structures ofDrr andDrK are shown in figure 4.
At the quasilinear time t1, Drr and DrK are approximately pro-
portional to (1+ cosθ), either for the passing ion or the trapped
ion. At the nonlinear time t2, the poloidal structures are similar.
The results suggest that for nonlinear fully developed ITG tur-
bulence, the ion diffusion, and therefore the transport, mainly
occurs in the low field side, which confirms the strong bal-
looning approximation widely used in transport research [7,
8]. Note that the specific relation between the ion diffusion
tensor and poloidal angle found here has not been pointed out
in previous work.

3.3. Velocity space of the ion diffusion tensor

In this section, we analyze the structure of Drr and DrK in
velocity space. The radial position and toroidal average are
the same as those in the previous section. The poloidal posi-
tion is chosen as θ= 0, where the diffusion is the strongest.
The Drr and DrK at 64× 16 velocity grid points are calcu-
lated. The velocity-space structures of Drr and DrK are shown
in figure 5. It can be seen that at quasilinear time t1, Drr and
DrK both present an elliptical band structurewith the axial ratio
close to

√
2; the ion diffusion tensor decreases gradually as
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Figure 4. The poloidal structure of Drr and DrK : (a1) time t1, v̄∥ = 1,v̄⊥ = 0.3; (a2) time t1, v̄∥ = 0.3, v̄⊥ = 1.4; (b1) time t2, v̄∥ = 1,
v̄⊥ = 0.3; (b2) time t2, v̄∥ = 0.3, v̄⊥ = 1.4. Here, Drr (blue line) and DrK (red line) are normalized by the maximum value in the poloidal
direction.

the velocity points deviate from the center of the band. More
importantly, the velocity-space structure at nonlinear time t2
still retains similar properties. Note that the effects of both
passing and trapped particles are considered in the simulation.
The trapped–passing boundary is labeled in figure 5, and it can
be seen that the contribution from trapped particles to diffusion
is greater than that from passing particles.

The ion diffusion tensor of ITG turbulence calculated by
quasilinear theory is given as [10]

Drr =
∑
nm

k2θ
B2

|δϕnm|2
γ

(ωr−ωd)2 + γ2
, (10a)

DrK =
∑
nm

−mi

v2∥ + v2⊥/2

R
k2θ
B2

|δϕnm|2
γ

(ωr−ωd)2 + γ2
,

(10b)

in which ωd =−kθ
mi(v

2
∥+v

2
⊥/2)

esRB
, kθ = m/r. Here, δϕnm is the

Fourier coefficient of the turbulent electrostatic potential,
where m and n are the poloidal and toroidal Fourier mode
numbers, respectively; ωr and γ are the mode frequency and
growth rate, respectively. Note that ωr and γ is also a func-
tion of the mode number, and there we drop the symbols n
and m for convenience. In equations (10a) and (10b), the k∥v∥
term (k∥ =

m−nq
qR ) is neglected. Note the fact that the contribu-

tion from trapped particles to the ion diffusion tensor is greater
than that from passing particles, especially at the quasilinear
time t1, and the ion drift orbit width is larger than the width of
the local mode (poloidal harmonics); when the particles cross
the rational surface, the sign of v∥ does not change, but that
of k∥ changes. Therefore, it is not hard to understand that the
k∥v∥ term will be canceled when computing the ion diffusion
tensor over an ensemble-average time (2∼3 bounce period),
which can also be verified from figure 5 in that the shift of the
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Figure 5. The velocity-space structure of Drr and DrK : (a1) Drr at time t1; (a2) DrK at time t1; (b1) Drr at time t2; (b2) DrK at time t2. Here,
DrK is normalized by Tref/a. The solid line is the quasilinear resonance line, the dashed line is the fitting center line, and the dotted lines are
the passing and trapped particles’ velocity-space boundary lines.

resonance structure of Drr and DrK in the v∥ direction is small
enough.

