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Abstract

The geodesic acoustic mode (GAM) is investigated with gyro-kinetic equations in Miller local
equilibrium model for shaped tokamak plasmas with an arbitrary elongation x and a finite
triangularity . In particular, the effects of triangularity on GAM frequency and damping rate
are analyzed both analytically and numerically. The asymptotic analytical and exact numerical
results both show that the frequency almost linearly increases with the triangularity but
increases relatively more slowly for a negative §, which agree well with the TCV observation on
the trend. The analytical results clearly claim that the triangularity effect strength is dependent

on the inverse aspect ratio ¢ and Shafranov shift gradient A’, while the numerical results
indicate that the safety factor g also has a significant impact on the triangularity effects. In
addition, the damping rate increases rapidly with triangularity when ¢ is not too large and then

saturates when ¢ is above about 0.3.

Keywords: shaping effects, geodesic acoustic mode, triangularity, tokamak,

magnetic confinement

(Some figures may appear in colour only in the online journal)

1. Introduction

The geodesic acoustic mode (GAM) is a ubiquitous oscillat-
ory flow phenomenon in toroidal magnetic confinement sys-
tems with the structure of geodesic curvature and closed flux
surface [1]. With the toroidal symmetrical and approximately
poloidal symmetrical structures, it has been observed in nearly
all main tokamaks [2-7]. As the high frequency branch of
zonal flows [8], it is believed to play a critical role in moder-
ating plasma turbulence and turbulent transport [9-11]. Con-
sequently, GAM has been widely investigated in the aspects
of experiments [2-7], simulations [12—-16] and theoretical
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analyses [8, 17-20]. It is well known that a simple GAM fre-
quency performed in the ideal magnetohydrodynamic (MHD)
model was first obtained by Winsor et al [17] tracing back to

1968, shown as
1
o )
( q*(r)

in which ¢ is the safety factor, ¢y is the sound speed, r is the
flux label and Ry is the major radius of tokamaks.

The infinite aspect ratio and circular cross-section were
employed in the derivation of equation (1) and were also
adopted widely as basic assumptions in the later analytical
literature [1]. However, it was found the GAM frequency
weakly decreased with increasing inverse aspectratio € = /Ry
in TEMPEST simulation [14]. More importantly, the GAM
is more often observed at the edge region where the cross-
section is far from circular due to the non-ignorable shaping
effects of elongation « and triangularity 0 [1]. Already back in
2005, AUG [2] reported a significantly decreasing frequency
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of GAM with increasing x, which was validated a year later
in DIII-D [4] and reobserved in AUG [21, 22] together with
TCV [3]. Almost at the same time, Angelino et al [12] invest-
igated the role of  utilizing numerical simulations. Two years
later, Angelino et al [15] also obtained the analytical results as
w oc4/(3 — 2k + 3K?) with the Braginskii equation [23] and
the Culham equilibrium [24]. For analytical work, a pioneer-
ing one was performed by Shi et al [25] based on a Solov’ev
type equilibrium with MHD equations, including effects of
€, # and 4§, in principle giving w? o (1+x72)/2. In 2008,
Gao et al [18] obtained the frequency and damping rate of
GAM from gyro-kinetic equations based on the widely used
Miller equilibrium model [26], as w3 oc 2/(k? + 1). A series
of papers [27-29] were further done for more shaping para-
meters and the comprehensive result was shown as [29]

2
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where v = 2T;/m; is the ion thermal velocity, 7 =T, /T; is
the temperature ratio between ions and electrons, s,, = 0,k /K
stands for the elongation gradient with respect to the flux sur-
face and A’ = O,R is the gradient of the Shafranov shift A. In
addition, starting from the MHD model and a global shaping
model different from Miller’s, Wahlberg et al [30] obtained
the dependence of frequency on not too large values of
as w2 x (2 — Kk — ks, /4), consistent with equation (2) when
|k —1] < 1.

