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Abstract
Recent inertial confinement fusion experiments have shown primary fusion spectral moments
which are incompatible with a Maxwellian velocity distribution description. These results
show that an ion kinetic description of the reacting ions is necessary. We develop a theoretical
classification of non-Maxwellian ion velocity distributions using the spectral moments. At the
mesoscopic level, a monoenergetic decomposition of the velocity distribution reveals there are
constraints on the space of spectral moments accessible by isotropic distributions. General
expressions for the directionally dependent spectral moments of anisotropic distributions are
derived. At the macroscopic level, a distribution of fluid element velocities modifies the
spectral moments in a constrained manner. Experimental observations can be compared to
these constraints to identify the character and isotropy of the underlying reactant ion velocity
distribution and determine if the plasma is hydrodynamic or kinetic.

Keywords: neutron spectroscopy, inertial confinement fusion, ion kinetics, fusion product
spectroscopy, reaction kinematics

(Some figures may appear in colour only in the online journal)

1. Introduction

In thermonuclear fusion, the large Coulomb barrier leads to
the small population of high energy ions being the dominant
reactants. The reaction rates and product energies are there-
fore dependent on form of the reactants’ velocity distribution,
especially for the high energy tails. The strong converging
shocks in inertial confinement fusion (ICF) experiments are
expected to give rise to ion kinetic effects [1] and suprathermal
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fusion products upscatter reactants, populating the tails of
the velocity distribution [2]. In magnetic confinement fusion,
anisotropic heating schemes (such as ICRF and NBI) can
lead to anisotropy in the ion velocity distribution with respect
to the magnetic field [3, 4], often described using drifting
bi-Maxwellians [5].

The products of fusion reactions are used to diagnose the
conditions in ICF experiments. This is often done with the
neutrons from the D(T, n)α and D(D, n)3He reactions. Fusion
product spectroscopy is a particularly powerful technique as it
is uniquely sensitive to the ion velocity distribution. However
in current analysis [6], inference of thermodynamic ion tem-
peratures requires an assumption of equilibrium reactant distri-
butions, such as the formulae given by Brysk [7]. The effect of
non-equilibrium distributions needs to be further investigated
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to help understand experiments where ion kinetic effects play a
large role. There is a wealth of ICF literature [1, 8–13] explor-
ing ion kinetic effects, such as thermal decoupling, species
separation, ion diffusion and Knudsen tail depletion, showing
that these kinetic phenomena have a significant impact on
the behaviour of the fusing plasma and ultimately the fusion
performance.

In this work, we will consider the fusion reactions between
two reactant distributions which are not in equilibrium i.e. the
distributions are not Maxwellians at the same temperature. The
case studies given in this analysis will be focussed towards
neutron spectroscopic signals. However, the results are gen-
eral and can be applied to any 2-to-2 body fusion reaction
products, e.g. the protons from D(3He, p)α, and are relevant
to fusion product spectroscopy of any fusing plasma. We will
consider both isotropic and anisotropic velocity distributions
to provide the most general theory possible—isotropy here
means the distribution function has full rotational symme-
try in velocity space and is therefore a function of particle
speeds only.

2. Theory of spectral moments

Given the reactant distributions it is possible to numerically
calculate the fusion product spectra [14–17]. However, this
can be a computationally intensive task for the full 6D integral
and does not lend itself well to understanding experimentally
measured spectra. Instead, it is preferable to evaluate the
moments of the fusion product spectra, without specifying its
functional form. Simple fitting models can incorporate these
moment calculations and are well suited to experimental anal-
ysis. We will therefore build upon the analysis of Ballabio et al
[18] which calculates the product spectra moments for single
ion temperature reactants, with relativistic corrections. We will
restate the relevant background theory and results here before
considering non-equilibrium cases.

For the 2-to-2 reaction 1 + 2 → 3 + 4, the outgoing energy
of product particle 3 is given by [18]:

E3 =
1

2M2

[
(M2 + m2

3 − m2
4)E + λ1/2Pμ′

]
− m3,

λ = M4 + m4
3 + m4

4 − 2M2m2
3 − 2M2m2

4 − 2m2
3m2

4,
(1)

where (E,�P) is the four-momentum of the centre of mass
(CoM) motion, M is the invariant mass, mi is the mass of the
ith species and μ′ is the cosine of the angle between the CoM
velocity and CoM product velocity. The classical kinematic
approximation to the above is:

E3 =
1
2

m3v
2
cm +

m4

m3 + m4
(Q + K)

+ vcm

(
2m3m4

m3 + m4
(Q + K)

) 1
2

μ′ (2)

K ≡ 1
2

m1m2

m1 + m2
|�v1 − �v2|2, (3)

where �vi is the velocity of the ith species, �vcm is the centre
of mass velocity, K is the relative kinetic energy and Q is

Table 1. Table of neutronic spectral moment coefficients for
D(T, n)α and D(D, n)3He from both classical and relativistic
treatments.

