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Abstract
This paper reports a new numerical scheme to simulate the radio-frequency (RF) induced RF
sheath, which is suitable for a large 3D simulation. In the RF sheath boundary model, the
tangential component of the electric field (Et) is given by the gradient of a scalar electric field
potential. We introduce two additional scalar potentials for the tangential components of the
magnetic field, which effectively impose the normal electric displacement (Dn) on the plasma
sheath boundary condition via in-homogeneous Neumann boundary condition and constrain the
tangential electric field on the surface as curl-free (∇×Et = 0). In our approach, the non-linear
sheath impedance is formulated as a natural extension of the large thickness (or asymptotic)
sheath limit (Dn = 0), allowing for handling both asymptotic and non-linear regimes seamlessly.
The new scheme is implemented using the Petra-M finite element method analysis framework
and is verified with simulations in the literature. The significance of non-linearity is discussed in
various plasma conditions. An application of this scheme to asymptotic RF sheath simulation on
the WEST ICRF antenna side limiters is also discussed.

Keywords: ICRF, full-wave simulation, RF sheath

(Some figures may appear in colour only in the online journal)

1. Introduction

Waves in the ion cyclotron range of frequency (ICRF) are
widely used for heating fusion plasmas, and will continue
to play a crucial role in heating of burning plasmas such as

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

ITER [1, 2]. Many fusion ICRF heating experiments, how-
ever, reported detrimental accumulation of core impurity con-
tents during ICRF operation [3–12]. On the surface of plasma-
facing components, a thin electron-depleted layer called a
sheath is formed. When the radio-frequency (RF) wave is
injected into plasma, the non-linearity of the sheath I-V char-
acteristic curve leads to the rectification of the RF electric
field oscillation, creating a DC potential in the direction of
accelerating ions to thematerial surface.With sufficiently high
RF power injection, it is anticipated that the induced poten-
tial is much larger than what is determined by static sheaths
resulting from thermal electrons. The consequent larger ion
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bombardment has been considered a root cause of impurity
increase during ICRF operation (RF sheath) [13, 14].

Our eventual goal is to build a computational model which
can predict the RF sheath voltage and the associated impur-
ity release in a fully integrated manner, where the ICRF wave
propagation and absorption in hot core plasmas and geometric-
ally complicated 3D antennas and plasma-facing components
are all incorporated. Recent progress in RF full-wave simula-
tion using massively parallel high-performance computers has
already made it possible to simulate the ICRF wave propaga-
tion in tokamak plasmas using a 360-degree 3D volumetric
computational domain with a realistic antenna model [15–17].
Therefore, it is a natural next step to consider integrating the
RF rectified potential model. However, an appropriate form for
including the RF sheath voltage development physics in such
large-scale full-wave simulations is not yet fully developed.

Because the RF sheath is physically very thin, a boundary
condition (BC)model to represent the sheath effects using zero
thickness surface was proposed (‘RF sheath BC’) [18]. Using
such an RF sheath BC in global RF field full-wave simulation
has attracted considerable attention in the RF theory and com-
putational community [19–28].

However, even with this simplification, using an RF sheath
model in a 3D full-wave simulation is known to be difficult,
as mentioned by several authors in the literature [13, 25, 28,
29]. Indeed, at present, a majority of published works are lim-
ited in 2D slab geometry simulation. And, in order to gener-
ate a sheath voltage prediction on a 3D surface, a technique
of stacking multiple separate 2D sheath simulations has been
commonly used, where each 2D slice is interfaced with 3D
RF simulation without sheath BC [30, 31]. Another modelling
technique was to introduce a finite thickness thin layer which
is physically meshed to simulate the properties of an equival-
ent RF sheath [32]. In this approach, the sheath is a part of a
simulation domain, not a boundary. It is yet to be demonstrated
if this approach scales to large and geometrically complicated
ICRF antennas on fusion devices.

There have been mainly two different approaches to using
the RF sheath BC in global RF wave simulations [13]. One
is to use the full form of parameterized non-linear sheath
impedance [26, 33] (‘full form’ approach), and the other one
is based on the expansion of wave field assuming a large
sheath thickness (‘expansion’ approach) [20].While those two
approaches both aim to describe the same non-linear RF sheath
physics, the mathematical representation appears rather differ-
ent. As a result, they look somewhat disconnected. Therefore,
we revisit those existing approaches and discuss the difference
and commonality of these two models. The purpose of this
step is neither to review the literature nor to find new phys-
ics behind the RF sheath rectification. Instead, our hope is to
establish a better, organized perspective of existing RF sheath
theory and to guide our development of a new RF sheath BC
formulation useful in 3D full-wave simulations. We also dis-
cuss so-called DB BC (Dn = 0 and Bn = 0, where Dn and Bn

are the normal component of the electric displacement and
the magnetic field, respectively) [34–36]. It is mainly studied

outside the fusion community, but actually has a close connec-
tion with the ‘expansion’ approach.

