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Abstract
Based on the kinetic theory, improved T-matrix models for the continuous-slowing-down and
the linear-energy-transfer stopping powers are established at the same level, where multiple
scattering effects and the related transverse deflection are accounted for consistently and
systematically. The degree of deflection characterizing the extent of transverse deflection is
defined by means of the ratio of these two stopping powers. Calculations for the energy
deposition and deflection of α particles in hot dense deuterium–tritium (DT) plasmas and also in
hot dense DT plasmas mixed with carbon (C) impurities are performed. Multiple scattering
effects and the resulting transverse deflection are demonstrated to have a significant influence on
the stopping power of α particles, in particular, in mixtures containing different ions with large
mass and charge asymmetry. It is shown that for DT plasma mixed with 5% C impurities, the
range and penetration depth of the α particle are shortened by about 21% and 27%, respectively.
Our models are found to be appropriate for the evaluation of stopping powers not only in
weakly coupled plasmas but also in moderately degenerate and correlated plasmas. These
results manifest that multiple scattering effects and the induced transverse deflection need to be
taken into account in modeling the transport of α particles in hot dense plasmas relevant to
inertial confinement fusion.

Keywords: stopping power, deflection of α particles, deuterium–tritium plasmas,
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(Some figures may appear in colour only in the online journal)

∗
Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

1741-4326/23/076018+13$33.00 Printed in the UK 1 © 2023 The Author(s). Published on behalf of IAEA by IOP Publishing Ltd

https://doi.org/10.1088/1741-4326/acd19f
https://orcid.org/0000-0001-8993-1220
https://orcid.org/0000-0003-2635-3456
mailto:hebin-rc@163.com
mailto:wu_yong@iapcm.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/acd19f&domain=pdf&date_stamp=2023-5-31
https://creativecommons.org/licenses/by/4.0/


Nucl. Fusion 63 (2023) 076018 C. Lin et al

1. Introduction

The knowledge of stopping power or energy loss of energetic
charged particles (denoted as test particles) in dense systems
is of fundamental importance across a wide range of
disciplines, such as condensed matter physics [1] and plasma
physics [2, 3]. In the case of plasmas, an accurate treatment of
the stopping power is crucial for most inertial fusion applica-
tions [3], such as for understanding the self-heating mechan-
ism and for predicting the ignition condition and fusion energy
gain, as well as for the design of the ignition targets. For the
modeling of self-heating in deuterium–tritium (DT) fusion,
precisely calculating the stopping power ofα particles initially
at the birth energy of 3.54 MeV is a prerequisite for studying
the energy balance and dynamical evolution in the hot spot of
fusion fuel [3, 4].

In modeling the transport of α particles in inertial
confinement fusion (ICF) systems, the α particle is usually
assumed to move along a straight line, and its transverse
deflection (or diffusion) is assumed to be insignificant. The
reason for assuming rectilinear motion is that the energy of α
particles is mainly deposited on the plasma electrons [2, 5, 6],
which gives rise to negligible sideways motion. However,
transverse deflection can play a critical role in ICF plasmas,
especially toward the end of the range of α particles, because
large-angle scattering of collisions between α particles and
plasma ions can result in strong transverse diffusion of the
α particle with respect to their initial direction of motion.
As will be demonstrated in the current work, the transverse
deflection has a significant influence on the stopping power
and energy deposition of α particles in DT plasma, in partic-
ular when heavy and highly charged impurities exist. In fact,
ionic mixtures are ubiquitous in ICF systems. For example,
high-Z materials (e.g. gold used as a high-Z pusher) exist in
the inner shell of double-shell targets for the volume ignition
scheme [3, 7, 8], where fusion product deflection induced by
collisions with high-Z ions could be important. Moreover, in
the hot-spot ignition scheme, the DT fuel layer is enclosed by
an ablator shell (such as beryllium, copper-doped beryllium,
silicon-doped plastic or high-density carbon) [9, 10], where
the ablator material can mix into the DT hot spot [11–13].
Such mixing can significantly affect the transport and energy
deposition ofα particles in the hot spot. Therefore, an accurate
microscopic description of large-angle scattering and multiple
scattering effects on the stopping powers and deflections of
fusion products is urgently demanded.

The problem of deflection has been extensively invest-
igated for the stopping of energetic electrons produced in
the fast ignition of thermonuclear fusion [14, 15], where the
Boltzmann equation in the diffusion approximation is util-
ized to describe the effects of multiple scattering [16, 17].
The utilization of diffusion approximation in the Boltzmann
equation indicates that the plasma particles are assumed to
be stationary, which implicitly corresponds to assuming that
the target is cold and that the target particles are much heav-
ier than the incident test particle. However, these assumptions

are not appropriate for hot plasma systems under conditions
relevant to inertial fusion. Firstly, the temperature of ICF plas-
mas is usually very high, so the velocity distribution of plasma
particles has to be taken into account. Secondly, the masses of
the fusion products and the plasma ions are comparable, such
as mα/mDT ≈ 1.6 for DT fusion. Although a modification of
the multiple scattering theory for the degree of deflection has
been proposed [18], the aforementioned assumptions are not
removed completely. A more systematic and accurate theory
is required to describe the inherent relation between the trans-
verse deflection and the stopping power of the test particle.

To determine the degree of transverse deflection, a detailed
knowledge of the stopping power is a fundamental ingredient.
In general, two different definitions of stopping power exist in
the literature [2, 19–22], namely the continuous-slowing-down
(CSD) and linear-energy-transfer (LET) stopping power. The
CSD stopping power dE/ds describes the transfer rate of kin-
etic energy of the charged particle in plasmas [2, 20], while
the LET stopping power dE/dx is determined by the deceler-
ating force thatmeasures the change in test particlemomentum
projected in the direction of initial motion [2, 21, 22]. The
distinction between these two stopping powers characterizes
the transverse deflection of a test particle with respect to its
incident direction [5, 14, 23]. Once the CSD and LET stopping
powers can be determined at the same level, a consistent pic-
ture for the transport and energy loss of test particles in dense
plasmas can be achieved.