E0 = α0Q
(MeV) α0 αK

αV

(MeV/c2)
β0

(MeV2/c2)

D(T, n)α
Relativistic 14.0284 0.7976 0.7964 476.8 8852.7
Classical 14.0481 0.7987 0.7987 469.8 8799.4

D(D, n)3He
Relativistic 2.4487 0.7491 0.7489 471.0 1535.8
Classical 2.4494 0.7493 0.7493 469.8 1534.2

the energy released in the reaction. The terms linear in μ′

will vanish when averaging over isotropic distributions [18].
For anisotropic distributions, this term cannot be neglected. In
this introductory section we will focus on the well-established
isotropic theory. The spectral moment analysis has been
extended to consider anisotropic distributions in section 2.

By averaging over the reaction rate, one can then derive
expressions for the mean and variance of the outgoing particle.

〈E3〉 = α0Q + αK〈K〉+ αV〈v2
cm〉+ · · · , (4)

〈E2
3〉 − 〈E3〉2 = β0〈v2

cm〉+ · · · , (5)

where 〈〉 indicates a reaction rate average:

〈x〉 = 1
〈σv〉

∫
d3v1 f 1(v1)

∫
d3v2 f 2(v2) · xσ|�v1 − �v2|, (6)

〈σv〉 =
∫

d3v1 f 1(v1)
∫

d3v2 f 2(v2)σ|�v1 − �v2|, (7)

where σ and 〈σv〉 the fusion cross section and reactivity
respectively. The distribution function of the ith species is
denoted f i. The coefficients αn and βn are functions of the
particle masses only and have been calculated by Ballabio et al
[18], see quantitative examples in table 1.

The largest relativistic correction is to the product energy at
zero reaction energy, E0 = α0Q, as the Q-value (∼1–10 MeV)
is generally orders of magnitude larger than typical fusion
plasma reactant energies (∼1–100 keV). We can ensure errors
at about the∼1% level by keeping the E0 relativistic correction
when defining the mean shift of the fusion products but using
classical kinematics elsewhere, which greatly simplifies the
calculations.

Traditionally, when analysing the fusion product spectra,
measurements are made of the shift and variance of the spectral
peak. Only the dominant terms for these properties are kept in
the following:

ΔE = 〈E3〉 − E0 = αK〈K〉+ αV〈v2
cm〉, (8)

σ2 = β0〈v2
cm〉. (9)

Therefore only the averages of K and v2
cm are needed to cal-

culate the cumulants of the primary spectrum to first order. It
has been shown for a stationary Maxwellian that the neutron
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spectral variance (or width) is a measure of thermodynamic
temperature [7]. We will use this fact to define a spectral
temperature as follows:

Ts =
(m1 + m2)

3β0
σ2 =

(m1 + m2)
3

〈v2
cm〉. (10)

In the case of a stationary Maxwellian it will, by definition,
coincide with the thermodynamic temperature but this is a
special case. Another unique property of single temperature
Maxwellians is that they exhibit no correlation between K and
v2

cm. For more general distributions a correlation will exist,
introducing a cross section dependence to 〈v2

cm〉.
These changes to spectral peak mean and variance can

be understood through the physical mechanisms of energy
conservation and Doppler broadening respectively. First, the
mean shift occurs as the energy from the reactants must be
passed onto the products. The energy in the reactants is split
between the relative kinetic energy, K, and the energy asso-
ciated with the motion of the CoM. Fusion cross sections are
strong increasing functions of K due to the Coulomb barrier
penetrability, which exponentially suppresses the cross section
at low energies. Therefore, reactions will preferentially occur
at large K.