An ITG eigenmode has a definite toroidal mode number
due to the toroidicity-induced coupling effect; meanwhile,
poloidal harmonics with the same n but different m are local-
ized on their corresponding rational surface rm, with q(rm) =
m/n. Thus, equation (10a) can be written as [10]

Drr ≈
∑
n

k2θ
B2

|δϕn|2
γ

(ωr−ωd)2 + γ2

≈
∑
n

Dnδ(v̄
2
∥ + v̄2⊥/2−ωr/ω0n),

(11)

with Dn =
π n2q2

r2B2
|δϕn|2
|ω0n| , ω0n =− 2nqT0

erBR . Note that in
equation (11), we have used the approximation that the growth
rate is much less than the mode frequency. Here, ωr should be
understood as the linear eigen frequency.

By further considering the fact that the diffusion in the lin-
ear stage is mainly contributed by the mode with the greatest
growth rate, we can obtain the equation of the quasilinear res-
onance line

Drr = Dnδ(v̄
2
∥ + v̄2⊥/2−ωr/ω0n), (12a)

DrK =−mi

v2∥ + v2⊥/2

R
Dnδ(v̄

2
∥ + v̄2⊥/2−ωr/ω0n), (12b)

Here, n should be chosen as the mode number of the Fourier
mode with the greatest growth rate, which can be found
through linear ITG simulations under the same equilibrium

using the NLT code. In the linear ITG simulations, the fre-
quency and growth rate of each Fourier mode (local modes)
are calculated by

ωr(t)≡
d
dt
ℑ{ln[δϕnm(rm, t)]}, (13a)

γ(t)≡ d
dt
ℜ{ln[δϕnm(rm, t)]}. (13b)

It is found that the n= 20 eigenmode has the greatest
growth rate; therefore, the quasilinear resonance line in
equation (12a) or equation (12b) is calculated with the eigen-
mode frequency n= 20, as shown in figure 5. The center line
of the numerical results can be obtained by data fitting

Drr(v∥,v⊥) = D0 exp

(
−
(v∥ + a1)2 + 1

2v
2
⊥ − a2

λ2

)
, (14)

which is also shown in figure 5. It can be seen that the fitting
center line at the linear stage agrees well with the quasilinear
resonance line, and the fitting center line at the nonlinear stage
deviates slightly from the quasilinear resonance line.

Compared with the quasilinear resonance line, the numer-
ical results present a band structure with finite width that is
obviously larger than the interval of the velocity-space grid
(∆v∥ ≈ 0.1, ∆v⊥ ≈ 0.3) or the broadening width induced by
mode growth, which may refer to the famous nonlinear reson-
ance broadening [24]. However, the broadening width at t2 is
close to that at t1, even though the turbulence amplitude at t2 is
much larger than that at t1; this is different from the prediction
of the previous nonlinear theory [25]. The numerical results

6
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Figure 6. The Stokes–Einstein relation. The numerical results of DrK at time t1 and time t2 are shown in (a1) and (b1), respectively; DrK

obtained from the numerical results of Drr using the Stokes–Einstein relation at time t1 and time t2 is shown in (a2) and (b2), respectively.
The solid line is the quasilinear resonance line, and the dotted lines are the passing and trapped particles’ velocity-space boundary lines.

imply that the nonlinear resonance broadening in toroidal ITG
turbulence may not be mainly induced by the stochastic turbu-
lent scattering, but other orbit effects, such as the variation of
poloidal drift velocity.

3.4. The relation between Drr and DrK

It can be seen from the results in the previous subsections that
the Drr and DrK present similar phase-space structures at the
linear stage. It is further found that Drr and DrK at the linear
stage satisfy the famous Stokes–Einstein relation

DrK =−mi

v2∥ + v2⊥/2

R
Drr, (15)

as shown in figures 6(a1) and (a2). It has been proven that
equation (15) also works at the nonlinear stage [26]. It is
found that Drr and DrK at the nonlinear stage roughly sat-
isfy equation (15), as shown in figures 6(b1) and (b2). The
velocity-space passing–trapping boundary line is labeled in
figure 6. It can be seen from figure 6 that DrK is mainly con-
tributed by trapped particles and, in the trapping cone, the DrK

directly obtained by NDTM is close to that obtained using
equation (15), which indicates equation (15) is well satisfied;
meanwhile, out of the trapping cone, especially in the velo-
city space of v⊥ < vT outside of the resonance curve, a differ-
ence is found betweenDrK obtained by the above twomethods,
which indicates equation (15) is not well satisfied. The reas-
ons for the difference are as follows: (1) note that in obtain-
ing equation (15) [26], the cosθ ≈ 1 was used by invoking