In short, different equilibria and models are employed, and
the effects of x, by far the most dominant shape parameter, are
extensively analytically studied [15, 18, 25, 27-30] and qual-
itatively similar to experiments [2—4, 21, 22] and simulations
[12-16]. Nevertheless, another critical shaping parameter, tri-
angularity J, has not been widely investigated experiment-
ally and analytically [1]. Although most theoretical papers set
6 =0 directly, it has been proven to be related to the plasma
turbulence especially for a negative § [31]. In 2017, Sorokina
et al [32] derived the GAM frequency in the MHD model with
Miller equilibrium [26] including 6, x and e,
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Recently, TCV reported a nearly linear increasing GAM fre-
quency with § from —0.2 to 0.3 measured by Z. Huang and
S. Coda, and the dependence tended to be weakened for neg-
ative 9, as the figure 5(b) shown in [33]. Compared to TCV
results, equation (3) indicates a fairly weak dependence on
0. By utilizing MHD equations and a global shaping model,

another result containing the Shafranov shift gradient A’ was
obtained by Wahlberg and Graves [33]. However, discrepan-
cies still exist between the existing analytical results and TCV
observations. More importantly, the damping mechanism and
kinetic corrections are not taken into account in the framework
of MHD.

In this paper, we present an exact solution to the dispersion
relation of GAM in the presence of triangularity by revisiting
the gyro-kinetic equation and employing Miller local equilib-
rium model [26]. The remaining part of the paper is organized
as follows. In section 2, the Miller local equilibrium model
with a non-circular cross-section, gyro-kinetic equations, gov-
erning equation of GAM and analysis with weak deformation
are introduced. In section 3, the dispersion relation is obtained
with an arbitrary « and a finite J; in the sufficiently large
safety factor, the asymptotic solutions of GAM frequency and
damping rate are derived. The triangularity effects on GAM
are briefly discussed by the exact numerical solution and the
asymptotic analytical solution in section 4. Finally, the sum-
mary is given in section 5.

2. Basic equations and analysis with weak
deformation

2.1. Basic equations

We consider the widely used Miller local equilibrium model
[26] with a flux surface (R, Z) written as

R =Ry(r) + rcos[f + arcsind(r) sinf)],

Z = k(r)rsiné, “)

where 0 is the generalized poloidal angle. In Miller model, it is
of basic difficulty to set priori values for s, and s5 = r0,6. One
common practice is adopting s, = 0,55 =0, or employing
empirical equations as s,, = (k — 1)/k and ss = §. The toka-
mak magnetic field B = I(¢)) VE + VE x V1) can be described
as [18]

B,
Bt = 0R07
R 5)
gt AL g (
P g do2m | R?

in which £ is the toroidal angle, 1 is the magnetic flux, By is
the field at the magnetic axis Ro(ry), J = (Vr x VO -VE)~Lis
the Jacobian and d//df = \/(dR/df)% + (dZ/d0)? is the dif-
ferential of the poloidal arc length with respect to the poloidal
angle.

For simplicity, the electron response is ignored, and con-
sequently the electrostatic potential remains constant on the
flux surface, as ¢ = dexp[iS(r) —iwt]. S(r) is adopted as
S(r) = k,(r — ro) and k, is the wavenumber in the flux coordin-
ate system. It is acceptable to ignore the electron response
since 7 is not coupled with the shaping parameters (except s,)
in equation (2) (also can be seen in equation (20) of [28]). We
look forward to further improving this point in future work.
The perturbed distribution of ions is determined by the gyro-
kinetic equation and can be solved as
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R P ©
in which F} is the equilibrium distribution of ions chosen
to be the Maxwellian distribution here, E is the ion particle
energy, Jo is a zero order Bessel function, p; =V /w' is the
Larmor radius with gyro frequency w! = ¢;B/m;, and h =
hexp[ik,(r — ry) — iwt] is the nonadiabatic part. The govern-
ing equation of & is [34]

IF; 0
OE ot’

0
{at (Vub + Vd) V] h = —qiJo(k:|Vr|p;) N

where b= B /B is the unit vector along the magnetic field,
V| (v, ) is the parallel (perpendicular) ion velocity with respect
to the magnetic field, and v, = [(vﬁ +v2 /2)/wilb x VInB
is the drift velocity. We stress that p; is the realistic length
of the Lamor radius, which should be rewritten as p;|Vr|
when transforming to the flux coordinate system, as shown
in equations (6) and (7). In addition, without the electron

il

response, the quasi-neutrality condition gives the governing
equation of GAM, as

/ d0dEdp-— B g Fi =0. (8)

vyl !