Purely anti-parallel, matched speed, collisions (�v1 = −�v2)
will have the highest reaction probability and a low CoM
velocity, however, the occupied phase space volume available
for these reactions is typically low. This competition between
maximising the reaction cross section and the number of avail-
able particle pairs leads to the ‘average’ reaction occurring
between particles of different momenta leading to a non-zero
vcm. This CoM velocity causes each emitted fusion product
to pick up an individual Doppler shift from the CoM motion.
Due to the range of CoM velocities, the summed effect creates
Doppler broadening of the spectral peak. This Doppler broad-
ening has traditionally be attributed to thermal temperature
[7, 18] and fluid velocity variance [19, 20], however these are
just two specific manifestations of how a range of CoM veloc-
ities is produced. In summary, the product spectra depends on
the velocity distribution of the reactants which have sufficient
energy to react. The mean of the product energies is sensitive
to the average relative and CoM kinetic energy in reacting
particle pairs while the variance is only sensitive to the range of
CoM velocities. For isotropic distributions, these relationships
can be calculated using equations (8) and (9).

So far, we have shown that at the microscopic scale of a
binary collision the reaction kinematics determines the product
energies. At the mesoscopic scale we consider a local, spatial
point where there is a velocity distribution of reactants. The
distribution of velocities combined with the microscopic reac-
tion kinematics gives rise to a product energy spectrum. The
product spectral moments at the mesoscopic scale depend on
reaction rate averages of the microscopic scale kinematics. At
the macroscopic scale of a laboratory experiment we expect
the reactant velocity distributions to vary spatially and tempo-
rally. Each discrete spatial location, or fluid element, produces
its own product energy spectrum. Reactions occur locally so
each fluid element’s emitted spectrum depends only on its
own local reactant velocity distribution. The fluid elements

Figure 1. Diagram showing how fusion product spectra are
determined at increasingly larger spatial scales. At the microscopic
scale, we show a fusion reaction between particles of species 1 and 2
(in cyan and purple) emitting a product of species 3 (in green) at an
energy determined by the relative and centre of mass velocities and
reaction Q. At the mesoscopic scale, species 1 and 2 have velocity
distributions (in cyan and magnetic) producing a spectrum of fusion
products. Three example reactions are shown with final product
velocities shown in green, red and blue. At the macroscopic scale,
we have a collection of fluid elements each emitting their own local
spectra. The fluid velocities of these fluid elements introduce
Doppler shifts to the emitted spectra. The total spectrum is the sum
of all the local fluid element spectra.

may also have fluid velocities introducing additional Doppler
shifts. The total emitted spectrum is the summation of all
fluid elements’ local spectra. Thus, moving between scales
introduces an additional level of averaging. This process is
summarised in figure 1, no description of ICF fusion product
spectra is complete unless all scales are accurately captured.

3. Interpretation of spectral moments

3.1. Mesoscopic scale

The spectral moments of fusion product spectra are directly
related to the reactant kinematics. A large range in CoM veloc-
ities leads to Doppler broadening and an increased spectral
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Figure 2. Diagram of the (ΔE, Ts) spectral moment space.
Collisions of high K and low v2

cm produce spectra with moments in
the upper left. Collisions of low K and high v2

cm lie in the lower
right—assuming that the distribution of �vcm is isotropic. Also shown
is the Maxwellian locus which gives a 1-to-1 relationship between
ΔE and Ts. Changing the thermodynamic temperature simply moves
one along this locus and the rest of the space remains inaccessible.

temperature. High relative velocities, or relative kinetic ener-
gies 〈K〉, cause an upshift in the spectral mean. Therefore, we
can learn about the reactant distributions by observing where
their product spectra lie in (ΔE, Ts) space. When considering
a single reaction, momenta-matched collisions have zero CoM
velocity at finite K. Thus, reactant distributions which max-
imise the number of such collisions will exhibit a large ΔE
and low Ts. The opposite is then true for distributions that
have large momenta disparity in their collisions, creating a
beam-target like reaction. We can therefore use the coordinates
in (ΔE, Ts) space to comment on the character of the colli-
sions. Figure 2 shows these observations graphically with the
Maxwellian locus between these extrema.

3.1.1. Isotropic distributions. Isotropic distributions are those
which are functions of energy only and therefore are fully
symmetric in velocity space. To expand our understanding
of spectral moments to all isotropic ion velocity distribu-
tions we will consider isotropic monoenergetic distributions.
These distributions are shells in velocity space and there-
fore any general isotropic distribution can be constructed
from a superposition of these shells. By varying the relative
speed of the reactants we can access the limiting cases of
momenta-matching and beam-target discussed above. It is
important to note that, as these distributions are isotropic,
one cannot ensure all collisions have zero CoM velocity as
all collision angles are equally likely. Thus, these monoen-
ergetic distributions produce non-monoenergetic spectra with
Doppler broadening produced by the range of collision
angles.

