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Abstract
We have investigated the waveform distortion of energetic particle driven off-axis fishbone
mode (OFM) in tokamak plasmas with kinetic magnetohydrodynamic (MHD) hybrid
simulations. We extended our previous simulations (Li et al 2022 Nucl. Fusion 62 026013) by
considering higher-n harmonics in the MHD fluid, where n is toroidal mode number. The
waveform distortion is successfully reproduced in the simulation for both magnetic fluctuations
and temperature fluctuations. It is clarified that the waveform distortion arises from the
superposition of the n= 2 harmonics on the fundamental n= 1 harmonics of OFM, where the
n= 2 harmonics are generated by the MHD nonlinearity from the n= 1 OFM. Two types of
waveform distortion can occur depending on the phase relationship between the n= 1 and n= 2
harmonics and the relative amplitude of the n= 2 harmonics to the n= 1 harmonics. Lissajous
curve analyses indicate that the wave couplings between the n= 1 and n= 2 harmonics with
phase-lock ∼π and ∼0 lead to ‘rising distortion’ and ‘falling distortion’, respectively. The two
types of waveform distortion can be attributed to the strong shearing profile of radial MHD
velocity with n= 2 around the q= 2 magnetic flux surface. The dependence of waveform
distortion on viscosity is investigated. It is found that the viscosity which is needed to reproduce
the waveform distortion is larger than that in the experiment.

Keywords: waveform distortion, off-axis fishbone mode, wave-particle interaction,
MHD nonlinearity, energetic particle mode, nonlinear interaction, fishbone
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1. Introduction

Off-axis fishbone mode (OFM) is an energetic-particle (EP)
driven magnetohydrodynamic (MHD) instability, also called
EP driven wall mode. The OFMs have been observed in toka-
mak plasmas such as JT-60U [1], DIII-D [2, 3], JET [4] and
NSTX [5] plasmas with the central safety factor (q) well
above unity. Trapped EPs destabilize OFMs, and the fre-
quency chirps down after the saturation of the mode amplitude
growth. These properties are similar to those of classical q= 1
fishbones [6]. OFMs, on the other hand, are located close to the
q= 2 magnetic flux surface, whereas classical fishbones are
inside the q= 1 surface. OFMs are essential for fusion research
because they redistribute EPs, leading to the destabilization of
resistive wall modes (RWMs) [7] and edge localized modes
(ELMs) [8].

The mechanisms underlying interactions between OFM
and other MHDmodes with marginal stability have been stud-
ied theoretically and experimentally. During OFM bursts in
DIII-D, the substantial reduction of both the density of ener-
getic particles [9] and plasma rotation frequency [10] are sup-
posed to contribute to the destabilization of the RWM. Since
the instantaneous change in neutron emission and the toroidal
velocity on the q= 2 surface was confirmed, some researchers
proposed that nonambipolar radial electric field accumulation
could be a possible mechanism for rotation decreasing [11,
12]. A theoretical work revealed that a mode conversion could
occur between the RWM and precessional OFM [13]. It was
also reported that the OFM interacts with ELMs on JT-60U
[14, 15], resulting in the ELMs being triggered by the OFM
in high-β operation. It was inferred that the additional pres-
sure caused by the EP transport by the OFM changes the edge
stability and triggers the ELM.

In a previous work, we conducted a self-consistent simu-
lation study of OFM [16]. We showed the spatial structure of
OFM with a strong shearing shape and the resonance condi-
tion with deeply trapped energetic particles. In the nonlinear
stage, we found that the resonance frequency of the particles
that transfer energy to the OFM chirps down with the split of
resonant regions in phase space, which may result in the chirp-
ing down of the OFM frequency. At the same time, the distri-
bution function is flattened along the E ′ = const. line, lead-
ing to the saturation of the instability. E′ is a combination of
energy and toroidal canonical momentum, and conserved dur-
ing the wave-particle interaction neglecting the time variation
of the mode amplitude and frequency [17–19].