A main contribution of the present work is to propose a
third way of formulating the RF sheath BC. It reformulates
the RF sheath physics using the magnetic scalar potential and
the Helmholtz decomposition. Mathematically, this formula-
tion should yield an identical result to the simulation using
the full form of the non-linear sheath impedance. However,
in our view, it is more suited as a BC used in the bound-
ary value problem of Maxwell equations. We implemented
our approach with the open source Petra-M framework, which
uses the MFEM library for the finite element method (FEM)
discretization engine [37]. MFEM is an open-source finite
element library which allows for using arbitrarily high-order
discrete functional spaces in the de-Rham complex [38, 39].
Then, we verify it by benchmarking the simulation results with
previous literature.

One can also view the proposed formulation as a gener-
alization of the ‘expansion’ approach to a non-linear electro-
magnetic simulation. In fact, the new formulation can handle
both non-linear and asymptotic limits seamlessly. We discuss
the impact of non-linearity in various plasma parameters using
the simulation geometries discussed in the existing literature.
As mentioned earlier, our goal is to use the new formulation in
a large 3D full-wave simulation with a realistic representation
of plasma-facing components and RF antennas in tokamaks
and stellarators. As a step towards this goal, we demonstrate
the use of the asymptotic RF sheath model on the WEST 3D
ICRF antenna side limiters [11, 12].

This paper is structured as follows. In the next section, we
compare the existing two approaches of using the RF sheath
BC in the global full-wave simulations. In the third section,
we present our new formulation to implement the RF sheath
BC in detail. The fourth section shows the simulation results
including the model verification efforts and the initial applic-
ation to realistic 3D simulations on the WEST tokamak. We
summarize this paper, after a short discussion in section 5.

2. RF sheath models

A central idea of an RF sheath BC is that there is a scale sep-
aration between the size of space where the RF wave propaga-
tion is considered, and the thickness of the sheath layer on
the material surface. This scale separation permits the sheath
physics to be collapsed into a BC and justifies using an elec-
trostatic approximation inside the sheath layer. This allows for
defining the tangential component of RF electric fieldEt on the
plasma-sheath boundary as a gradient of sheath potential ϕe as

Et =−∇ϕe, (1)

where ϕe is a scalar field defined on surface. Throughout
this paper, except for equations (4)–(6), ∇, ∇·, ∇× and ∆
are differential operators on surface. The sheath potential ϕe

is determined by the sheath impedance zsh and the electric
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displacement normal to the surface Dn (≡ D ·n, where n is
the normal vector on the plasma-sheath boundary) as follows
[13],

ϕe = iωDnzsh(|ϕe|). (2)

Here, zsh is a function of local plasma parameters, such as
density and temperature, and |ϕe|. The latter is explicitly writ-
ten to emphasize that the sheath impedance is a non-linear
function of |ϕe|. Note that we use ϕe for the RF driven sheath
voltage, instead of VRF found in the literature, in order to
reserve the subscript for distinguishing several scalar poten-
tials introduced in this paper.

In addition to the local RFwave amplitude, the sheath phys-
ics depends on local background plasma parameters. Thus,
a series of sheath impedance models are developed, where
the parametric dependence on background plasma properties
are handled using a set of analytical functions [26, 33]. The
latest version [33], called the generalized sheath impedance,
includes electron, ion, and displacement current components,
and includes the angle of the magnetic field with respect to
the material surface, making it applicable to a broad range of
situations found in fusion devices. In the RF sheath modelling
using this ‘full-form’ approach, the boundary value problem of
theMaxwell’s equations is coupledwith equation (1) under the
constraints given by equation (2). In [22, 23, 26, 40], the rfSOL
code was developed to solve such a coupled non-linear system
in 2D slab geometry. The code uses the finite element discret-
ization, and the resultant non-linear system is solved using the
Newton–Raphson method.

The ‘expansion’ approach splits the fields into successive
approximations, using the inverse of sheath thickness, δ. In
[20], the expansion form was derived with the electrostatic
approximation in the capacitive sheath limit (ω ≫ ωpi) in a
stratified geometry. If we adopt the same approach, in an elec-
tromagnetic field, such an expansion would be written as fol-
lows,

E= E(0) +(λcrit/δ)E(1) . . . (3)

where λcrit/δ ≪ 1 is the non-dimensional expansion para-
meter, while λcrit is a characteristic length discussed in [20].
The key point that as the sheath thickness increases, only
the 0th order term, which is independent of the sheath thick-
ness, remains important (‘wide sheath’ or ‘asymptotic limit’).
Formally, this asymptotic limit can be expressed as zsh →∞,
while maintaining ϕe finite. Then, from equation (2), it is seen
that Dn has to be zero so that ϕe remains finite. As discussed
below, the normal component of magnetic field, Bn (≡ B ·n),
is also zero, and this BC is summarized as Dn = 0 and Bn = 0.
More recently, Tierens et al. [28] assessed this asymptotic case
without using electrostatic approximation and formed exact
solutions analytically and numerically.