the strong ballooning approximation; when the strong bal-
looning approximation is not well satisfied, cosθ ≈ 1 is still
a good approximation for trapped particles, but not a good

one for passing particles; (2) the coefficient, mi
v2∥+v

2
⊥/2

R , in
equation (15) has an amplification effect on the error of Drr.
The more outside of the resonance curve, the larger the coeffi-

cient,mi
v2∥+v

2
⊥/2

R , and the larger the difference between theDrK

directly obtained by the NDTM and the DrK obtained using
equation (15).

4. The resonance structures of the ion diffusion
tensor in single-n modes and the superposition
effect of multiple n modes

According to equation (11), when the ion magnetic drift fre-
quency and the frequency of a linear ITG eigenmode satisfy
the relation

ωd ≈ ωr, (16)

the ion will resonate with the single-n modes and thus induce
diffusion; the total ion diffusion tensor is the linear superposi-
tion of ion diffusion tensors contributed by all single-nmodes.
However, when the turbulence is saturated, the frequencies of
single-n ITG modes are changed under the influence of non-
linear effects; it is not clear how the ion would resonate with
these nonlinear single-n modes and whether the linear super-
position property still remains. In this section, we will ana-
lyze the structure of ion diffusion tensors in single-n modes
and the superposition of multiple modes to further understand
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Figure 7. The mode structures of fluctuating electrostatic potentials of single-n toroidal modes, in which the magnetic surface of r= 0.45a is
labeled with a black line. (a1) Mode n= 20 at time t1; (a2) mode n= 20 at time t2; (b1) mode n= 22 at time t1; (b2) mode n= 22 at time t2.

the previous numerical results. The toroidal modes n= 20 and
n= 22 are chosen for analysis; the two modes make the most
important contribution to the turbulent transport at both time
t1 and time t2, as shown in figure 2. The mode structures of
n= 20 and n= 22 are shown in figure 7.

For the quasilinear time t1, we firstly compute the ion dif-
fusion tensor in the superposition field of the toroidal modes
n= 20 and n= 22 using the NDTM code, as shown in figure 8.
The quasilinear resonance line calculated by equation (16),
with ωr taken as the linear eigenmode frequency, is labeled
in figure 8. Note that the quasilinear resonance lines plotted
in figures 5 and 6 were calculated in the same way. It can be
seen by comparing figure 8 with figure 5(a1) that both ion
diffusion tensors present elliptical band structures with the
axial ratio close to

√
2, and both band structures are close to

the quasilinear resonance line; this indicates that the velocity-
space structure of the ion diffusion tensor in the superposition
field of toroidal modes n= 20 and n= 22 presents a resonant

structure very similar to that found in the total turbulence field.
Moreover, the ion diffusion tensor in the superposition field of
toroidal modes n= 20 and n= 22 contributes more than 80%
of the ion diffusion tensor in the total turbulence field, which
indicates that the ion diffusion tensor in the total turbulence
field at t1 is mainly contributed by the superposition field of
toroidal modes n= 20 and n= 22.

Then, we compute the ion diffusion tensors in the single
toroidal modes n= 20 and n= 22, respectively, and sum these
two ion diffusion tensors together, as shown in figures 9(a1),
(a2) and (b). The quasilinear resonance lines calculated by
equation (16), with ωr taken as the linear eigenmode fre-
quency, are labeled in all the panels of figure 9. It can be seen
by comparing figures 9(a1) and (a2) with figure 8, respect-
ively, that both ion diffusion tensors present similar band
structures, and both band structures are close to the quasilinear
resonance line; this indicates that the velocity-space struc-
ture of the ion diffusion tensor in both single toroidal modes
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Figure 8. The Drr in the superposition field of toroidal modes
n= 20 and n= 22 (t1). The solid line is the quasilinear resonance
line calculated by equation (16), with ωr taken as the linear
eigenmode frequency, and the dotted lines are the passing and
trapped particles’ velocity-space boundary lines.

n= 20 and n= 22 present a resonant structure very similar to
that found in the superposition field of toroidal modes n= 20
and n= 22, which can be well understood by equation (16).
Moreover, it can be found that the sum of ion diffusion tensors
in toroidal modes n= 20 and n= 22 is close to the ion diffu-
sion tensor in the superposition field of toroidal modes n= 20
and n= 22 by comparing figure 9(b) with figure 8. Therefore,
the phase-space structure of the ion diffusion tensor in the total
turbulence field at the quasilinear time t1 can be understood as
the result of resonance between the ion and single-n toroidal
modes through the linear resonance relation equation (16).