The most exciting feature of OFM in experiments is
the nonlinear mode distortion at the maximum mode amp-
litude. The amplitude of OFM increases exponentially in
a nearly sinusoidal waveform. At the peak amplitude, the
waveform deviates significantly from a sine wave [12, 14].
Measurements with the DIII-D and JT-60U toroidal arrays
show that the increase in mode distortion occurred concur-
rently with the increase in higher-n components and energetic
particle loss, where n is toroidal mode number. One possible
mode distortion in high-beta plasmas was reported by Park

[20] with n= 1 distortion in TFTR. Once the high-beta plasma
reaches the ideal mode limit, a low n mode is destabilized ini-
tially, leading to nonlinear evolution of the plasma in 3D equi-
librium. The resulting equilibrium exhibits a steep pressure
gradient in the bad curvature region. This localized pressure
gradient can then induce a new high-n mode, causing a local
bulge in pressure. In contrast to the OFM case, where the mode
distortion is spread throughout the mode structure, the distor-
tion in the TFTR case is localized on the steep pressure gradi-
ent. Therefore, it is unlikely that the ballooning effect contrib-
utes to the OFM distortion.

In this paper, we will present a new mechanism where
MHD nonlinearity causes the waveform distortion of OFM.
We employ hybrid simulations of MHD fluid interacting with
energetic particles. The simulations reproduce the waveform
distortion of OFM for the first time, which is primarily caused
by MHD nonlinearity generating n= 2 harmonics. Thus, the
amplitude and the spatial structure of n= 1 OFM play essen-
tial roles in the formation of distortion. In this paper, we will
show that there are two types of waveform distortion, rising
distortion and falling distortion, depending on the phase rela-
tionship between the n= 1 OFM and n= 2 harmonics as well
as the relative amplitude of the n= 2 harmonics to the n= 1
OFM. In addition, the Lissajous figures show the phase-lock
between n= 1 OFM and n= 2 harmonics for these two types
of waveform distortion. Through the analysis of nonlinear
components in MHD equations, the difference between the
two types of waveform distortion is attributed to the shear-
ing structure of the n= 2 component of radial MHD velocity
vrad,n=2. This paper is organized into the following sections.
In section 2, the simulation model is described. In section 3,
the simulation results are presented, focusing on the nonlin-
ear behaviors of OFM. Section 4 is devoted to discussion and
summary.

2. Simulation model

The same code for kinetic-MHD hybrid simulations, MEGA
[21–24], was used as the previous work [16]. We use the
whole tokamak plasma domain with the toroidal angle range
0⩽ ϕ < 2π. Then, the simulation region is Rc− a⩽ R⩽
Rc+ a, 0⩽ ϕ < 2π and−1.7a⩽ Z⩽ 1.7a, where Rc = 1.7 m
and a= 0.6 m are the major radius and the minor radius,
respectively. The number of grid points is 128× 64× 128 for
cylindrical coordinates (R,ϕ,Z) with approximately 8× 106

particles. When analyzing the simulation results, magnetic
flux coordinates (ψ,θ,ϕ) are used, where ψ is flux surface
label, ϕ is toroidal angle, and θ is poloidal angle. The val-
ues of viscosity and diffusivity are set to be ν = 10−6vARc
and νn = χ = 0, and the resistivity is η = 10−7µ0vARc in the
simulations unless otherwise specified, where vA is the Alfvén
velocity at the plasma center.

An anisotropic slowing-down distribution is used here to
be consistent with the distribution of energetic particles in the
experiments. The distribution function is given by
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Figure 1. Equilibrium profiles of bulk plasma beta, energetic-particle beta and safety factor.

Figure 2. The signals of magnetic perturbation with limited toroidal number (a) n⩽ 1, (b) n⩽ 2, (c) n⩽ 3 and (d) n⩽ 7, which is
measured at the same location as figure 4(i).
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where ψ̄ is normalized poloidal magnetic flux with ψ̄ = 0
at the plasma center and ψ̄ = 1 at the plasma edge, and
∆ψ̄ = 0.3. Pitch angle variable is represented by Λ = µB0/E,
where µ, B0, and E are magnetic moment, the magnetic field
strength at the plasma center, kinetic energy of particles with
Λ0 = 1.1 and ∆Λ= 0.1 being the distribution peak location
and width, respectively. The background plasma is deuterium
with the number density of 3× 1019 m−3. The magnetic field
strength at the plasma center is B0 = 1.7 T. The injection velo-
city of energetic particles is vinj = 0.58vA, corresponding to
80 keV deuterium neutral beam with∆v= 0.1vA. The critical
velocity is vcrit = 0.62vA. The profiles of EP beta, bulk plasma
beta and safety factor are shown in figure 1. The bulk plasma
and EP beta profiles are defined by