In the present work, we present a systematic and self-
consistent approach to determine the degree of deflection
through the CSD and LET stopping powers. For this purpose,
improved T-matrix (ITM) models are developed to calculate
both the CSD and LET stopping power on the same footing.
This paper is organized as follows: in section 2.1, the defini-
tion of the degree of deflection is discussed. Following a kin-
etic approachwithin the quantum statistical framework [2, 24],
detailed descriptions for the CSD and LET stopping power are
elucidated in section 2.2. Subsequently, quantum theory for
the transport cross-section is briefly reviewed in section 2.3,
where a velocity-dependent screening length is introduced to
account for dynamic effects in dense plasmas. In section 3.1,
we present the results of energy deposition and deflection of α
particles in DT plasmas. Similar investigations in DT+Cmix-
tures are carried out in section 3.2. Conclusions are drawn in
section 4. Additionally, derivations for the CSD and LET stop-
ping power as well as the transverse deflection of test particles
are described in detail in the appendix.

2. Methodology

2.1. Statement of the problem for degree of deflection and
stopping powers

For the modeling of stopping powers, the elementary quant-
ity is the change in test particle momentum due to scatter-
ing effects. The multiple scattering effect caused by the large
number of small- and large-angle collisions not only results
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in deceleration along the incident direction, but also leads to
transverse diffusion of the test particle perpendicular to the
initial incident direction [23]. Hence, it is more convenient to
decompose the test particle momentum into longitudinal and
transverse components with respect to the direction of original
motion, i.e. pT = p⊥T +p∥T. This decomposition leads to the

relation p2T = (p⊥T )
2 +(p∥T)

2, which also holds for their time
derivatives. Averaging over the plasma ensemble yields the
following expression for the test particle [23]:

d
dt

〈
p2T
2mT

〉
=

pT
mT

· d
dt

⟨pT⟩+
d
dt

〈
(p⊥T )

2

2mT

〉
. (1)

In the language of stopping powers, the term on the left-
hand side of equation (1) is directly connected to the CSD
stopping power dE/ds, and the first term on the right-hand
side describes the LET stopping power dE/dx [2, 22]. The
last term in equation (1) manifests the transverse motion of
the test particle under the influence of collisions, and determ-
ines the degree of deflection. Therefore, the decomposition of
momentum provides an unambiguous physical picture for dif-
ferent stopping powers. Because the stopping powers dE/ds
and dE/dx are negatively defined with respect to the incid-
ent energy of the test particle, the LET stopping power dE/dx
defines the hypotenuse of the right triangle, whereas the CSD
stopping power dE/ds and the energy change related to (p⊥T )

2

are associated with the legs of the right triangle. Consequently,
the degree of deflection resulting from the multiple scattering
effects is defined by the CSD and LET stopping powers of the
test particle [14]:

⟨cosθ⟩= dE
ds

(
dE
dx

)−1

. (2)

This definition is widely utilized to describe the mean
deflection of directed energetic electrons in plasmas [14, 15].
The degree of deflection ⟨cosθ⟩ (2) is a basic element in
Monte Carlo code for the simulation of dynamical evolution
of ICF systems [15, 25, 26]. Note that, unlike the notation used
in [14], the notation of the mean deflection angle in the present
work is referred to θ = arccos⟨cosθ⟩, whereas the degree of
deflection is named for the quantity ⟨cosθ⟩.

In the framework of multiple scattering theory for the
degree of deflection ⟨cosθ⟩ [14, 15, 18], the CSD stopping
power dE/ds is first evaluated using well-known approaches
such as the Brown, Preston and Singleton (BPS) [5] or Li and
Petrasso (LP) model [27–29], with which ⟨cosθ⟩ is then calcu-
lated according to ⟨cosθ⟩= exp

{
−
´ E
E0
dEkmfp(E)

(
dE
ds

)−1
}
,

with kmfp(E) being the total inverse mean free path induced by
collisions with plasma particles [15]. Then, the LET stopping
power dE/dx is determined from the relation (2). This proced-
ure is only suitable for the description of stopping and deflec-
tion of energetic electrons in dense plasmas. For energetic
ions transiting hot dense systems, such a description based on
diffusion approximation breaks down. In fact, direct calcula-
tion of the degree of deflection ⟨cosθ⟩ in dense multicompon-
ent plasmas can be accomplished using the relation (2), once

accurate approaches for both the dE/ds and dE/dx stopping
powers have been developed at the same level.

For practical purposes, different authors have paid attention
to one of these two stopping powers. The BPS and LP mod-
els are well developed for calculating dE/ds, while the dens-
ity functional formalism for stopping power can be applied
to excellently simulate dE/dx [30, 31]. The dielectric form-
alism can be applied to calculate the CSD and LET stopping
powers in weakly coupled plasmas [2]. Usually, the energy
loss of ions is assumed to be dominated by free electrons.
The transverse deflection induced by ion–electron collisions is
generally a small effect of relative order me/mT with respect
to the longitudinal motion [5], so that the difference between
the CSD and LET stopping power is negligible. This is the
reason why only one of these two stopping powers is required
to explain the experimental measurements and numerical sim-
ulations. However, plasma ions contribute significantly to the
energy loss of test particles, especially in the low-velocity
region, where the transverse spreading of the test projectile
also becomes non-negligible. Therefore, advanced approaches
for the calculation of stopping powers and transverse deflec-
tion are necessary. In the subsequent subsection, consistent
and systematic ITM models for the CSD and LET stopping
power and the related transverse diffusion are proposed based
on the kinetic theory [2].

2.2. Kinetic approaches for energy loss and stopping power
in plasmas

According to the kinetic theory [2, 24], the transfer rate of a
certain relevant physical quantity A=A(pT) induced by the
interaction of test particles with plasma particles is represented
by

d
dt
⟨A⟩= 1

nT

ˆ
d3pT

(2πℏ)3
A(pT)

d
dt
fT (pT, t) , (3)

where nT is the number density of the test particle, and the
test particle momentum pT = mTvT is defined by the product
of mass mT and velocity vT of the test particle. Here fT (pT, t)
denotes the test particle distribution function and dfT/dt rep-
resents the collision integral (for details see appendix). From
the formalism (3) with special choice for the quantity A(pT),
expressions for the CSD and LET stopping power can be
derived. Derivation of the results of the stopping powers dE/ds
and dE/dx are presented in the appendix. In this subsection,
only the central expressions are summarized.