2.2. Analysis with weak deformation

Equations (4)—(8) are a closed set of equations to describe
GAM for arbitrary values of shaping parameters in Miller
local equilibrium model [26]. To obtain analytical results, we
adopt large aspect ratio and high safety factor (typically, ¢ =
3), and assume 8, s5,5,,A’,1/q ~ O(e), which are valid for
most realistic tokamak plasmas. By retaining terms of O(e?),
equation (7) can be rewritten as

N N R Fi.
Oph —ih—i Lh= —iqio(k|Vrp) L 2, (9)
Wr Wr w T
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B GRo 1+ A/ cos + s, 8in>0 + (6% +25,.6)sin® cos ) —

k,(ZVﬁ +2)

sinf + §sin20 —

16(5 —26*)sin*fcos? 0 — 142sin* 0’

£0%sin6 + 6% sin36

W T R
00

q

14+ A’ cos + s,.sin® 0 + (6* 4 25,.0) sin*f cos ) —

16(5 —26*)sin*@cos? 0 — L42sin* 6’

q:

14 S5+ 2ed — geb* + 1€ — e/ —

102+ §06%’

\//@2 0820 + sin® 0 + 28 sin0sin 20 + 652 sin® 0 cos2 0 — 52 sin* 0

Vr| =
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Weo

0*=0—s5 and wéo = g;Bo/m;. The general solution of

equation (9) is
”") de} /de{ Zaifodw
Wy T Wy

h= exp {1/ (w +
%3
x Jo (k| Vr|pi)exp {1/ (:j + oj) dﬂ} } (10)

Since the shaping effects introduce the complex dependence of
wy, wg and k,|Vr|p; on the poloidal angle 6, it is a lengthy and
tedious process to utilize the general solution equation (10)
directly. Here we consider the case of k,p; < 1, that is, neg-
lecting the effects of high order finite-Larmor-radius and
finite-orbit-width [35, 36]. Through inserting equation (10)
into equation (6) and by keeping the second-order terms of
k,pi, then, the perturbed ion distribution equation (6) splits into

K [1+ Alcosf+ s, sin® 0 + (6% + 2s,.0) sin? fcos ) —

15(5 —26*)sin*fcos? 0 — L62sin* 0]’

i F
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FY = Bk Vrlps) — 1.
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It is noticed that F! corresponds to the term of O(k,p;) and
has no contribution after the magnetic surface average integral,
which is consistent with the case of a circular cross-section.
In addition, the correction of F}¥ to the dispersion relation
is lower than FI! or FI' by the order of O(e/q?), and con-
sequently it is also not required to be included. For the terms of
exp(k,f(0)) and exp(ef(#)) in equation (11), calculations can
be simplified by using Taylor expansion directly instead of the
Bessel function.

3. Dispersion relation

After inserting equation (11) into equation (8) and tedious
algebraic calculations, the dispersion relation is obtained as

| 1
> 5Gi0 (f;) =20 (12)

n=1

in which we denote

0(0) =L [c+2(0) +2¢ (1+ ) (1 +¢2(0))].