Comparing ‘full-form’ and ‘expansion’ approaches, we
notice that equation (1) is not used explicitly in the latter.
Equation (2) is not necessary either if one uses the asymp-
totic limit. Instead, ϕe is evaluated afterwards by solving an

auxiliary Poisson equation. In [20, 28], the right-hand side
of the Poisson equation was given based on the divergence
of the electric displacement. However, we can also evaluate
this right-hand side by the surface divergence of Et without
the approximation discussed in section 5.3 in [13]. Then, the
important difference is that while the ‘full-form’ approach
uses the relationship in equation (1) to compute the Et from
ϕe, the ‘expansion’ approach uses it in the opposite direction.

In the literature, the ‘expansion’ approach only demon-
strated a complete non-linear simulation with the electro-static
approximation [20]. What we consider here is to take the elec-
tromagnetic field solution obtained in the asymptotic limit
(Dn = 0 and Bn = 0) and use it in the non-linear iteration.
Our motivation to seek such a path is the potential numerical
robustness of integration, as opposed to the differentiation, by
reducing a small spatial scale error. It is rather obvious that
once ϕe is obtained from Et, we could use equation (2) to eval-
uateDn. At this point,Dn would not be zero, therefore we need
to impose such non-zero Dn for solving the Maxwell equation
making the complete loop of non-linear iteration.

It is illustrative to compare the difference between non-
linear iteration schemes used in the ‘full-form’ approach and
what we are considering here using figure 1. In the RF sheath
simulation, the global electric field simulation (E(3D) in the
figure) and the sheath potential ϕe are coupled via Et and Dn

(four boxes in the figure). The goal of non-linear iterations is to
find a set of these four parameters which satisfies the physics
relationship (equations (1) and (2)) self-consistently. The left
one is the ‘full form’ approach. Four parameters are linked in
the way following the loop in the clockwise direction. Namely,
Dn is an output from the RF solver, which is used to compute
ϕe. Then, Et is evaluated using the gradient of ϕe, which is then
fed to the RF field solver as the Dirichlet BC. This approach
is reasonable if the electric field is expressed using a continu-
ous element and thus the normal component of displacement
behaves well. However, when using a basis function which
defines a discontinuous Dn, the gradient is not well-defined.

Our approach goes over the loop in the opposite direction as
shown on the right of the figure. The input to the RF solver is
Dn (Neumann BC). Consequently, Et is an output from the RF
solver. Note that, in the RF solver, the electric field is further
constrained to satisfy∇×Et = 0, so that it guarantees that ϕe

exists. Then, Dn is computed using equation (2).
In order to use our new non-linear iteration scheme, how-

ever, we need to impose Dn in the RF field solver. Note that
this is not a common form for imposing the BC. As discussed
below, a natural way for imposing the BC is to define it by
using the tangential components of an electric field or mag-
netic field. It is worth mentioning, however, that the asymp-
totic limit (Dn = 0 and Bn = 0) is identical to the DB bound-
ary in [34–36]. It is important to realize that although this
asymptotic limit is sometimes referred as ‘insulating limit’, it
is different form the insulating BC (Ht = 0), which would have
been implemented without complexity. Indeed, [28] showed
that there are two independent solutions, one of which does
not satisfy the insulating BC. As far as we are aware, however,
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Figure 1. Comparison between two iteration schemes. E(3D) is a step to solve the Maxwell equation (equation (4)). The rest are the
evaluation on the RF sheath BC. [Left] (a) Et is imposed as Dirichlet BC, (b) Dn is evaluated from RF field, (c) sheath potential is evaluated
and (d) Et is given by the gradient of ϕe. [Right] (A) Et is read from RF field, (B) ϕe is computed from Et, (C) Dn is evaluated from ϕe, and
(D) Dn is imposed to compute RF electric field.

it hasn’t been discussed how this DB BC is implemented in a
regular 3D FEM RF solver setting using the H(curl) elements
[41, 42] (see also Ch. 8 of [43]) .

Therefore, in the next section, we first derive the formu-
lation based on a magnetic scalar potential to impose the
asymptotic limit. Then, we extend the asymptotic sheath BC
to the case with non-zero Dn by introducing the second scalar
potential. Two scalar potentials used here define curl-free and
divergence-free components of tangential magnetic field, and
thus it is an application of the Helmholtz decomposition.
Such a decomposition is always possible when the boundary
shape is simply connected. Indeed, the decomposition already
appears in the form of the analytical expression derived in [28]
(see equation (46) and the following paragraph).