For the nonlinear time t2, it is found that the n= 0 mode
(mainly zonal flows), which can be neglected at the lin-
ear stage, grows significantly after saturation (as shown in
figure 10). We firstly compute the ion diffusion tensor in the
superposition field of toroidal modes n= 20+ 22 and n=
0+ 20+ 22 using the NDTM code, respectively, as shown
in figures 11(a) and (b). The quasilinear resonance lines cal-
culated by equation (16), with ωr taken as the linear eigen-
mode frequency, are labeled in all the panels of figure 11.
Note that, for time t2, the quasilinear resonance line calcu-
lated by equation (16), with ωr taken as the linear eigen-
mode frequency, is only a reference line to make a comparison
between the ion diffusion tensors. It can be seen by comparing
figure 11(a) with figure 11(b) that both the velocity-space
structure and the value of Drr are different between the super-
position field of toroidal modes n= 20+ 22 and n= 0+ 20+
22. For the ion diffusion tensor in the superposition field
of toroidal modes n= 0+ 20+ 22, it can be seen by com-
paring figure 11(b) with figure 5(b1) that both ion diffusion
tensors present similar band structures, and both band struc-
tures are close to the quasilinear resonance line, which indic-
ates the velocity-space structure of the ion diffusion tensor
in the superposition field of toroidal modes n= 0+ 20+ 22
presents a resonant structure very similar to that found in the
total turbulence field. Moreover, the ion diffusion tensor in the
superposition field of toroidal modes n= 0+ 20+ 22 contrib-
utes 60% of that in the total turbulence field, which indicates
that zonal flows and several toroidal ITG modes with large

Figure 9. The Drr in different toroidal modes (t1). (a1) Mode
n= 20; (a2) mode n= 22; (b) the sum of Drr in toroidal modes
n= 20 and n= 22. The solid line is the quasilinear resonance line
calculated by equation (16), with ωr taken as the linear eigenmode
frequency, and the dotted lines are the passing and trapped particles’
velocity-space boundary lines.

amplitude contribute quite importantly to the anomalous trans-
port at the nonlinear stage.

Then, we compute the ion diffusion tensors in the super-
position field of toroidal modes n= 0+ 20 and n= 0+ 22,
respectively, and sum these two ion diffusion tensors together,
as shown in figures 12(a1), (a2) and (b). The quasilinear res-
onance lines calculated by equation (16), with ωr taken as
the linear eigenmode frequency, are labeled in all the panels
of figure 12. It can be seen by comparing figure 12(b) with
figure 11(b) that both ion diffusion tensors present similar
band structures, both band structures are close to the quasi-
linear resonance line, and the values of both ion diffusion

9
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Figure 10. The radial structure of the fluctuating electrostatic
potential of n= 0 mode. The solid line in blue represents the
quasilinear time t1, and the dashed line in red represents the
nonlinear time t2.

Figure 11. The Drr in the superposition field of toroidal modes (t2).
(a) Mode n= 20+ 22, (b) mode n= 0+ 20+ 22. The solid line is
the quasilinear resonance line calculated by equation (16), with ωr

taken as the linear eigenmode frequency, and the dotted lines are the
passing and trapped particles’ velocity-space boundary lines.

tensors are similar; this indicates that the sum of the ion dif-
fusion tensors in the superposition field of toroidal modes
n= 0+ 20 and n= 0+ 22 is close to the ion diffusion tensor
in the superposition field of toroidal modes n= 0+ 20+ 22.
Therefore, the ion diffusion tensor in the total turbulence field

Figure 12. The Drr in the superposition field of toroidal modes (t2).
(a1) Mode n= 0+ 20; (a2) mode n= 0+ 22; (b) the sum of Drr in
the superposition field of toroidal modes n= 0+ 20 and
n= 0+ 22. The dotted lines are the passing and trapped particles’
velocity-space boundary lines. The solid lines in (a1), (a2), and
(b) are the quasilinear resonance lines calculated by equation (16),
with ωr taken as the linear eigenmode frequency. The text ‘1’ and
‘2’ in (a1) and (a2) represents the trapped particles selected.

at the nonlinear time t2 is mainly contributed by the two most
unstable toroidal modes n= 20 and n= 22 under the influence
of zonal flows.