¢
1 1 1 qwRy
= (1 - N V) P L R
¢ < + 58— 70 +866> o

Here, Z(() is the plasma dispersion function, and G,, D are
relatively complex resulting from shaping effects, provided as

G = % % 1;8 2+ f(m’ A’z—l—lA’e—é(Se
+47—855 ﬂé*A’ &5* —%5*2—13652,
Gy = %5 5A'+%A’2+165—26A’
_*55*+1AI5*—i65*—|—i5*2’
3 3 12 18
G; = 11928Si”
Gy = 750",
D:ng—l_ﬁzgﬁsﬁ_i_ﬁl-gS 24 62 5A’
3/@28+ L2 3/@28— 3.5 91@28+ 3N/ N 9f-c28+362
- ””212555* + “2; s — 3“?;365*
2 2
+3'{”12;;55*2+ ”12152.

It should be emphasized that the trapped particle effect
is not considered here, which requires g>> 1 or a suffi-
ciently large aspect ratio [37]. The original dispersion relation
equation (12) is so involved that no intuitive analytical res-
ults can be obtained directly, although exact numerical solu-
tions can be calculated. Fortunately, an asymptotic solution
can be established with ¢ > 1, which requires a sufficiently

large safety factor. Actually, previous work [37] shows suf-
ficient agreement between asymptotic solution and numer-
ical solution with a not too large safety factor (typically,
q 2 2) in the case of a circular cross-section. Regardless,
the plasma dispersion function can always be asymptotic-
ally expanded as Z(¢) =iy/mexp(—(?) — ¢ (1+¢72/2+
3¢™*/44+15¢"%/8 +...) with large enough ¢. Neglecting
terms of order higher than O(¢~*), the asymptotic analytical
solutions of GAM frequency and damping rate are obtained,

WRY 7T 2 K? (3% +1) ,
== — s s
Vi 4R2+1 2(k24+1)7" 7 8(k2+1)2 "
33k +1) , K? n o 4kP+1 A/
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) 0— A'§
R TP AR T s S
17x? 1 K?
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49 258
27,2
Ry 2/E (wR\® Gs S e
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in which we denote

~5 1 5
Gs=L <1+s,€52+ 55*> .
q 2

When circular shaping parameters are specified (k=
1,5, =0 =s5 = e = A’ =0) in equations (13) and (14), pre-
vious results of GAM frequency and damping rate are
recovered [37-40]. Compared with GAM frequency of Gao’s
result [29], the main differences are the absence of any 7
dependence in equation (13) and the absence of any ¢ depend-
ence in equation (2). The main contribution of 7 may be
in the term of %—1—7 as shown in equation (2). Therefore,
when the dispersion relation derived here is to be utilized
for quantitative comparison with experiment, w (J) /w (§ = 0)
is a better choice rather than w(d) to eliminate the dis-
crepancy brought by 7 as much as possible. The slight dis-
crepancy of terms O(s,) between equations (2) and (13) is
due to diverse selections of magnetic surface average integ-
ral in the quasi-neutrality equation, and the distinction dis-
appears in comparison with Gao’s another frequency result,
equation (20) of [28]. For the same reason, when 7 =0 and
s =0, equation (14) coincides with Gao’s damping rate,
i.e. equation (13) in [27] (mistakes in writing: ¢° is miss-
ing; wgam — gRowGam/ vy in square brackets). In addition,
we stress that the assumption of (k2 —1)/(k*+ 1) ~ O(e) is
not adopted in this paper, and consequently, equations (13)
and (14) are suitable for an arbitrary value of x. Except for
the inherent discrepancies caused by gyro-kinetic model and
MHD model, equation (13) coincides with equation (3) in
the shaping effects, the result of Sorokina et al [32], and
is also qualitatively similar to the result of Wahlberg et al,
equation (1.4) of [33].
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4. Discussion

It should be pointed out in advance that A’ is associated
complexly with other shaping parameters, global magnetic
shear as well as pressure gradient [41]. Moreover, ,0 and
their derivatives also influence each other [42]. Considering
these, utilizing a set of self-consistent shaping parameters to
investigate § effects is beyond the scope of this paper. Con-
sequently, we have to follow the previous analytical work
[26, 33, 43-48] and treat shaping parameters including A’ as
independent. However, when equations (12)—(14) are used to
be compared with experiments or simulations in the future,
the self-consistent shaping parameters according to experi-
mental measurements or simulation calculations are desired
to be adopted in equations (12)—(14). In short, in this section,
we are limited to the case of shaping parameters independ-
ent with each other to briefly discuss triangularity effects
on GAM.