β(ψ̄) = β0 exp(−ψ̄/∆ψ̄) (2)

with β0 the value at the center. Regarding the safety factor,
the on-axis value and the edge value are qr=0 = 1.6 and
qr=a = 5.0.

3. Simulation results

3.1. The basic mechanism of waveform distortion

Off-axis fishbone bursts generally last 2–3 ms and occur
approximately every 20 ms in the experiments [1, 3, 12, 25].
A typical Mirnov coil signal has a nearly sinusoidal waveform
in the initial phase, and the amplitude grows roughly exponen-
tially. Around the mode saturation, the waveform departs sig-
nificantly from a sinusoidal wave. Simultaneously, the toroidal
array detects the emergence of higher-n harmonics. This novel
nonlinear property was reproduced for the first time in our
simulations. We extend the simulation retaining high-nMHD
harmonics with n> 1 while they were filtered out in our pre-
vious work. The waveform distortion for both magnetic and
temperature fluctuations is successfully observed in our simu-
lations. Additionally, some cases involving higher-n harmon-
ics up to n= 7 have also been studied, as shown in figure 2, and
it is clear that the n= 2 component is the primary contributor
to the occurrence of waveform distortion.

The time evolutions of the MHD perturbation energy (W)
with n= 1,2 and the frequency of radial MHD velocity with
m/n= 2/1, 4/2 are shown in figure 3. Both the n= 1 and
n= 2 harmonics have exponential growth and the saturation
of the MHD perturbation energy at t= 1.68 ms. The growth
rates of radial MHD velocity are 0.0046 ωA and 0.0092 ωA
for n= 1 and n= 2 harmonics, where ωA is the Alfvén fre-
quency at the plasma center, while the mode frequencies are
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Figure 3. Time evolution of MHD perturbation energy (black) and mode frequency of radial MHD velocity (red) for n= 1 (solid line) and
n= 2 (dashed lines) harmonics. Times 1.23 ms, 2.2 ms and 2.46 ms are indicated by dotted dashed lines.

Figure 4. Comparison of the time derivative of temperature perturbation between (a) n= 1, (b) n= 2 and (c) total components. (i) Time
evolution of δṪe signal measured on q= 2 surface (The time interval has been appropriately selected to clearly display the waveform
distortion.). (ii) Variation of δṪe signal in ϕ direction at t= 2.46 ms. Poloidal structures of δṪe for (iii) linear and (iv) nonlinear phases. The
q= 2 magnetic flux surfaces and Ψ =0.25, 0.75, 1 flux surface are plotted with solid and dashed lines, respectively. Another contour lines
(solid) present in panels ((a)–(iv)) and ((c)–(iv)) show how much the n= 2 harmonics affect the plasma by indicating regions with a
particular value of δṪe,n=1 =±0.4 keVms−1.
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Figure 5. Radial profile evolution of temperature perturbation time-derivative δṪe for (a) n= 1, (b) n= 2 and (c) total, where the
oscillations at r/a= 0.35 and r/a= 0.64 are attached. The radial profile is the real component of temperature perturbation measured at
ϕ= 0 on the outboard midplane. (d), (e) Schematic figures illustrate how the two types of waveform distortion are generated by the phase
difference between two sinusoidal waves.

ω2/1 = 11.2 kHz and ω4/2 = 22.1 kHz before the saturation
and they both chirp down approximately 40% along with the
mode damping. The n= 1 OFM is driven by deeply trapped
particles, with the mode frequency being equal to the preces-
sional drift frequency of energetic particles. The growth rate
and mode frequency of the n= 2 harmonics are twice those of
the n= 1 harmonics.We can conclude that the n= 1 harmonics
generate the n= 2 harmonics through the MHD nonlinearity.
Next, we will explain how the n= 2 harmonics contribute to
the formation of waveform distortion.