For the LET stopping power dE/dx, the relevant quant-
ity A(pT) is the test particle momentum [2, 22]. The LET
stopping power dE/dx is related to the change of momentum
along the initial incident direction before and after the col-
lision AM(p ′

T)−AM(pT) = vT · (p ′
T −pT), which is determ-

ined through the momentum transfer rate

dE
dx

=
1
vT

d
dt
⟨AM⟩. (4)
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After straightforward algebra, we obtain the following
representation for the LET stopping power:

dE
dx

=
∑
c

UTc
mc√
πµTc

ˆ ∞

0

dz
z2

LTc(u,z) F̃M(u,z), (5)

with UTc = z2Te
2ω2

pl,c/
(
4π ϵ0v2T

)
characterizing the unit of

stopping power and the function

F̃M(u,z) = e−(u
2+z2) [sinh(2uz)− 2uzcosh(2uz)] . (6)

Here, µTc = mTmc/(mT +mc) and z= vTc/vth,c are the
reduced mass and the reduced relative velocity of the scatter-
ing pair, respectively. u= vT/vth,c denotes the reduced velo-
city of the test particle. The parameters ω2

c = z2ce
2nc/(ϵ0mc)

and v2th,c = 2kBTc/mc represent the plasma frequency and
thermal velocity of plasma particle species c. The velocity-
dependent Coulomb logarithmLTc(u,z) is defined through the
transport cross-section QTc(vT,p) [32]:

LTc(u,z) =
QTc(vT,p)

4π b2Tc
(7)

with bTc = zTzce2/(4πϵ0µTcv2Tc) denoting the classical impact
parameter for 90◦ deflection subjected to pure Coulomb
interaction.

The relevant quantityA(pT) to calculate the CSD stopping
power dE

ds =
1
vT

d
dt ⟨AE⟩ is the kinetic energy of the test particle

with its change before and after collision given by AE(p ′
T)−

AE(pT) = (p ′2
T −p2T)/(2mT) [2, 22]. The resulting formula for

the CSD stopping power is

dE
ds

=
∑
c

UTc
mc√
πµTc

ˆ ∞

0

dz
z2

LTc(u,z) F̃E(u,z) (8)

with the function F̃E(u,z) given by

F̃E(u,z)=

[(
1+2z2

µTc

mT

)
sinh(2uz)−2uzcosh(2uz)

]
.

× exp
[
−
(
u2 + z2

)]
. (9)

Similarly, the transverse diffusion is described by the fol-
lowing expression:

D⊥ =
∑
c

UTc
2mc√
πmT

ˆ ∞

0
dzLTc(u,z) F̃⊥(u,z), (10)

where the function F̃⊥(u,z) reads

F̃⊥(u,z) = e−(u
2+z2) sinh(2uz). (11)

Expressions similar to equations (5) and (8) are also presen-
ted in [2, 20, 21]. Recently, models for the CSD and LET stop-
ping powers were also proposed with the use of an effective
potential theory for the collision integral [33]. From expres-
sion (1), it can be concluded that the multiple scattering effects
are only partly considered in the CSD stopping power dE/ds

and fully included in the LET stopping power dE/dx in the
frame of binary collision description. Obviously, the missing
part of the multiple scattering effects in dE/ds is connected to
the transverse deflection D⊥ (10) and is characterized by the
degree of deflection ⟨cosθ⟩ (2).

To derive the stopping powers (5) and (8) as well as the
transverse deflection (10), the on-shell T-matrix approxima-
tion is implemented. In this approximation, the full many-body
effects within the binary collision approximation are reas-
onably accounted for through a statically screened potential
determined from the self-energy in terms of ladder summa-
tion [2, 24]. Hence, the effects of strong collisions and mul-
tiple scattering are satisfactorily taken into account. However,
dynamical screening effects and plasmon excitations are com-
pletely neglected in the on-shell T-matrix approximation.
Therefore, more elaborate approaches are needed to incor-
porate binary collision contributions from the strong coup-
ling region and dynamical effects. In the realm of kinetic the-
ory, the most commonly used approach is a combined scheme
using both a static T-matrix description and a dynamical
dielectric response [21, 24], which was originally introduced
by Gould and DeWitt for the calculation of transport proper-
ties in plasmas [34]. In this approach, the dynamical effects
are included by introducing the linear response cross-section
through the dielectric function. In the present work, another
theoretical scheme proposed in [35] is utilized, where effects
induced by dynamically screened interaction are mapped into
the T-matrix description with the use of a spherically symmet-
ric velocity-dependent interaction potential. We will discuss
this scheme in detail in the subsequent subsection.

2.3. Transport cross-sections and velocity-dependent
screening length

The central quantity for the determination of stopping powers
dE/dx (5), dE/ds (8) and transverse deflectionD⊥ (10) as well
as the degree of deflection ⟨cosθ⟩ (2) is the velocity-dependent
Coulomb logarithm LTc(u,z). This is related to the trans-
port cross-section QTc(p). In accordance with the quantum
collision theory, the transport cross-section can be evaluated
through the partial wave analysis [36]

Qqm
Tc (vT,p) =

4π
p2

∞∑
l=0

(l+ 1)sin2 [δl(p)− δl+1(p)] . (12)

The phase shifts δl(p) acquired from the solution of the
radial Schrödinger equation depend on the test particle velo-
city due to the employment of the velocity-dependent poten-
tial. For high-temperature plasmas, scattering phase shifts at
large partial waves and high energies are generally required
to calculate the transport cross-sections (12). To alleviate
the computational cost, it is desirable to incorporate the
Born and WKB phase shifts into the calculation of trans-
port cross-sections. For this purpose, quantitative criteria for
the applicability of Born and WKB approximations need
to be established. Such a procedure was proposed by the
authors in [37], and was applied in this work to calculate
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Qqm
Tc (vT,p) of projectile-electron scattering. For collisions

between ionic projectile and plasma ions, quantummechanical
treatment (12) is generally unnecessary and the classic trans-
port cross-section can be applied [38]:

Qcl
Tc(vT,p) = 2π

ˆ ∞

0
dbb(1− cosχ) (13)

where b is the impact parameter and χ is the scattering angle
given by

χ = π−2b
ˆ ∞

r0

dr
r2

[
1− b2

r2
− 2µTc

p2
VS
Tc(vT,r)

]−1/2

(14)

with the outermost classical turning point r0. In the present
study, the quantum mechanical transport cross-section (12) is
utilized in the Coulomb logarithm (7) for electron–ion col-
lisions, whereas the classic transport cross-section (13) is
applied for ion–ion scattering.