Now, we first focus on the triangularity effects on the fre-
quency of GAM by utilizing equations (12) and (13). The
asymptotic analytical result equation (13) clearly indicates that
the nearly linear increasing frequency with triangularity is due
to its coupling with the finite aspect ratio € and Shafranov
shift gradient A’, while the increasing growth slows down
for negative & due to the existence of the term O(§?). This
dependence indicated by equation (13) is consistent with the
observation in TCV on the trend [33]. If the triangularity gradi-
ent s5 is set to ss = § rather than zero, it also slightly influ-
ences the triangularity effects when ¢ is not near zero. The
frequency dependence on § can also be numerically calculated
from the original dispersion relation equation (12), and a sim-
ilar trend to the analytical one is shown as figure 1. However,
figure 1 indicates that the frequency dependences on triangu-
larity in the exact numerical solutions are much stronger than
those in the asymptotic analytical solutions. This discrepan-
cies between them mainly result from the insufficient safety
factor (¢q=3.57 in figure 1). Although there is no evidence
in equation (13) that the safety factor can influence the effect
of triangularity on GAM, the direct numerical calculation of
equation (12) indicates that a not too large safety factor can sig-
nificantly enhance the triangularity effect, as shown in figure 2.
This enhancement effect from safety factor is not predicted
in equation (13) since it is only valid for a sufficiently large
safety factor (¢ > 3), which is consistent with the fact that
the enhancement in the exact numerical solution almost dis-
appears for g > 5, as shown in figure 2. Consequently, there
exists a special safety factor as a so-called ‘sweet spot’ for
experimental observations of triangularity effects on GAM
frequency. The special ¢ value depends on other shaping para-
meters and is about 3.5 for parameters used in figure 2. In
addition, it should be pointed out that the discrepancy between
analytical and numerical results still exists in the large ¢ limit,
about 1.3% for w(d =0.3)/w(d =0) at g= 10, as shown in
figure 2. This discrepancy actually results from terms of order
O(€®) neglected in the transition process from equations (12)
to (13). Moreover, equation (3), the MHD result of Sorokina
et al, is plotted in figure 1, and it is mainly the Shafranov shift

1.15 T T T T 1.15
A TCV
Numerical, s;=0 A A

LI0OF — — Numerical, 5,=0 A s 1110
~— . A I
T — - — Analytical, s;=0 s .
© . s 2
3 — - - — Analytical, s;=0 s P
% 1.05F Eq. (3) A P ’/,/' 41.05
3 [

Z-"
1.00 11.00
0.95 L L 0.95
-0.2 . . 0.1 0.2 0.3

Figure 1. Normalized GAM frequency vs triangularity §. The
numerical curves are plotted according to the exact numerical
solution of the original dispersion relation equation (12). The
analytical curves are according to the asymptotic analytical solution
equation (13). The TCV experimental data (blue triangle point) are
the same as figure 5(b) in [33] (courtesy of Z. Huang and S. Coda).
In the numerical and analytical curves, on the basis of best guess
measurements of TCV result, g =3.57,k =1.3,¢ =0.2,5, =0,
A’ = —0.35 are adopted according to [33] in the case where TCV
parameters uncertainty exists.