In the simulation, δṪe = dδTe/dt is investigated first to
compare with the δTe−ECE signal in the experiment. Figure 4
shows the wave oscillation measured on the q= 2 magnetic
surface in the outer midplane and poloidal structures for n= 1,
n= 2 and total component. In figures 4(i), the oscillations of
n= 1,2 harmonics maintain the sinusoidal structure, while
the total component exhibits experiment-like distortion. This
clearly indicates that the superposition of the n= 2 harmonics
on the n= 1 harmonics of OFM causes the waveform distor-
tion. The observed OFM in experiments rotates evenly in the
toroidal direction, which is consistent with our simulation res-
ults shown in figure 4(i). In figures 4(iii) and (iv), snapshots
of the spatial structure of δṪe on the poloidal plane with ϕ= 0
are given for both the linear and the nonlinear phases. Before
the saturation at t= 1.23 ms, the n= 1 harmonics are com-
posed ofm= 2 structure around the q= 2 magnetic surface, as
indicated by the bold solid line. For the n= 2 harmonics, they
have m= 4 outside the q= 2 surface, while m= 3 is dominant
inside the q= 2 surface. The generation of them/n= 3/2 har-
monics can be attributed to the nonlinear interaction between

the 1/1 and 2/1 harmonics. Changing the bulk plasma profile
from uniform [16] to Gaussian causes an increase in the amp-
litudes of the 1/1 and 2/1 harmonics, which in turn leads to
a strong nonlinear generation of 3/2 harmonics. In particular,
we notice the shearing characteristic of the n= 1,2 harmon-
ics on the poloidal plane. The nonperturbative kinetic effect of
energetic particles is one probable mechanism for the shear-
ing structure of the OFM [16]. After the saturation, the n= 2
mode grows to a comparable amplitude to the n= 1 mode,
resulting in a stronger shearing profile of the total compon-
ent as illustrated in figures 4((c)–(iv)), which can also be seen
in figures 10((b)–(iii)) and ((d)–(iii)). Based on these analyses,
we can confirm that the n= 2 harmonics substantially contrib-
ute to the waveform distortion.

The coupling effects between the n= 1 and n= 2 harmon-
ics are examined in depth here to understand the mechan-
ism of waveform distortion better. The temporal evolution of
radial profiles of δṪe for n= 1, n= 2 and total components
are presented in figures 5(a)–(c), respectively. Furthermore,
the waveforms of δṪe measured at r/a= 0.35 and 0.64 are
plotted on the figures. In figure 5(a), the oscillation is located
at 0.1⩽ r/a⩽ 0.67 after the saturation at t= 1.68 ms. The
n= 2 mode generated by MHD nonlinearity oscillates primar-
ily in the range of 0.17⩽ r/a⩽ 0.4 and 0.4⩽ r/a⩽ 0.65 as
shown in figure 5(b), while the shearing structure is located
at r/a∼ 0.4. We should emphasize that these two regions
have a phase difference of nearly π caused by mode shear-
ing. The phase difference is a critical factor in waveform dis-
tortion formation, as we will discuss later. It is found that the
waveforms at r/a= 0.35 and 0.64 for n= 1 and n= 2 remain
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Figure 6. Lissajous curves between δṪe/δṪ env
e values associated with the n= 1 and n= 2 modes. Panels (a) and (c) represent the time

evolution of modes at r/a= 0.35 and r/a= 0.64, while (b) and (d) correspond to the Lissajous curves in the growth phase (blue) and the
decay phase (red), respectively. The direction of each curve is indicated by an arrow in a corresponding color.

sinusoidal even in the late stage of simulation. Nonetheless,
as illustrated in figure 5(c), the total δṪe component has strong
coupling effects, with n= 2 harmonics significantly impacting
the radial structure of OFM. Consequently, we have observed
two types of waveform distortion located around r/a= 0.35
and 0.64. Based on the location of distortion in the waveform,
we categorize these into ‘falling distortion’ and ‘rising distor-
tion’ as shown in figures 5(d) and (e). In particular, the rising
distortion is formed by two sinusoidal waves with a phase dif-
ference of π and is found at r/a≃ 0.6, which is identical to
the experimentally observed waveform distortion [3, 12, 14].