3. Formulation using magnetic potential

3.1. Radio frequency wave physics model in Petra-M

The radio frequency module in Petra-M is designed as a gen-
eral purpose electromagnetic field solver. It allows for the
solution of the Maxwell’s equations for the electric field in
the frequency domain using a broad range of BCs via a user
friendly graphical interface [44]. This implementation is based
on the well-know, widely used weakform formulation of the
boundary value problem of the Maxwell equation [43, 45].
Therefore, we briefly summarize its physics level description
as an introduction to our magnetic potential based RF sheath
formulation.

In Petra-M, we use the convention of exp(−iωt) for time
dependence. The Maxwell equation is written as follows,

∇×
(
1
µ
∇×E

)
− (ω2 ϵ+ iωσ)E= iωJext, (4)

where Jext is an externally imposed current, ω is the angu-
lar frequency, ε, µ, and σ are the permittivity, permeability
and conductivity, respectively. In order to specify the physics
problem uniquely in a bounded domainΩ, On the boundary of
Ω, ∂Ω, one of following two BCs are imposed.

n×E= E0 on ∂Ω1 (5)

n×
(
1
µ
∇×E

)
+ γn×n×E=Q on ∂Ω2 (6)

where ∂Ω= ∂Ω1 ∩ ∂Ω2, E0 and Q are known vector field,
and γ is a known scalar parameter. Equation (5) specifies the
tangential component of electric field (Dirichlet BC), while
equation (6) is called the Robin BC.

In equation (4), ε represents the plasma response to the RF
field. In the present work, we use the cold plasma approxima-
tion for ε. On the local coordinate system, in which the back-
ground magnetic field is oriented in the Z direction, ε is given
by [46]

ϵ=

 S −iD 0
iD S 0
0 0 P

 (7)

where, using the angular frequency ω, the cyclotron frequency
ωcs and plasma frequency ωps for particle species s, the Stix
notations are given as

S ≡ 1−
∑
s

ω2
ps

ω2 −ω2
cs

(8)

D ≡
∑
s

ω2
psωcs

ω(ω2 −ω2
cs)

(9)
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P ≡ 1−
∑
s

ω2
ps

ω2
. (10)

In Petra-M, the electric field is discretised using the H(curl)
basis functions and the Galerkin method is used to construct a
linear system from these equations. Spatial dependence of the
background plasma parameters appears in ωps and ωcs, which
is incorporated by the quadrature integration during linear sys-
tem construction. Notice that physics quantities appearing in
equations (5) and (6) are tangential components of E and H.
Therefore, we need to translate the sheath BC to a formulation
conformal to these forms.

3.2. Asymptotic sheath BC

We consider the situation that a portion of the computational
domain boundary (∂Ω3) is given by the asymptotic sheath BC
figure 2. We further restrict our consideration to the case ∂Ω3

is a simply connected boundary surface and is surrounded by a
perfect electric conductor (PEC, i.e. Et = 0 on the circumfer-
ence of ∂Ω3). Then, we can express this BC in the following
three pairs of conditions, which are equivalent to each other.
The first form is based on the normal component of fields,
given by

Dn = 0, (11)

Bn = 0. (12)

The second form is, using the Ampére and Faraday’s laws,

∇×Ht = 0 (13)

∇×Et = 0, (14)

where subscript t indicates the field components tangential to
the boundary ∂Ω3. Note that∇ here is an operator acting on the
plasma-sheath surface. The third form uses scalar potentials,
given by

Ht =−∇ϕh (15)

Et =−∇ϕe. (16)

Because these three are equivalent, we have the freedom to
mix them conveniently. Ht directly relates to 1

µ∇×E appear-
ing in equation (6), and thus, equation (15) can be implemen-
ted using γ= 0 andQ= 0 in equation (6). Also, the tangential
component of the electric field is well defined in the H(curl)
element space. Therefore, we choose the following pair.

Ht =−∇ϕh (17)

∇×Et = 0. (18)

Figure 2. Schematics of simulation geometry. Simulation domain
Ω. is surrounded by boundary, ∂Ω, which is defined either by
equation (5) (on ∂Ω1) or equation (6) (on ∂Ω2). A part of boundary
facing plasma (∂Ω3) is defined by the sheath BC discussed in this
paper. Note that a part of ∂Ω1 connecting to ∂Ω3 is assumed to be
PEC (E0 = 0 in equation (5)).