Note that the quasilinear resonance line shown in
figures 12(a1) and (a2) is calculated with ωr taken as the
linear eigenmode mode frequency; it is found from fre-
quency analysis that around time t2, the single-n eigenmodes
are radially restructured into multiple daughter ballooning
modes (DBMs) with time-variant frequency [27]; the DBM
frequencies at time t2 are shown in table 1. It is found that the
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Table 1. The calculation results of ωd and ωE at time t2.

Field ωr (/105 Hz) Particle ωd (/10
5 Hz) ωd+ωE (/105 Hz)

n= 0+ 20a 2.78 1 1.22 2.70
2 1.22 2.70

n= 0+ 22a 2.80 1 1.34 2.97
2 1.34 2.97

a n= 0+ 20 and n= 0+ 22 represent the fact that the particles are in the superposition field
of toroidal modes n= 0+ 20 and n= 0+ 22, respectively. Note that the linear eigenmode
frequency is ωr/105 Hz = 1.21(1.33) for n= 20(22).

nonlinear resonance structures can be understood as the result
of resonance between ions and DBMs through the nonlinear
resonance relation [27]

ωd+ωE ≈ ωr, (17)

where ωr is the frequency of the DBM at the nonlinear stage;

ωE = kθ
Ez
B
, (18)

where Ez =−∂rϕn=0,m=0 is the zonal radial electric field
(REF). The orbit average operator is given by

Ez =
1
τp

˛
dt ′Ez[r(t

′)], (19)

where Ez is integrated over a poloidal period along the particle
orbit, and τ p is the poloidal (bounce/transit) period (for
trapped/passing particles). Compared with the linear reson-
ance relation, the orbit-averaged poloidal acceleration induced
by the zonal REF is considered in the nonlinear resonance
relation.

Due to the fact that the contribution from trapped particles
to diffusion is more important, two trapped particles are selec-
ted, as shown in figures 12(a1) and (a2), to compute ωd and ωE
at time t2; the results are shown in table 1. It is found that ωd
does not agree withωr, while the sum ofωd andωE agrees well
with ωr for both two particles in the two cases with n= 0+ 20
and n= 0+ 22; this verifies the nonlinear resonance relation
and indicates the importance of zonal flow at the nonlinear
stage.

The nonlinear resonance structure shown in figures 12(a1)
and (a2) is similar to the quasilinear resonance structure shown
in figure 9; this can be understood as follows. The DBMs non-
linearly stem from the linear eigenmode [27], and the modes
are resonantly excited; since the energy of the resonant particle
does not change much from the linear to the nonlinear stage,
the phase-space resonance structure does not change much
from the linear to the nonlinear stage. However, from the lin-
ear to the nonlinear stage, the resonant particles are poloidally
accelerated by the nonlinearly excited zonal REF; therefore,
the mode frequency is nonlinearly shifted up. This explains
the nonlinear frequency chirping of the mode [27].

5. Summary and discussion

In conclusion, in a typical ITG turbulence simulated by the
NLT code under Cbc test parameters, the ion phase-space dif-
fusion tensor is computed using the numerical diagnosis code
NDTM.

The numerical results show that at both the linear stage
and the nonlinear fully saturated stage of the turbulence, the
ion diffusion tensor presents similar structural properties: in
the poloidal direction, the ion diffusion tensor is approxim-
ately proportional to (1+ cosθ); in velocity space, the diffu-
sion tensor presents a magnetic drift resonance structure with
finite broadening; the Drr and DrK components of the ion dif-
fusion tensor satisfy the Stokes–Einstein relation.