1.20 T T T 1.20
—— 6=0.4, numerical
— — 6=0.3, numerical
----- 0=0.3, analytical
115} — - — $=0.2, numerical[] L15
lcT — - - =06=0.1, numerical
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] i N
2 o) .~ 1.10
3 | ogmmmmmc et T T T T T ]
'— l' - \ R - =
1.05 L , . e —em . - 1.05
y b T
T P PP PORT PR
Pt
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Figure 2. Normalized increasing rate of GAM frequency vs safety
factor ¢ for different triangularity §, with k = 1.3, =0.2,s, =0,
ss =0and A’ = —0.35. The numerical and analytical solutions are
from equations (12) and (13), respectively.

gradient A’ that leads to the distinction between the curves
of equations (3) and (13). In figure 1, A’ = —0.35 is adop-
ted by referring to A’ =0,—0.1,—0.36,—0.62 used in [33]
and experimental A" ~ [—0.4,—0.2] [22]. Then, the GAM fre-
quency dependence on 0 at different values of A’ is plotted as
figure 3, which clearly indicates that § effects on GAM fre-
quency are weakened as A’ increasing from —0.4 to —0.2 for
both ss = 0 and s5 = 9.
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Figure 3. Normalized GAM frequency vs triangularity ¢ for different values of A’, (a) ss = 0, (b) ss = . The numerical curves are plotted

according to equation (12) and ¢ =3.57,k = 1.3, =0.2,s,, = 0.
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Figure 4. Normalized GAM damping rate vs triangularity § for
different safety factor ¢, with k = 1.3, =0.2,s,, = 0,56 =0 and
A’ = —0.35. The numerical and analytical curves are according to
equations (12) and (14), respectively.

For triangularity effect on the GAM damping rate, addi-
tional harmonic transit resonances are induced by nf in
wy,wy and k,|Vr|p; due to shaping effects and thus intro-
duce terms exp(—¢?/n?) in the damping rate equation (14),
which increase quickly with n. In addition, w itself is a func-
tion of triangularity as equation (13) and damping rate v o
exp(—(?/n?) is sensitive to the value of GAM frequency.
Therefore, a better choice is direct numerical calculation in
the original dispersion relation equation (12) especially for a
small g, as shown in figures 4 and 5. In figure 4, it is found that
the increasing triangularity significantly increases the damp-
ing rate when ¢ is not too large, and the numerical damping
rate saturates as ¢ increases to a certain value (about 0.3 in
figure 4). In other words, GAM is more easily damped for a
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Figure 5. Normalized GAM damping rate vs safety factor g for
different triangularity &, with kK = 1.3,¢ = 0.2,s,, = 0,55 = 0 and
A’ = —0.35. The numerical and analytical curves are according to
equations (12) and (14), respectively.

positive triangularity and more resistant for a negative trian-
gularity. Figure 5 not only reveals the discrepancy between
the analytical and numerical results, but also indicates that the
damping rate rapidly decreases to zero with the increase of g,
which is consistent with that under a circular cross-section.

5. Summary

In the present work, the shaping effects on GAM, in par-
ticular the triangularity effects, are investigated by revisiting
gyro-kinetic equations and employing Miller local equilibrium
[26] for tokamaks with the non-circular cross-section. The dis-
persion relation of GAM is obtained as equation (12), and
the asymptotic analytical results, equations (13) and (14), are
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derived for a sufficiently large safety factor (typically, g > 5).
Both the asymptotic analytical and the exact numerical results
show a nearly linear increasing frequency with triangularity ¢
and a relatively weakened dependence for negative §, which
are consistent with TCV observations on the trend [33] and
the previous analytical result equation (3) from ideal MHD
model, as shown in figure 1. Although the analytical solution
indicates that the strength of triangularity effect on the GAM
frequency is only dependent on the inverse aspect ratio € and
Shafranov shift gradient A’, numerical calculations show that
it is also significantly influenced by the safety factor, as shown
in figure 2. For rough shaping parameters of TCV as used in
figure 2, the increase in frequency with increasing triangular-
ity reaches its maximum for safety factor values of about 3.5,
which means it is better in a not too large ¢ when observing tri-
angularity effects experimentally. In figure 4, the damping rate
of GAM is found to increase quickly with the triangularity for
a not too large safety factor and then saturate above a certain
value of § (about 0.3 in figure 4). The GAM frequency and
damping rate presented analytically and numerically in this
paper can provide a convenient and instructive estimation to
the investigation of shaping effects, especially the triangular-
ity effects on GAM applied to relative tokamak experiments.
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