Note that ϕh on the right-hand side is unknown. In other
words, we redefine our physics problem as a problem to find
the vector electric field E and the additional scalar function
ϕh simultaneously. This is possible because ∇×Et = 0 is an
additional scalar equation and the number of unknowns and
number of equations matches. One could reach the same pair
starting from constraining the Maxwell equations to satisfy
equation (18) using a Lagrange multiplier. The discussion here
gives the physical meaning of the multiplier.

Taking the divergence of equation (16) yields

∆ϕe =−∇ ·Et. (19)

Thus, once electric field is computed, we can obtain the elec-
tric scalar potential, which satisfies equation (16), by solving
this Poisson equation with an appropriate BC. Because our
sheath BC is surrounded by PEC, ϕe is constant on the bound-
ary. In the asymptotic limit, we have a freedom to choose
this constant arbitrarily. In the non-linear case discussed next,
however, this constant would be determined by the non-linear
iteration.

One may wonder that, when using the H(curl) finite ele-
ment, this right-hand side is not well defined, since Et in the
H(curl) space is discontinuous in the direction normal to the
surface mesh boundary. Proper treatment is to eliminate this
divergence by using integration by parts after multiplying by a
test function. One will see that two boundary integration terms
from equation (19) cancel out, leaving the contribution from
the domain integration.

3.3. Nonlinear sheath BC

In this case, we have the non-linear relation between Dn

and ϕe (equation (2)). Because we have already evaluated ϕe

via equation (19), we use this relationship to evaluate Dn as
follows,

Dn =−iϕe/ωzsh(|ϕe|). (20)

5



Nucl. Fusion 63 (2023) 026024 S. Shiraiwa et al

The non-linear sheath BC has Dn ̸= 0 on ∂Ω3, and the rela-
tionship equation (17) does not hold. The last step of our deriv-
ation is to use Dn as a BC for the RF solver. We split Ht into
two terms (the Helmholtz decomposition) as follows,

Ht =−∇ϕh +n×∇φh, (21)

where the first term is the irrotational (curl-free) component,
which is the same as the asymptotic limit (equation (17)), and
the new second term is the solenoidal (divergence-free) com-
ponent. Taking the curl of this equation yields

∇×Ht =−∇2 φh = iωDn (22)

where the second relationship is used to obtain φh from Dn.
As before, ϕh is solved together with E in the same way as
the asymptotic case. Therefore the change from the asymp-
totic limit is to add the new divergence-free contribution to the
Neumann BC (equation (6)), when solving for the Maxwell’s
equations.

One can see that this new approach incorporates naturally
the asymptotic limit. It is given as the first non-linear iteration
when ϕe = 0 is used as an initial value. It makes the direct
comparison between the asymptotic limit and the non-linear
sheath rather straightforward, without requiring to implement
the DB boundary separately.

3.4. Numerical smoothing of sheath potential

As far as the RF sheath physics is concerned, the set of
equations discussed in previous sections should be sufficient.
Indeed, in the majority of simulation cases presented in the
following section, the non-linear iteration converged even by
using a simple fixed-point iteration. However, under certain
conditions, we observed a significant slow down of the con-
vergence without using the following numerical smoothing. A
similar smoothing of the tangential electric field is discussed in
[22, 23]. In our implementation, we apply a diffusion smooth-
ing on the sheath potential, and use the smoothed potential as
an argument of the sheath impedance.

Dn =
ϕe

iωzsh(⟨ϕe⟩)
(23)

⟨ϕe⟩− a2s ∇2 ⟨ϕe⟩= ϕe (24)

where as is the smoothing width. In the simulations presented
in this paper, as = 5 mm is used when it is necessary. We also
performed a sensitivity test (not shown here), confirming that
the result does not change more than a few percent. A further
discussion on this smoothing is given in section 5.

4. Numerical results

4.1. Verification of implementation

The formulation we discussed in the previous section was
implemented in the Petra-M finite element analysis frame-
work. In our implementation, a linear system to go around the

loop shown in figure 1(left) is constructed as a block matrix.
This resultant non-linear equation is solved by either a fix-
point iteration or a damped Newton–Raphson method, using
the MUMPS direct [47, 48] solver as a linear solver. In order
to verify the implementation, our results are compared with
simulation models discussed in the literature.

In the asymptotic regime, we use a vacuum simulation dis-
cussed in [28] to which an analytical solution was obtained.
The FEM mesh geometry is the unstructured tetrahedral mesh
with a uniform mesh size of 7 mm as shown in figure 3(left).
The asymptotic sheath BC is imposed on theY-Z surface indic-
ated in the figure. The computed Ey, Ez, and ϕe are shown in
figure 4, which agree well with figures 8, 9, and 10 in [28].