For the purpose of calculatingQTc, the velocity-dependent
Yukawa potential is employed here, through which dynamical
effects and collective excitations are included in the average
sense [22, 35, 39]:

VS
Tc(vT,r) =

zTzce2

4πϵ0r
exp

[
− r
λs(vT)

]
. (15)

This potential is demonstrated to be appropriate to cal-
culate the stopping power of charged particles in weakly
and moderately coupled plasmas [40, 41]. The choice of an
appropriate screening length λs(vT) is crucial for imitating
the dynamical effects at medium velocities [22]. Generally,
the following form is widely used to effectively describe the
dynamical screening effects and collective excitations in the
stopping power calculation [22, 39, 40, 42]:

λ0
s (vT) =

1
κs

√
1+ x2T. (16)

where xT = vTκs/ωpl,e with the screening parameter κ2
s =

e2ne
2ϵ0kBTe

F−1/2(ηe)

F1/2(ηe)
defined in terms of the Fermi integral Fa(y)=´∞

0 dxxa/[exp(x− y)+1] [2]. In the low-velocity limit vT → 0,
the static Debye-like potential is recovered from equation (16).
For a swift test particle that moves with velocities much larger
than ωpl,e/κs, the effective interaction range is determined by
Bohr’s adiabatic radius vT/ωpl,e [39, 42].

Although dynamical effects can be treated in a satisfact-
ory manner with simple interpolation (16), it is inadequate to
capture some critical features for the stopping power calcu-
lation. In particular, using the screening length (16) to study
the stopping number, an additional term −1/2 will appear for
high velocities compared to Bethe’s stopping formula [42].
This problem is directly related to the high velocity asymp-
totic behavior of the screening length λs(vT). As discussed
in [35], mapping the dynamical effects contained in the linear
response description into the pure T-matrix description leads
to an asymptotic behavior in the high-velocity limit character-
ized by κsλs(vT)∼e1/2xT. In the present work, the following
interpolation is proposed for the screening length:

Figure 1. Velocity-dependent screening length κsλs(vT) as a
function of

√
2vT/vth,e. The green dashed lines with circles denote

the numerical results for non-degenerate electron gas reported by
Zwicknagel [35]. The blue lines represent the calculations using the
model (16). The red lines give the results calculated from (17) for
different degeneracy parameters.

λs(vT) =
1
κs

√
1+

e
2

{
1+tanh [0.3(xT − 2.5)]

}
x2T, (17)

with which the additional term −1/2 for the stopping num-
ber is removed and Bethe’s form for the stopping power is
excellently reproduced. Figure 1 highlights the validity of
our formula (17), where comparisons of the numeric results
calculated in [35] with our parameterization (17) as well as
model (16) are performed. The predictions of model (16) devi-
ate strongly from the numeric results in the mid- and large-
velocity regime. Additionally, the degeneracy effect alleviates
the screening effects compared to non-degenerate plasmas.

3. Results and discussion

In this section, we present the results for the stopping power of
α particles in DT plasmas as well as in DT+C mixtures. The
degree of deflection describing the influence of multiple scat-
tering effects on the energy loss of α particles is exhaustively
investigated. The plasma particles are assumed to be in local
thermodynamic equilibrium at the same temperature. Unless
otherwise stated, the stopping powers are given in Hartree
atomic units in this section.

3.1. Energy deposition and deflection in DT plasmas

The CSD stopping power dE/ds of an α particle in a fully ion-
ized DT plasma is displayed in figure 2, where the predictions
from the BPS, original LP and modified LP models as well as
from our ITM model are shown for comparison. For a weakly
coupled system with BPS coupling parameter gBPS≈0.002
(g2BPS=

∑
c g

2
pc with gpc=

√
2zpzce2ωc/(4πϵ0kBTcvth,c)), we

find that our calculations are in excellent agreement with the
BPS results in the whole velocity region as shown in the
upper panel of figure 2. In the low-energy regime, the ionic
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Figure 2. CSD stopping power dE/ds of α particle in a fully
ionized DT plasma with density ρDT = 50gcm−3 and electron
temperatures Te = 10keV (upper panel gBPS ≈ 0.002) and
Te = 200eV (lower panel gBPS ≈ 0.7). To compare with our
predictions (ITM), results from the BPS [5], original LP ([27, 28]
and LP #2 in [29]) and modified LP (LP#3 in [29]) models are
also shown. The gray vertical line marks the birth energy of α
particle in DT fusion (3.54 MeV).

stopping is dominant and displays a peak structure (Bragg
peak) vα/vth,e ∼ m−1/2

DT . The electronic stopping plays a lead-
ing role in the high-energy region and reaches the maximum
near vα/vth,e ∼ 1. The electronic stopping predicted by the
original LP model agrees well with the BPS and ITM mod-
els, while the ionic stopping is stronger in the original LP
model than the BPS and ITMmodels. The modified LP model
predicts larger energy losses of the α particle than all other
models near the region of electronic and ionic Bragg peaks.
The lower panel of figure 2 displays the CSD stopping power
dE/ds for moderately correlated plasma with gBPS ≈ 0.7. Note
that the BPSmodel is suitable to acquire the stopping power in
weakly coupled plasmas with gBPS ≪ 1. A significant differ-
ence between the different models appears in the whole velo-
city region. Near the electronic Bragg peak, our ITM model
predicts results closer to the original LP model. Despite the
visible distinction, our ITM model gives a comparable stop-
ping power to the BPS model in the low-velocity domain near
the ionic Bragg peak. Additionally, the modified LP model
predicts a larger CSD stopping power than other models. This
large derivation is attributed to the overestimation of collect-
ive contributions. In the modified LP model [29], the Debye
length is selected as the critical parameter to separate close and
distant interactions. This selection may be unsuitable, because

Figure 3. Upper panel: stopping powers dE/ds, dE/dx and D⊥ of
α particle in a fully ionized DT plasma with density
ρDT = 50gcm−3 and electron temperature Te = 10keV. Lower
panel: relative contribution of electrons and DT ions to the
transverse diffusion. The gray vertical line marks the energy of the
α particle produced in DT fusion (3.54 MeV).

a velocity-dependent critical impact parameter is generally
required [43].