The type of waveform distortion depends on the phase rela-
tionship. The Lissajous figure can help us understand the phase
relationship between the n= 1 and n= 2 harmonics since the
specific curves indicate the locked phase between two waves
[26, 27]. Figures 6(a) and (c) show δṪe and the envelope
of δṪenv

e for n= 1 and n= 2 harmonics at r/a= 0.35 and

0.60, and the signals are normalized to δṪe/δṪenv
e to extract

the phase as shown in figures 6(b) and (d). The phase rela-
tionship between the n= 1 and n= 2 harmonics is locked at
∼−10 (∼ 170) deg at r/a= 0.35 (r/a= 0.64). Theoretical
and numerical studies have shown that phase-locking could
result in meso- or macro-scale secular EP transport [28].
Notably, the locking phase has a good agreement with the dia-
gram shown in figures 5(d) and (e).

3.2. Nonlinear components analysis

The nonlinear terms in the MHD equations generate fluctu-
ations with toroidal mode number of n= 2 in the evolution of
temperature fluctuations of OFM. It would be interesting to
learn which factor is critical for the development of n= 2 har-
monics, andmay result in the two types of waveform distortion
at different locations. The temperature evolution is given by

6
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Figure 7. The variation of δṪe,n=2 and the relevant terms in the temperature evolution equation in ϕ direction at (a) r/a= 0.35 and
(b) r/a= 0.64.

∂T
∂t

=−v ·∇T− (γ− 1)T∇· v

+(γ− 1)

[
νω2 +

4
3
ν(∇· v)2 + η j · ( j− jeq)/ρ

]
+χ∆(T−Teq). (3)

The dissipation terms can be neglected in the linear phase,
when we analyze the sideband harmonics [23]. Thus, the
δṪe,n=2 primarily consists of −vn=2 ·∇Teq, −vn=1 ·∇Tn=1

and −(γ− 1)Teq∇· vn=2 as shown in figure 7. It is found that
the −vn=2 ·∇Teq term is the dominant component, in which
the spatial profile of vn=2 is crucial to the evolution of the n= 2
harmonics of temperature fluctuations. Because the equilib-
rium temperature profile is uniform in the ϕ and θ directions,
only vrad,n=2 has a significant effect on the spatial profile of
δṪe. We see in figure 8 that the primary component of vrad,n=2

ism= 4 and the phase which is the ratio of the sine component
to the cosine component changes abruptly at r/a∼ 0.4. The
phase of vrad,n=2 distinguishes falling and rising distortion.

3.3. Effects of weak dissipation

Since the applied MHD model lacks kinetic damping, we
employ artificial dissipation coefficients to control the damp-
ing. The viscosity and resistivity coefficients employed in this
work are ν = 10−6vARc and η = 10−7µ0vARc, as we men-
tioned in section 2. Typical dissipation coefficients in real
fusion plasmas are lower by orders of magnitude than simu-
lations. Thus, it is important to examine the effects of weak
dissipation. We performed several runs for weak viscosity and
resistivity, and found that the mode structure and the satura-
tion level are insensitive to the resistivity coefficient, while the
viscosity coefficient plays an important role. The saturation

Figure 8. Spatial profile of each poloidal harmonic of the radial
velocity with n= 2 during the linearly growing phase of the OFM at
t= 0.98 ms. Solid (dashed) lines show cos(mθ) [sin(mθ)] harmonics.

level of mode energy of n= 1 harmonics decreases by 10% in
the weak viscosity simulation, while in contrast, the energy of
n= 2 harmonics has been doubled. The variation in the sat-
uration amplitude is attributed to the nonlinear MHD effects
with weaker dissipation [23, 24]. In addition, the experimental
waveform distortion of OFM is difficult to be observed for
lower viscosity value as shown in figure 9, where the n= 2 har-
monics has a larger amplitude than the standard case with ν =
10−6vARc. As shown in figure 10, the δṪe component of each
harmonics is compared for the linear and nonlinear phases for
ν = 10−6vARc and ν = 10−8vARc, respectively. The poloidal
structures have beenmodified by vortical structurewith aweak
dissipation value, as shown in figures 10(c) and (d), and the
amplitude of δṪe of n= 2 harmonics is significant, as shown

7
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Figure 9. Waveform of δṪe for (a) ν = 10−6vARc and (b) ν = 10−8vARc at r/a∼ 0.58 in the nonlinear phase.