Since both Dn and Bn are only weakly constrained in our
linear system, it is important to check the convergence of these
two. Figure 5 shows how |En| and |Bn| change together with
the sheath potential solution for three different finite element
basis function polynomial orders, P = 2, 4, and 6. Since this
case is vacuum,we showEn instead ofDn. It is clearly seen that
while ϕe results are the same among three cases, |En| and |Bn|
continue to decrease to zero, as anticipated. The convergence
of |En| and |Bn| up to P= 6 is also shown on the right, showing
a nearly order of magnitude reduction of |En| and |Bn| with
each element order refinement.

In the non-linear regime, we performed an extensive com-
parison with the series of 2D slab simulations using the rfSOL
code discussed in [26, 27], where the generalized non-linear
sheath impedance composed of electron, ion and displacement
current contributions is used [33]. Note that the complete data-
set for the series of simulations in these references is publicly
available (see URL links in references), making them well
suited for the RF sheath code benchmarks.

An example of parallel electric field (E||) profiles computed
by Petra-M using our new formulation is shown in figure 6.
This example was prepared as a benchmark against figure 11
in [27]. The simulation geometry and plasma parameters are
exactly the same as the reference (detailed in the figure cap-
tions). However, in the Petra-M simulation, the shaped sheath
BC edge was meshed by 72 grid points and then the inside of
the computational domaichann was meshed using the unstruc-
tured triangles. We also used the H(curl) elements and a higher
order basis function between P = 3 to 6, while the reference
cases are performed using a quadrilateral meshwith the second
order continuous elements. The result shows excellent agree-
ment with the reference simulation including the wave amp-
litude, phase, and wavelength.

Figure 14 in [27] shows the sheath potential when the
sheath is generated on a flat and shaped (with bump) surface
using the geometries shown in figure 3(right). Figure 7 shows
the sheath potential computed by Petra-M (lines), benchmark-
ing again the rfSOL simulations (circles). Again, simulation
geometry and all plasma parameters are identical to the ones
used in [27], except for the mesh and FEM element basis func-
tion and order. This comparison shows an excellent agreement
within ∼1% difference of max(|ϕe|).

We note, however, that two highKmax cases with the shaped
wall geometry (Kmax = 800 and 1000 Am−1 in figure 7(right))
are slow to converge even using a damped Newton method.
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Figure 3. Finite element geometry used in comparison with [28] (left) and [27] (right). The sheath BC is imposed on the boundaries
indicated by arrows. On the left one, the wave is excited on the X-Z surface using the essential BC. On the right, the wave is excited by the
RF currents imposed on the antenna.

Figure 4. Sheath potential ϕe, and z-component and y component of electric field (Ez, and Ey) for the asymptotic sheath model.

Moreover, the obtained electric field profile for such cases
shows a numerical pollution by very short wavelength oscil-
lations. So far, the good agreement shown in the figure was
obtained only with the numerical smoothing discussed in
section 3.4, where the smoothing distance is chosen to bemuch
smaller than the bump height (as = 5 mm).

In [22, 23], a similar grid-scale oscillation and numerical
smoothing on the surface electric field is also discussed.While
the rfSOL code did not need to use the smoothing for those par-
ticular cases in figure 7, a spatial smoothing of sheath potential
could be justified based on the same physics insight mentioned
in [22, 23]. In fact, at a high antenna current, due to a shal-
low intersection angle of the magnetic field to the sheath BC,
the projection of electron jitter distance (qE||/meω

2) tends to
be large (∼a few mm). Additionally, spatial smoothing could
naturally occur, when the RF simulation is coupled with the
DC potential field simulation [20].

4.2. Comparison of asymptotic and non-linear RF sheath BC

Our new formulation facilitates using both asymptotic limit
and non-linear sheath BCs. Therefore, we compare the sheath
potentials predicted by two models using a range of plasma
parameters in figure 8.

These simulations prepared using the same geometry and
parameters discussed in figures 7 and 11 of [26]. The flat

sheath BC geometry in 2D, similar to the one shownwith black
in figure 3(right), is used, and the antenna currents are swept
in a wide range to see the effect of non-linearity (see figure
caption and [26] for the details of plasma parameters). The
asymptotic prediction is linearly proportional to the antenna
current amplitude, as anticipated. The non-linear simulation
predicts a more complicated dependence. Generally speak-
ing, the non-linearity tends to reduce the sheath potential at
low antenna current compared to the asymptotic model. Then,
at a sufficiently high antenna current, the sheath potential
tends to recover the linearity. This behaviour is reasonable,
considering that the asymptotic limit is a wide sheath width
limit.