An overview of the influence of multiple scattering on the
stopping power of the α particle in DT plasma is provided
in figure 3. The transverse deflection caused by the multiple
scattering effects is manifested by D⊥, i.e. the difference
between the CSD and LET stopping power. From the upper
panel of figure 3, it can be seen that the missing part of the
multiple scattering effects in dE/ds has a remarkable influ-
ence on the energy loss in the low-energy region, particularly
near the ionic Bragg peak. This regime (left side of the gray
line in figure 3) is of essential significance for understand-
ing α-heating to DT ions. It can be also indicated from the
lower panel of figure 3 that the main contribution to the trans-
verse diffusion D⊥ in this regime comes from the collisions
with DT ions. Regardless of the influence of the slowly chan-
ging Coulomb logarithm, the absolute contribution of plasma
particle species c to the total transverse diffusionD⊥ is charac-
terized by z2cm

1/2
c /mT as revealed in equation (10). Therefore,

plasma ions are expected to dominate the sideways motion of
the α particle in DT plasmas.

The influence of multiple scattering on the energy depos-
ition can be more visibly demonstrated through the degree of
deflection ⟨cosθ⟩. Figure 4 illustrates the continuous change
of direction of fusion-produced α particles due to scattering
events as they pass through the DT fuel. The remaining energy
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Figure 4. The degree of deflection ⟨cosθ⟩ versus the reduced
residual energy of the α particle with respect to its initial energy
E0 = 3.54MeV in DT plasmas. The corresponding mean deflection
angles θ = arccos⟨cosθ⟩ are also shown. The residual energy is the
remaining energy of the α particle after considering energy
deposition into the plasma. The gray lines mark the residual energy
E= 3kBTe/2 and the cyan lines denote the energy at which
vα = 10vth,DT.

of the α particle after energy has been deposited into the
plasma is defined as the residual energy. When the test particle
continues to deposit energy into the plasma, the lower its
energy, the stronger the transverse deflection it suffers. For
example, for vα ∼ 10vth,DT the degree of deflection is about
θ ∼ 20◦, whereas toward the end of the α range the degree
of deflection is θ ∼ 85◦. Additionally, a critical angle can
be introduced, at which the incident projectile has lost the
memory of its initial direction. For the deflection of energetic
electrons in fast ignition for ICF, the angle θcr = arccos(1/e)
was proposed in [14]. As depicted in figure 4, a quasi-plateau
region at θ ∼ 50◦ appears for the degree of deflection. For
lower energies outside this plateau region, the deflection angle
changes more quickly. Hence, the middle value of this quasi-
plateau can be regarded as the critical angle.

Additionally, the degree of deflection ⟨cosθ⟩ does not
change strongly with the density variation, whereas it dis-
plays a significant dependence on the temperature as shown
in figure 4. Such tendencies for the temperature and density
dependence are also displayed in figure 5 for three selected
energies of the α particle. Increasing the temperature results
in an increase in the degree of deflection, as shown in figure 4
and in the top panel of figure 5. The reason for this temper-
ature dependence of the degree of deflection can be attrib-
uted to the fact that the velocities of plasma ions involved
in the scattering are generally larger in the case of high tem-
peratures. In this case, the energy and momentum exchange
between the test particle and plasma particles is more efficient,
which leads to large angle scattering and hence strong deflec-
tion from its initial direction. In the bottom panel of figure 5,
we also show the change in the degree of deflection ⟨cosθ⟩ at
different energies with increasing densities, where the mean
deflection angle only weakly enlarges. From equations (5)
and (8), it can be seen that both stopping powers have an

Figure 5. The degree of deflection ⟨cosθ⟩ of α particle versus
temperatures (top, (a)) and versus densities (bottom, (b)) at three
different energies E/E0 = 0.01,0.1,0.5 with E0 = 3.54MeV.

explicit linear dependence on the density and an implicit dens-
ity dependence contained in the Coulomb logarithm. As mani-
fested in figure 6, the CSD and LET stopping powers almost
linearly increase with the increase in plasma density. However,
this linear dependence is eliminated because the ratio of these
two stopping powers is used for the definition of the degree
of deflection (2). Hence, the degree of deflection is weakly
dependent on the density.

Now we apply our ITM model to analyze the experimental
measurements of ion stopping around the Bragg peak [44].
The experiments were carried out at the OMEGA laser by
Frenje et al, where the energy loss of four products, as they tra-
versed the plasma, was measured simultaneously. In this work,
the measured data from implosion 27 814 are analyzed, for
which the areal density is ρR= 8.1mgcm−2 (D3He fuel areal
density ρR= 7.1mgcm−2). Using the BPS model, the best fit
is obtained with the electron temperature Te = 1.75keV, as
reported in [44]. The upper panel of figure 7 displays the com-
parison among the BPS model, the experimental data and our
evaluations using this temperature. Our calculations are per-
formed using both LET (5) and CSD (8). It can be seen that
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Figure 6. The CSD and LET stopping powers versus the reduced
residual energy of α particle with E0 = 3.54MeV for the
temperature Te = 10keV and different densities
ρDT = 0.5, 5, 50, 500 gcm−3.

Figure 7. Measured and modeled energy loss −∆Ei/Z
2
i with

respect to Ei/Ai. The experimental and BPS results are taken
from [44]. The four data (from left to right) are the energy losses for
fusion products of DD-t, D3He-α, DD-p and D3He-p, receptively. In
the modeling of the energy loss, the areal density ρR is fixed to
8.1mgcm−2, while Te is allowed to vary. The upper and lower panel
denote the fits with electron temperature Te = 1.75keV and
Te = 1.82keV, respectively.

our model predicts a large energy loss for DD-p compared
to the BPS model, although reasonable agreement is found
with the experimental measurement. By slightly increasing the

temperature to Te = 1.82keV, the experimental data can be
excellently matched using the LET stopping power, as shown
in the lower panel of figure 7. The CSD formalism (8) also
agrees well with the experimental predictions except for the
DD-t data. The values for energy loss are 0.244MeV and
0.210MeV using the stoppingmodels of LET (5) and CSD (8),
respectively. This difference manifests the effect of multiple
scattering and transverse deflection.