Figure 3 shows the (neutronic) spectral moments for the
D(D, n)3He and D(T, n)α reactions for the limiting cases of
monoenergetic distributions. Full derivation of the spectral
moments of monoenergetic distributions is given in appendix
A. As shown in figure 3, for the reactions and energy ranges
we have considered, these limiting cases create a convex area
in (ΔE, Ts) space. This convexity originates from the shape

Figure 3. The spectral moments for (top) D(D, n)3He and (bottom)
D(T, n)α for limiting cases of monoenergetic distributions. The red
lines show the momenta-matched (m1|�v1| = m2|�v2|) cases, the blue
and cyan lines the beam-target (v1 = 0 or v2 = 0) cases. The
Maxwellian locus from Ballabio [18] is shown with a dashed line on
both plots.

Figure 4. A colour plot showing the monoenergetic shell spectral
moment decomposition of a 10 keV D Maxwellian undergoing
D(D, n)3He reactions. The colour scale denotes the value of the
reactivity-weighted probability distribution function—this was
obtained via a Monte Carlo sampling of the Maxwellian and has
been normalised to its peak value. The red diamond denotes the
centroid of the PDF. The dot-dashed curves show the limiting cases
for monoenergetic shells and the solid line shows the Maxwellian
locus.

of the fusion cross section. Given these convex boundaries,
any point lying on a line connecting two points within these
limits will also lie within the limits, this is a restatement of
Jensen’s inequality [21]. It is also possible to decompose any
other isotropic distribution into an infinite series of monoen-
ergetic shells. The reactivity weighted moments for all the
shells will recover the moments of the original distribution.
This, combined with the convexity of the monoenergetic shell
limits, shows that all isotropic distributions will have spectral
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moments which lie between the monoenergetic distribution
limits, see figure 3.

To illustrate this result, we decompose a Maxwellian into
monoenergetic shells and calculate the spectral moments for
these shells. These necessarily lie within the limits calcu-
lated above. We then form a probability distribution function
(PDF) of (ΔE, Ts) weighted by the reactivity. The centroid
of the 2D PDF returns the spectral moments of the original
Maxwellian distribution. The results of this analysis are shown
in figure 4. It is seen that a large fraction of the reactions
occur close to the momentum-matched condition. This leads
the Maxwellian locus to lie close to the isotropic distribution
upper limit.

We cannot expect spectral moments to be unique properties
of given reactant distributions as the 6D velocity space is
reduced down to a single coordinate in (ΔE, Ts). Indeed, we
have found all isotropic distributions only occupy a fraction
of (ΔE, Ts) space and degeneracy is exhibited in figure 4. We
can however determine distribution function properties such
as isotropy and the proportion of momenta-matched collisions
from spectral moments.

3.1.2. Anisotropic distributions. Anisotropic distributions
will be able to access a wider range of (ΔE, Ts) space.
A trivial example of this is two linear beams of reactants
colliding head-on which will exhibit no Doppler broadening
but will have a mean shift dependent on the relative kinetic
energy. However, the spectral moment analysis becomes
more complex when relaxing the isotropy condition as
the angular term in the product energy (cf equation (2))
will not necessarily average to zero. Therefore, the fusion
product spectrum itself can become anisotropic. While
calculating the spectrum from anisotropic distributions is
computationally tractable [14, 17], we will instead consider
the spectral moment approach for general reactant velocity
distributions.

In a similar fashion to Munro’s work [20] on Maxwellian
spectra, one can derive expressions for the spectral moments
which depend on the emission direction. We will expand on
this technique by considering general velocity distributions.
The expansion parameter will be the ratio of reactant velocities
and the fusion product velocity which we expect to be small
as the thermal scale is order keV and nuclear scale is order
MeV. The full derivation is given in appendix B, we will
quote the main results here for the directionally dependent
reactivity,

{σv} = 〈σv〉
(

1 +
2
v0
ΩT〈�vcm〉+O

(
1
v2

0

))
, (11a)

mean shift,

{ΔE}= αK〈K〉+ αV〈v2
cm〉+ m3v0Ω̂

T〈�vcm〉

− m3Ω̂
T M(〈�vcm〉)Ω̂− 1

3
m3|〈�vcm〉|2

+ 3m3Ω̂
T〈M(�vcm)〉Ω̂ +O

(
1
v0

)
,

(11b)

and spectral temperature:

{Ts}=
m1 + m2

3
〈v2

cm〉 − (m1 + m2)Ω̂T M(〈�vcm〉)Ω̂

− m1 + m2

3
|〈�vcm〉|2 + (m1 + m2)Ω̂T〈M(�vcm)〉Ω̂

+ O
(

1
v0

)
,

(11c)
where we define the M(�x) operator which constructs a rank 2
symmetric traceless tensor from input vector �x:

M(�x) = �x ⊗ �x − |�x|2
3

𝟙, (11d)

and {} denotes a directionally dependent spectral moment, Ω̂
is the emission direction and v0 is the fusion product velocity
at K = vcm = 0. The tensorial expansion used above is equiva-
lent to a spherical harmonic expansion [22] where the angular
mode of the terms can be determined by the order in emission
direction i.e. terms with no Ω̂ dependence are isotropic, linear
in Ω̂ are mode 1, quadratic in Ω̂ are mode 2, etc. In this analysis
we have neglected the anisotropic parts of the differential
reaction cross section—this is a good assumption for the ion
energy range of interest for current ICF experiments. Thus,
the anisotropy created in the spectrum is purely a result of the
Doppler shifts from CoM velocities.

A few key observations can be made from these direc-
tionally dependent moment expressions. Firstly, the 4-π aver-
ages of the reactivity, mean shift and spectral temperature
return the same expressions as for isotropic distributions, i.e.
equations (7), (8) and (10). Note that for the mean shift and
spectral temperature the 4-π average requires weighting by
the directional yield/reactivity, see appendix B for details. Sec-
ondly, if the reacting ions have a net CoM velocity, 〈�vcm〉 
= 0,
then spherical harmonic modes 1 and 2 terms are introduced
to the mean shift and mode 2 to the spectral temperature. The
mean shift mode 1 is more significant (orderv0 term) and arises
from the Doppler shift introduced by the net CoM velocity.
A bulk fluid flow gives a net CoM velocity, experimental
measurements of bulk flows using the mode 1 shifts in the
neutron spectral mean have been performed at OMEGA [23]
and NIF [6]. However, bulk fluid flows are not the only mech-
anism to introduce drifts to the reacting ions. For example,
thermal gradients set up ion drifts which introduce a spectral
shift [24]. The less significant mode 2 term is due to a cross
term between the energy shift and kinematic beaming of the
Doppler shift. While the emission is isotropic in the CoM
frame, a net CoM velocity will cause beaming in its direction
in the lab frame—see equation (11a). Note that if we work in
the rest frame of the reacting ions then these terms will vanish.
Finally, a mode 2 anisotropy in the reacting ions’ distribution
of CoM velocities will induce a mode 2 spectral anisotropy.
This is given through the 〈M(�vcm)〉 term. The axes of the
spectral anisotropy will be aligned with those of the CoM
velocity distribution.

These expansions share great similarity with the hydrody-
namic theory of spectral moments by Munro [20]. A hydro-
dynamic plasma is one in which each fluid element has a
Maxwellian distribution with every ion species having the
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same temperature and fluid velocity. For a hydrodynamic
plasma, the distribution of vcm is determined by both tempera-
ture and fluid velocity while the distribution of K is a function
of temperature only. We see that the lowest order terms in
the spectral moments only exhibit spherical harmonic modes
up to 2. Indeed, a macroscopic hydrodynamic plasma can
exhibit the same angular dependence as a anisotropic kinetic
plasma. In the following section we will show how we can
differentiate between ensembles of hydrodynamic and some
classes of kinetic plasma.

3.2. Macroscopic scale

Within a fusing plasma, fusion spectra are built up from the
products from reactions occurring in different regions of veloc-
ity and coordinate space. Each local point emits a spectrum
depending on averages over velocity space. The fusing plasma
as a whole emits a spectrum which is the culmination of many
different, local spectra, cf figure 1. Thus, the statistics of this
averaging is of great importance to the spectral interpretation.