The difference between the non-linear and the asymptotic
prediction is, however, plasma parameter dependent and it
could be large even at a very high ϕe. One key parameter
seems to be the proximity to the slow wave resonance (S= 0)
which, in the case of ICRF is closely connected with the
presence of the sheath-plasma resonance (see section 6.2 of
[13] and references therein). Sheath-plasma resonance con-
ditions, if present, lie at intermediate antenna current, and
can result in very large sheath potentials. The simulations in
figure 8 are performed at a density sufficiently separated from
the slow wave resonance density (∼3× 1017m−3). With the
plasma parameters discussed in figure 7 in which the density
is very close to the resonance density (2.49× 1017m−3), we

7
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Figure 5. Convergence of ϕe (shown in A, B, and C panels), Ex (shown in D, E, and F panels), and Bx (shown in G, H, and I panels) on the
RF sheath boundary. The polynomial orders of P = 2, 4 and 6 are used on the top, middle and bottom rows, respectively.

Figure 6. Parallel electric field E|| computed by Petra-M for the same conditions used in figure 11 in [27]. A shaped RF sheath boundary
was located on the right side of the antenna. The antenna location is indicated by the vertical line inside the computational domain. Plasma
parameters are the same as the reference, namely: electron density of ne = 1× 1017m−3, background magnetic field of B= (4,0,0)T, and
antenna current of Jy(y) = Kmax cos2( π

Lant
(y− y0)) with Kmax = 600 Am−1.
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Figure 7. Comparison of ϕe computed by our formulation (solid lines) and the reference results in [27] (circles) using the flat (A) and
shaped sheath boundary (B), respectively. See [27] for the details of plasma parameters used in these simulations.

Figure 8. The sheath potential predicted by asymptotic (blue circle) and non-linear (red cross) sheath model. The geometry and plasma
parameters discussed in figures 7 and 11 in [26] are used. The background magnetic field is B= (1,0,0)T, and (A) kz = 160 m−1,
ne = 1.0× 1017 m−3, (B) kz = 320 m−1, ne = 1.0× 1017 m−3, (C) kz = 160 m−1, ne = 2.0× 1018 m−3, and (D) kz = 320 m−1,
ne = 2.0× 1018 m−3 are used, respectively.

found that the difference between asymptotic and non-linear
prediction is significant even at ϕe ∼ 1 kV (not shown). This
observation agrees qualitatively what is shown in equation
(4.17) in [20], which shows the expansion parameter is
inversely proportional to

√
S.

4.3. Initial application on the WEST ICRF side limiter

As a demonstration of computing the RF sheath potential with
realistic tokamak antenna geometry, we applied the new RF
sheath implementation to the side wall of the WEST ICRF
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Figure 9. ICRF propagation and asymptotic sheath potential
induced on the WEST side limiter. 1MW of ICRF power at 53 MHz
injected. Uniform SOL density of 3×1017 m−3, and parabolic core
density profile with the peak density of 4× 1019 m−3 is used.

antenna. We used a WEST ICRF antenna 3D model gener-
ated from the CAD geometry, in figure 9. For this demonstra-
tion, we used the asymptotic sheath model to avoid the need of
solving a large linear system many times. The edge density is
chosen to be 3× 1017m−3, which is much larger than the res-
onance density (∼3× nres), while a parabolic density profile
with the central density of 4× 1019m−3 is used inside the last
closed flux surface. As for a magnetic field profile, an equilib-
rium profile with the central magnetic field 3.5 T is used. Note
that we are using the cold plasma approximation equation (7)
even in the core region and enhanced collisions are used to
mimic a strong single pass power absorption.

On the enlarged view in figure 9 (left), the computed RF
sheath potential for 1MWof ICRF power injection is shown. It
can be seen that there are two large peaks in the top and bottom
regions of the side limiter. There is also a smaller peak slightly
above the mid-plane. Interestingly, the predicted sheath poten-
tial is in the range of 100–200 V, suggesting that the RF sheath
could be indeed a physics mechanism relevant to the ICRF-
induced impurities. Although this initial demonstration was
not meant to make a direct comparison with experiments, it
is worth mentioning that the predicted sheath potential pro-
file is in qualitative agreement with the IR camera and visible
spectroscopy signal reported in [49] (figure 4(a)).

5. Discussion

As mentioned in the introduction, several previous works
indicated the difficulty of using the RF sheath in global RF
full-wave simulations. Our test implementation of the ‘full-
form’ approach, which was attempted before implementing
the proposed formulation, was not satisfactory either, due to
the difficulty of achieving reliable non-linear convergence.