3.2. Energy deposition and deflection in DT+C mixtures

As demonstrated in the previous subsection, the multiple scat-
tering significantly affects the stopping power and the energy
deposition of the α particle in DT plasmas. Uncertainty in
the stopping power model is a significant source of system-
atic uncertainty in the inferred areal density relevant for igni-
tion [29, 45]. In ICF systems, the DT hot spot is contaminated
by other materials; for example, a 5% ablator fuel atomic mix
was reported in NIF implosions [11, 12]. Because of the factor
z2cm

1/2
c /mT in the transverse diffusion (10), highly charged

heavy ions can significantly influence the energy loss of α
particles owing to their large masses and large related trans-
port cross-sections. In this subsection, we will investigate the
influence of C impurities on the stopping power and transverse
deflection of α particles in DT plasmas.

The CSD and LET stopping powers, as well as the trans-
verse diffusion, are illustrated in figure 8 for a DT plasma
with nDT = 1025 cm−3 and Te = 5keV, where the mixing ratio
(ratio of concentration) of C ions to DT ions is nC/nDT = 0.05.
Such plasma conditions are relevant for the investigation of
hot spot evolution in ICF. A strong transverse diffusion of α
particles in this mixture system is observed in the low-energy
region, which leads to a large distinction between the CSD
and LET stopping powers, as shown in the uppermost panel
of figure 8. In order to acquire a deeper understanding of this
large distinction between dE/ds and dE/dx, the partial con-
tribution from different species to the total stopping powers
is studied and depicted in the middle panel of figure 8. The
electronic stopping is dominant in the high-energy regime E>
0.1E0. The most noteworthy feature is that the CSD stopping
power of DT ions is much larger than that of C ions. However,
if the multiple scattering effects are correctly accounted for,
the LET stopping power of C ions is comparable with that
induced by DT ions. The relative contributions of different
species to the total transverse diffusion D⊥ are shown in the
lowest panel of figure 8. As manifested, collisions between
α particles and C ions play a leading role in the transversal
motion of α particles in this case (with mixing ratio 5% and
DC/DDT ≈ 1.7). Collisions between α particles and plasma
electrons cause a considerable transverse diffusion of the α
particles, which is much smaller than that induced by ions.
For another case, with a lower mixing ratio of 1% (not shown
here), the transverse diffusion of α particles during energy
deposition is mainly caused by the DT ions (DC/DDT ≈ 0.65).
Moreover, the relative contributions of the different compon-
ents remain almost unchanged along with the energy depos-
ition of the α particles. It can be concluded that the energy
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Figure 8. Upper panel: stopping powers versus the reduced residual
energy of α particle with E0 = 3.54MeV for a DT+C mixture with
temperature Te = 5keV and particle number density
nDT = 1025 cm−3, nC = 0.05nDT. Middle panel: partial contribution
from different particle species to the corresponding total stopping
powers under the same plasma condition. Lower panel: relative
contribution from different particle species to the transverse
diffusion D⊥ in the DT+C mixture.

loss of α particles is prominently affected by the scattering
between α particles and more massive ions.

Figure 9 highlights the multiple scattering effects and the
related degree of deflection of α particles in pure DT and
pure C plasma as well as in DT plasma mixed with C impur-
ities. Although the number density of C ions is much smal-
ler than the density of DT ions, the deflection of α particles
in the pure C plasma is much stronger than that in the pure
DT plasma, as depicted in figure 9. In particular, once an α
particle with a kinetic energy of 3.54 MeV launches into the C
plasma, it promptly undergoes strong collisions, which results
in a relatively rapid descent of the values of ⟨cosθ⟩ in com-
parison with the case in the DT plasma. The degree of deflec-
tion in the DT+Cmixture is located between those in the pure
DT and C plasmas. As manifested in figure 9, the transverse
motion of the α particle before stopping is significantly influ-
enced by the C impurities in the intermediate energy range
0.02≲ E/E0 ≲ 0.1.With the increase in mixing ratio from 1%
to 5%, the degree of deflection ⟨cosθ⟩ induced by the C ions
is remarkably enhanced.

Figure 9. The degree of deflection ⟨cosθ⟩ versus the reduced
residual energy of α particle with E0 = 3.54MeV for temperature
Te = 5keV in a pure DT plasma with density nDT = 1025 cm−3

(green line), in pure fully ionized C plasmas with density nC = xnDT
(purple curves) as well as in DT+C mixtures with density
nDT = 1025 cm−3 and nC = xnDT (red lines). Two mixing cases with
mix ratios x= 1%, 5% are shown. Different symbols are used to
mark the lines.

To investigate the dependence of the degree of deflection in
DT+C mixtures on the mixing ratio, further calculations are
performed for given energies of the α particle with varying
concentrations of C ions. Additionally, the energy partition of
the α particle to particle species c is also studied, which is
defined for the CSD stopping power dE/ds as follows [5]:

Fc =
ˆ E0

E1

dE
dEc/ds∑
c dEc/ds

. (18)

Here, E1 = 3kBTe/2 is taken for the numerical integra-
tion (18). For the LET stopping power dE/dx, a similar defini-
tion is applied in the calculation. It can be clearly seen from the
upper panel of figure 10 that with the increase in the mixing
ratio,the deflection of the α particle becomes stronger for all
selected energies. In fact, such a conclusion holds for all ener-
gies smaller than the birth energy of the α particle. The lower
panel of figure 10 plots the energy partition of the α particle to
different plasma species with respect to the mixing ratio of C
impurities. As shown in this panel, the energy of the α particle
is mainly deposited on the plasma electrons under the plasma
conditions considered here. The energy partition to ions pre-
dicted by the LET stopping power dE/dx is larger than that cal-
culated with the CSD stopping power dE/ds. With the increase
in the mixing ratio, the energy partition to DT ions decreases,
while the C component gainsmore energy from theα particles.
Additionally, it seems that in the logarithmic scale the energy
partition to C ions rises quasi-linearly with the increase in the
mixing ratio, which corresponds to an enhancement obeying a
power law in the linearity coordinates.