Figure 10. Comparision of δṪe poloidal profiles for ν = 10−6vARc and ν = 10−8vARc in linear (a), (c) and nonlinear phase (b), (d). The
n= 1, n= 2 and total components are plotted in panels (i)–(iii), respectively. The q= 2 magnetic flux surface is represented by white dashed
lines.
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in figures 10(ii). Therefore, the higher viscosity coefficient is
preferable to be consistent with experiments. This difference
between the experiment and our simulation might be attrib-
uted to micro-turbulence. The effect of micro-turbulence on
the Alfvén eigenmode evolution has been theoretically pre-
dicted to be larger than that of collisions for present toka-
maks and ITER [29–31]. In the experiments, micro-turbulence
may work as an effective collision or dissipation, and may
affect the time evolution of OFM and nonlinearly generated
harmonics [32].

4. Discussion and summary

We performed kinetic-MHD hybrid simulations to investigate
the nonlinear evolution of OFM with waveform distortion in
tokamak plasmas. The waveform distortion is reproduced for
the first time in the nonlinear phase when the amplitude of
n= 2 harmonics approaches close to that of n= 1 harmonics.
It was found that the linear growth rate and mode frequency of
the n= 2 harmonics are twice those of the n= 1 OFM, where
the MHD nonlinearity is responsible for the generation of the
n= 2 harmonics. The δṪe signals clearly show that the emer-
gence of waveform distortion is caused primarily by the super-
position of the n= 2 harmonics on the fundamental n= 1 har-
monics of OFM. We emphasize that this is a new nonlinear
mechanism of waveform distortion, which differs from previ-
ous work [20]. When we looked at the time evolution of the
radial profile of δṪe, the two types of waveform with the ‘fall-
ing distortion’ and ‘rising distortion’ were found at the dif-
ferent regions. In particular, the ‘rising distortion’ is identical
to the experimental observations, while the ‘falling distortion’
occurs closer to the plasma core and is not found in experi-
ments. In order to understand the difference between the two
types of waveform distortion, the phase difference between
the n= 1 and n= 2 harmonics was analyzed using Lissajous
figures, where the component δṪe/δṪenv

e were used to extract
the phase as shown in figure 6. The specific Lissajous curves
indicate wave couplings between the n= 1 and n= 2 harmon-
ics with phase-lock∼π and∼0 for ‘rising distortion’ and ‘fall-
ing distortion’, respectively.

Through the analysis of the nonlinear components, we
found that −vn=2 ·∇Teq term plays an important role in δṪe
fluctuations. For tokamak, the radial component is dominant
rather than θ and ϕ components. The strong shearing structure
of vrad,n=2 components at r/a∼ 0.4 can explain the two wave-
form distortion types. Moreover, it should be noted that the lar-
ger viscosity is needed to reproduce the waveform distortion
in the simulation than that in the experiments. This suggests
that the effective viscosity in the experiments is enhanced from
the collisional viscosity by some physical mechanism such as
micro-turbulence.

As we mentioned in the introduction, the RWM and ELM
are the biggest concern in achieving high-beta plasma. For
ELMs triggered by OFMs [14, 15], it is interpreted that the
redistribution of energetic particles due to OFM is the main
reason for the excitation of ELMs. Nonetheless, in our sim-
ulations, energetic particle redistribution does not reach the

outside of plasma (r/a> 0.8), which may be related to the low
mode amplitude of OFM in current cases. It would be inter-
esting to investigate the relationship between OFM and other
MHD modes by simulating the excitation of RWM or ELM
following the OFM.
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