To further understand the numerical results, the diffusion
tensor in single-n toroidal modes is studied. It is found that at
both the linear and the nonlinear stages, the total ion diffusion
tensor is approximately the sum of the diffusion tensor con-
tributed by single-n modes. At the linear stage, the diffusion
in single-n modes is induced by the resonance between ions
and ITG eigenmodes; while at the nonlinear stage, the diffu-
sion in single-n modes is induced by the resonance between
ions and DBMs under the poloidal acceleration of the zonal
REF. Although the resonance mechanisms are different, the
induced resonance structures are similar, which leads to the
similarity between the phase-space structures of ion diffusion
tensors at the linear and nonlinear stages of ITG turbulence.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant Nos. 12075240 and
11875254, and the National MCF Energy R&D Program of
China No. 2019YFE03060000.

ORCID iDs

Shiqiao Sun https://orcid.org/0000-0002-5900-7034
Yuesong Li https://orcid.org/0000-0002-7102-3678
Zihao Wang https://orcid.org/0000-0001-5545-4411
Shaojie Wang https://orcid.org/0000-0002-2786-519X

References

[1] Balescu R. 2005 Aspects of Anomalous Transport in Plasmas
(IOP Publishing)

11



Nucl. Fusion 63 (2023) 086030 S. Sun et al

[2] Braginskii S.I. 1965 Transport Processes in a Plasma Reviews
of Plasma Physics vol 1 ed M.A. Leontovich (Consultants
Bureau) p 205

[3] Galeev A.A. and Sagdeev R.Z. 1968 Sov. Phys.-JETP 26 233
[4] Gary S.P. 1993 Theory of Space Plasma Microinstabilities

(Cambridge Atmospheric and Space Science Series)
(Cambridge University Press)

[5] Escande D.F. and Sattin F. 2007 Phys. Rev. Lett. 99 185005
[6] Wang S. 2012 Phys. Plasmas 19 062504
[7] Peeters A.G., Angioni C. and Strintzi D. 2007 Phys. Rev. Lett.

98 265003
[8] Hahm T.S., Diamond P.H., Gurcan O.D. and Rewoldt G. 2008

Phys. Plasmas 15 055902
[9] Eriksson L.G., Righi E. and Zastrow K.D. 1997 Plasma Phys.

Control. Fusion 39 27
[10] Zhang D., Xu Y. and Wang S. 2017 Phys. Plasmas

24 030701
[11] Levinton F.M. et al 1995 Phys. Rev. Lett. 75 4417
[12] Fujita T., Ide S., Shirai H., Kikuchi M., Naito O., Koide Y.,

Takeji S., Kubo H. and Ishida S. 1997 Phys. Rev. Lett.
78 4529

[13] Bernstein I.B. and Engelmann F. 1966 Phys. Fluids 9 937–52

[14] Horton W., Choi D.I. and Tang W.M. 1981 Phys. Fluids
24 1077

[15] Artaud J.F. et al 2010 Nucl. Fusion 50 043001
[16] Diamond P.H., Itoh S.I. and Itoh K. 2010 Physical Kinetics of

Turbulent Plasmas (Cambridge Atmospheric and Space
Science Series) (Cambridge University Press)

[17] Wang S. 2016 Phys. Plasmas 23 022303
[18] Sun S., Zhu S., Dai Z. and Wang S. 2021 Phys. Plasmas

28 052301
[19] Wang S. 2013 Phys. Plasmas 20 082312
[20] Xu Y., Ye L., Dai Z., Xiao X. and Wang S. 2017 Phys.

Plasmas 24 082515
[21] Dai Z., Xu Y., Ye L., Xiao X. and Wang S. 2019 Comput.

Phys. Commun. 242 72
[22] Ye L., Xu Y., Xiao X., Dai Z. and Wang S. 2016 J. Comput.

Phys. 316 180
[23] Dimits A.M. et al 2000 Phys. Plasmas 7 969
[24] Dupree T.H. 1966 Phys. Fluids 9 1773
[25] Dupree T.H. 1967 Phys. Fluids 10 1049
[26] Wang S. 2016 Phys. Plasmas 23 072509
[27] Sun S., Wang Z., Wang S. and Dai Z. 2022 Nucl. Fusion

62 126005

12