Finally, we investigate the energy deposition of α particle.
Due to the randomizing collisions with both ions and elec-
trons, the α particle loses energy to the hot spot and becomes
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Figure 10. Upper panel: degree of deflection ⟨cosθ⟩ versus the
mixing ratio with temperature Te = 5keV and number density
nDT = 1025 cm−3 at three different reduced residual energies
E/E0 = 0.01,0.1,0.5. The mixing ratio is given by nC/nDT. Lower
panel: the energy partition of α particle to different plasma
components defined in equation (18) according to both the CSD and
LET stopping powers. Lines are used to guide the eye.

thermalized at the ambient plasma temperature. These effects
are characterized by the range R and the penetration depth X
of the α particle, which are determined by [14]

R=

ˆ E1

E0

dE

(
dE
ds

)−1

, X=

ˆ E1

E0

dE

(
dE
dx

)−1

. (19)

The corresponding results of range R and penetration depth
X for different mixing ratios are displayed in figure 11. The
results show that the range R and the penetration X become
shorter and shorter with increasing mixing ratios (and also
with the increasing coupling parameter gBPS, whose value
increases from 0.005 to 0.028). For weakly coupled plasmas,
the ranges predicted by our model are in good agreement
with the results of the BPS model. With the increase in coup-
ling strength (as well as the mixing ratio), our model predicts
shorter ranges than the BPS theory. Concerning the effects of
transversal deflection, it is shown that the range and penetra-
tion depth of theα particle is shortened by about 21% and 27%
for the case of 5%DT+Cmixing according to our ITMmodels
for CSD and LET stopping powers. Hence, more energy from
the α particle is deposited into the hot spot. For further com-
parison, the ratio of range to penetration is depicted in figure 10

Figure 11. Left axis: the range R and penetration depth X of α
particle versus the mixing ratio at fixed temperature Te = 5keV and
number density nDT = 1025 cm−3. For comparison, the ranges
predicted from the BPS model are also shown. Right axis: the ratio
R/X, which manifests the effects of multiple scattering. The gray
dashed-dotted line marks the linear increase of the range R and
penetration depth X in low mixing plasmas. Dashed lines are used to
guide the eye.

Figure 12. The same as figure 11 but for temperature Te = 1keV.
Dashed lines are used to guide the eye.

(see the right axis). As the mixing concentration increases, the
ratio R/X also gets larger, and a linear growth is observed for
the ratio R/X in the region of low mixing concentrations. For
a mixing ratio greater than 1%, the trend of growth is weaker
than the linear relationship, which implies that the LET stop-
ping power dE/dx is more strongly affected by the impurity
mixing in comparison with the CSD stopping power dE/ds.

Figure 12 displays the comparisons of the range R and the
penetration depth X at a lower temperature Te = 1keV for dif-
ferent mixing ratio values, where the ranges calculated from
the BPS and ITMmodels are also compared. Under the plasma
conditions presented in this figure, the BPS coupling para-
meter gBPS increases from 0.055 for a pure DT plasma to
the value of 0.32 for a DT+C mixture with mixing ratio 5%.
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In comparison with the case of higher temperature shown in
figure 11, the differences in the predicted ranges R become
more pronounced at the same mixing ratio. For plasmas with
highly charged and heavy impurities, such differences are
mainly attributed to multiple scattering effects and large-angle
scattering off the impurities. Therefore, it can be concluded
from the comparisons shown in figures 11 and 12 that the mul-
tiple scattering effects and the resulting transverse deflection
play a vital role in the investigation of energy deposition and
self-heating of α particles in ICF physics.

4. Summary and conclusions

In the present investigation, we have proposed a novel
approach to study the effects of multiple scattering on the stop-
ping power and energy deposition of fusion products in ICF
plasmas based on kinetic theory. Collisions between the test
particles and plasma particles are described by ITM approx-
imation with a velocity-dependent screening length. As a
direct demonstration of the multiple scattering effects, the
degree of deflection of test particles is defined and elabor-
ately investigated by means of the CSD and LET stopping
powers. Considering the full many-body dynamics, the effects
of multiple scattering are partially included in the CSD stop-
ping power. For the LET stopping power, multiple scattering
effects are entirely taken into account within the framework
of the binary collision approximation. The inherent limitations
of the traditional multiple scattering theory make it difficult to
apply for the calculations of the LET stopping power under
plasma conditions relevant to inertial fusion. In the present
study, such restrictions are bypassed by using the kinetic the-
ory for stopping powers.

The investigation of stopping and deflection of α particles
in DT plasmas and in DT plasmas mixed with C impurit-
ies manifests that the multiple scattering effects can signific-
antly affect the energy deposition and transport of α particles
in fusion plasmas. The range and the penetration depth are
shortened due to the existence of C impurities and the energy
deposition of an α particle increases near the end of its range.
The related energy partition is also altered to a large extent.
Because uncertainty in the stopping power model is an import-
ant source of systematic uncertainty in the inferred areal dens-
ity, multiple scattering effects may need to be considered in
modeling the energy deposition of fusion products for igni-
tion and for critically assessing quantitative ignition require-
ments [3, 29, 45]. Stopping powers are also relevant to ICF dia-
gnostics that employ charged particles including radiography
and spectroscopy [4, 29]. Therefore, a deeper understanding
of multiple scattering effects and the resulting transverse dif-
fusion is of essential significance for ICF physics, which is
exactly the objective of the present investigation.

In the present work, the plasma components (both ions
and electrons) are assumed to be in local thermodynamic
equilibrium subject to the same temperature. The velocity
distribution is described by a Maxwellian distribution func-
tion. However, the distribution of the free electron velocit-
ies can deviate from the Maxwellian distribution due to the

strong electrostatic field in dense plasmas [46], in partic-
ular in plasmas containing highly charged heavy impurit-
ies. Moreover, the electron degeneracy cannot be ignored
if the electron temperature Te < 1keV in the high-density
regime [29, 39], so the Fermi–Dirac statistics have to be con-
sidered. Additionally, the ionic and electronic components can
have different temperatures, and for such systems electron–
ion temperature relaxation needs to be included for the study
of stopping power [2, 47]. Furthermore, the plasma may be
partially ionized, so that inelastic stopping has a remarkable
contribution to the total stopping of fusion products [48].
Therefore, different inelastic processes, such as electron cap-
ture, charge transfer, as well as ionization and excitation dur-
ing collisions with the target ions and electrons of the plasma,
have to be taken into account for modeling the stopping
powers [49, 50]. We will discuss the influence of temperat-
ure relaxation and inelastic stopping on the deflection of test
particles under relevant ICF conditions in a forthcoming work.
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Appendix. Derivation of expressions for the CSD
and LET stopping powers