In our view, it appears that the difficulty arises from two
aspects. First, the de-facto standard choice of basis func-
tion in the RF electric field solver is the H(curl) edge ele-
ment, and accurately evaluating Dn is at least non-trivial if
not impossible. This is because the H(curl) element does not
hold the information of the normal component of fields on

the degree of freedoms (DoFs) associated with the bound-
ary. Second, such a normal component is discontinuous on
the mesh boundary and therefore the gradient can not be well
defined in the finite element sense. It is likely that evaluating
ϕe, and especiallyEt, from suchDn tends to introduce a numer-
ical noise, causing a slow down of the non-linear convergence.
Note that the 2D rfSOL code, which we used for verification,
uses the continuous elements and does not have this difficulty.

Our alternative approach circumvents these difficulties. It
uses Et from the RF solver, this information can be simply
gathered from the DoFs directly associated with the boundary.
Instead of taking the gradient of ϕe, integrating Et (the Pois-
son equation) is also numerically advantageous, because the
integration acts like a low pass filter, making it less sensitive
to short-scale length errors.

It is worth to discuss the small wavelength oscillations
in the two high current cases on figure 7(right), which we
observed when the smoothing is not used. While we do not
have a enough support to believe that they are a real wave
branch, it may be too early to exclude such a possibility. One
possibility is a surface wave mode. The RF sheath is an elec-
tron depleted thin layer, creating the sign change of dielectric
property. Thus, it may allow for a surface wave mode which
can propagate only along the boundary similar to that dis-
cussed in [19, 50]. The sheath plasma wave resonance is in
fact just such a wave mode localized near the plasma-sheath
boundary.

We emphasize, however, that these two high current cases
are the only two extreme cases, for which we observed the
difference in code convergence behaviour. Although we only
focus on a limited number of cases in this paper, we per-
formed benchmark simulations using all relevant simulations
discussed in the above two references. In general, we obtained
an excellent agreement with the difference of a few per cent,
despite the fact that the two approaches are very different not
only from the formulation point of view, but also from the
FEM implementation including the type of basis function used
to represent the fields. This gives good confidence in the phys-
ics formulation and implementation. A broader code bench-
mark effort of the RF sheath model including other simulation
codes is in progress in the RF SciDAC project [51] and will be
published in the future.

Our eventual goal is to predict the non-linear sheath poten-
tial induced on plasma-facing components of fusion devices
using a realistic 3D antenna geometry and PFC models in a
torus. The result demonstrated withWEST ICRF antenna geo-
metry in this paper is, however, performed using the asymp-
totic limit. Extending the present 3D asymptotic simulation to
the non-linear regime is straightforward from the mathemat-
ical formulation point of view. However, it requires solving a
large linear system a number of times, and therefore we con-
sider it outside the scope of the present work. Furthermore, an
important ingredient of such an integrated RF sheath simula-
tion is to use a more accurate plasma wave power absorption
model in the tokamak core region. One possibility is our pre-
vious work to integrate the TORIC spectral solver in the core
with the FEM-based edge simulation [52]. However, it needs
to be expanded to handle non-linearity in the edge region,
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and this point will be addressed in our future work. Addition-
ally, we are planning to work closely with the WEST team
to perform a detailed comparison between the code prediction
and experiments. A crucial measurement for such validation
includes the RF rectified potential in SOL regions.

6. Summary

In this paper, a new formulation based on magnetic field
scalar potentials is developed in order to incorporate the RF
sheath BC in 3D FEM-based RF full-wave simulations. In the
new formulation, we evaluate the sheath potential by integ-
rating the tangential electric field, instead of evaluating the
tangential electric field from the gradient of the sheath poten-
tial. From the sheath potential, we compute the normal com-
ponent of displacement, which is then used to constrain the
global RF field simulation using a form of non-homogeneous
Neumann BC. The relationship between the existing two
approaches for the RF sheath BC, ‘full-form’ and ‘expansion’
approaches, is also discussed. A clear perceptive of existing
theories guided us for developing our third way, and from this
perspective, our approach can be viewed as an extension of the
‘expansion’ approach, eliminating the electrostatic wave field
approximation.

The new approach was implemented in the Petra-M FEM
analysis platform, and benchmarked against several cases
in the literature [26–28]. Overall, excellent agreement was
observed. Additionally, our approach facilitates both the
asymptotic (‘wide’ sheath) and non-linear sheath models in
a seamless manner, allowing for direct comparison of the two
models more easily.

Using the newly developed formulation, the RF sheath
potential on the WEST side wall limiter was predicted in the
asymptotic limit. As far as the authors are aware, this is the first
demonstration of using the RF sheath BC directly in a 3D elec-
tromagnetic field simulation without relying on simplification
techniques such as stacking the 2D simulations. The predicted
sheath potential profile ranges from 100 to 200 V for 1MW of
injected ICRF power, and it has two large peaks near the top
and bottom parts of the limiter surface and a smaller peak near
the mid-plane.

The present work paves a path to include the RF-induced
sheath voltage prediction in a large-scale integrated RF full-
wave simulation.
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