In this appendix we give a detailed derivation of the
expressions of stopping powers dE/ds and dE/dx based on
kinetic theory. The energy transfer rate of a relevant quantity
is described by the collision integral as follows [2]:

d
dt
fT (pT, t) =

∑
c

gc

ˆ
d3pc

(2πℏ)3

ˆ
d3p ′

c

(2πℏ)3

ˆ
d3p ′

T

(2πℏ)3

×W (pT,pc;p ′
T,p

′
c) P (pT,pc;p ′

T,p
′
c) , (A.1)

where the sum is performed over all species of plasma particles
cwith spin degeneracy gc. P (pT,pc;p ′

T,p
′
c) is the phase occu-

pation factor for the scattering process

P (pT,pc;p ′
T,p

′
c) = fT (p ′

T) fc (p
′
c) f̄T (pT) f̄c (pc)

− fT (pT) fc (pc) f̄T (p ′
T) f̄c (p

′
c) (A.2)

with the one-particle distribution function f and f̄= 1− f. The
factor W (pT,pc;p ′

T,p
′
c) is the transition probability for the

scattering, which is directly connected to the T-matrix oper-
ator T̂ of scattering theory

W (pT,pc;p ′
T,p

′
c)

=
2π
ℏ

∣∣∣⟨pT,pc| T̂(E) |p ′
T,p

′
c⟩
∣∣∣2(2πℏ)3

× δ (pT +pc−p ′
T−p ′

c) δ
(
εpT+εpc−εp ′

T
−εp ′

c

)
. (A.3)

It is more convenient to use the relative momentum p=
(mTpc−mcpT)/mTc and the total momentum P= pT +pc
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for the scattering pair before collision. A similar variable
transformation for momenta is also applied for the scatter-
ing pair after collision, and the involved quantities are marked
with a prime symbol. Here, mTc = mT +mc is the total mass
of the scattering pair. Inserting these variable transforma-
tions and the collision integral (A.1) in combination with the
phase factor (A.2) and the transition probability (A.3) into the
expression for transfer rate (3) yields

d
dt
⟨A⟩= 2π

ℏnT

∑
c

gc

ˆ
d3p

(2πℏ)3

ˆ
d3P

(2πℏ)3

ˆ
d3p ′

(2πℏ)3

×T2Tc(p,p
′)δ

(
p2

2µTc
− p ′2

2µTc

){
A(p ′

T)−A(pT)
}

× fT (pT) fc (pc) [1− fc (p ′
c)] , (A.4)

where the momenta pT,p ′
T,pc,p

′
c are determined via the

inverse transformation of the relative and total momenta
p,p ′,P,P ′. For the derivation of transfer rate (A.4), the on-
shell T-matrix is applied, which is connected to the quantum
differential cross-section [2]

T2Tc(p,p
′) =

(2π)2ℏ4

µ2
Tc

dσTc

dΩpp ′
. (A.5)

To simplify the problem, the test particle is assumed
to be sharply distributed around its momentum, which
is described by a Dirac delta distribution fT (pT) =
(2πℏ)3nTδ (pT −mTvT). Each species c in the plasma sys-
tem is assumed to be in the local thermodynamic equilibrium
subject to the same temperature. In this work, the Maxwell–
Boltzmann distribution is used for the function f c and 1− fc
is slightly different from 1 for all momenta. The electron
degeneracy can be significant for relative low-temperature
and high-density plasmas [29, 39, 51, 52]. In moderate degen-
erate plasmas, these effects can be approximately taken into
account by using an effective temperature, with which the
Fermi–Dirac distribution function can be approximated by
Maxwellian distribution [39]. However, in strong degenerate
plasmas, the Fermi–Dirac distribution has to be taken into
account, and also the term 1− fc cannot be approximated by
the constant 1 any more. The physical systems relevant to ICF
are hot dense plasmas with temperature Te ≳ 1keV. Hence,
the Maxwell–Boltzmann distribution function is a reasonable
and sufficient approximation for the particle distribution f c.
With these assumptions, we obtain the following expression
for the transfer rate of A(pT)

d
dt
⟨A⟩= 2

µTcnT

∑
c

gc

ˆ
d3p

(2πℏ)3

ˆ
d3P

(2πℏ)3

ˆ
d3p ′ dσTc

dΩpp ′

× δ
(
p2−p ′2){A(p ′

T)−A(pT)
}
fT(pT) fMB

c (pc) .

(A.6)

In order to achieve expressions for the CSD and LET
stopping powers that are available for numeric compu-
tation, the quantity A(pT) has to be specified. Using
AM(p ′

T)−AM(pT) = vT · (p ′
T −pT) for the LET stopping

power dE/dx [2, 22], we obtain the following representation
for the LET stopping power:

dE
dx

=
∑
c

ˆ ∞

0
dpp2QTc(p)GTc(vT,p)FM(w) (A.7)

with the function FM(w) = sinh(w)−wcosh(w) and w=
2vT p/(µTc v2th,c). The transport cross-section QTc(p) is
determined from the quantum differential cross-section as

QTc(p) =
ˆ

dΩpp ′ (1− cosθpp ′)
dσTc

dΩpp ′
, (A.8)

which is also known as the momentum transfer cross-section.
The function GTc(vT,p) is defined as

GTc(vT,p) =
nc vth,c√
πv2Tµ

2
Tc

exp

[
− v2T
v2th,c

− p2

µ2
Tcv

2
th,c

]
. (A.9)

Similarly, the resulting formula for the CSD stopping power
is

dE
ds

=
∑
c

ˆ ∞

0
dpp2QTc(p)GTc(vT,p)FE(w) (A.10)

with FE(w) = [1+ pw/(mTvT)]sinh(w)−wcosh(w). The
transverse diffusion D⊥ takes the following form:

D⊥ =
∑
c

ˆ ∞

0
dpp2QTc(p)GTc(vT,p)F⊥(w) (A.11)

with F⊥(w)=pwsinh(w)/(mTvT). Using the velocity-
dependent Coulomb logarithm (7) to replace the transport
cross-sectionQTc(p) and introducing other reduced variables,
the expressions (5), (8) and (10) are achieved.
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