We have calculated the moments from a locally uniform
region of the fusing plasma or ‘fluid element’. However, the
fluid elements which make up the fusing plasma may have
non-zero velocity themselves, if the mean particle velocity of
the distribution is non-zero. Boosting the product spectra back
to the lab frame introduces a Doppler shift. Literature results
for Maxwellian distributions with non-zero fluid velocity
[15, 20, 25] have shown that these Doppler shifts introduce an
anisotropic shift in the mean and additional broadening to the
fusion peak. To first order in fluid velocity (assuming u � v0),
the non-relativistic modification to the spectral moments are
given by:

ΔEm = {ΔE}+ m3v0〈u‖〉+ · · · (12)

Ts,m = {Ts}+ (m1 + m2) Var(u‖) + · · · (13)

where ΔEm and Ts,m are the measured spectral moments, ΔE
and Ts are the fluid rest frame spectral moments, u‖ is the
component of the fluid velocity along the emission direction.
As the action of the fluid velocity is the same for any distri-
bution, these results are general—for reactions of differing
species the fluid velocity is the mass weighted drift velocity.
The anisotropic components of the fluid velocity mean shift
[23, 26] and the fluid velocity variance [27] can be extracted
given sufficient measurements. We can therefore compare the
isotropic terms in the (ΔE, Ts) space. These extracted isotropic
moments are not equal to those calculated without fluid veloc-
ity as there will remain an isotropic component to the fluid
velocity variance which cannot be removed, this will inflate
any measured spectral temperature.

If, in the fluid rest frame, the energy shift is an increasing
(ΔE′ > 0), concave (ΔE′′ < 0) function of spectral tempera-
ture, the effects of burn-averaging and fluid velocity variance
lead to the following inequalities:

ΔEiso
m ≈ 〈ΔE〉 � ΔE(Ts,m), (14)

Tmin
s,m � 〈Ts〉. (15)

Figure 5. A diagram showing the (ΔE, Ts) space and the various
constraints on the form of the reactant distributions. For example,
point 1 can only have been produced by anisotropic velocity
distributions. Point 2 must have been produced by either isotropic
and anisotropic distributions—the isotropic distributions must
include a majority of momenta-matched reactions due to the
proximity to the isotropic upper limit. Finally, point 3 is the only
point which could have been produced by a collection of
Maxwellians. While the above schematic is general, note that the
exact positions of the constraint curves in (ΔE, Ts) space depend on
the specific reaction.

Therefore, these effects move the observed spectral moments
below the rest frame moments curve. The single temperature
Maxwellian locus is a increasing, concave function and there-
fore an ensemble of hydrodynamic plasma will have spec-
tral moments below the Maxwellian locus. Observations of
spectral mean shifts and temperatures above the Maxwellian
locus are therefore direct evidence of non-equilibrium distri-
butions. As discussed above, spectral moments which lie above
the isotropic momenta-matched limit must have originated
from anisotropic reactant distributions. Below the Maxwellian
locus, one must consider whether the deviation can be rea-
sonably explained by the inclusion of fluid velocity and tem-
perature variance. These variances can be quantified with
hydrodynamics simulations. Large discrepancies can also be
an indication of deviation from the equilibrium reactant distri-
butions. For a hydrodynamic plasma to produce moments far
below the Maxwellian locus would require low temperature
and turbulence, i.e. large isotropic fluid velocity variance. This
plasma would have a low average reactivity and therefore
would give a low fusion yield. Using the hydrodynamic theory
of the spectral moments, either simultaneous measurement
of isotropic mean shift and spectral temperature for a single
reaction or measurements of spectral temperatures for two
reactions, e.g. D(T, n)α and D(D, n)3He, would allow a thermal
temperature to be extracted. If the yield calculated from this
temperature was inconsistent with the measured yield this
would be an additional indication that the deviation from
the Maxwellian locus was due to kinetic effects. The various
classifying regions of the (ΔE, Ts) space are summarised in
figure 5.

In this work, we have been describing the fusion product
birth spectra. The primary spectrum that reaches a detector can
deviate from the birth spectrum due to transport effects such as
scattering and attenuation. Munro [20] provides formulae for
how these transport effects can be quantified. If unaccounted
for, these transport effects modify the spectral moments of

6



Nucl. Fusion 62 (2022) 126015 A.J. Crilly et al

the primary spectra and the constraints on the birth spectra
(ΔE, Ts) can be violated. These transport effects are depend
on the amount of scattering and therefore are more important
at high areal density.

4. Conclusions

The fusion product spectrum is sensitive to the reactant veloc-
ity distribution function. Ion kinetic effects can distort these
distributions away from the equilibrium Maxwellian. There-
fore, fusion product spectroscopy can be used to detect the
presence of ion kinetic effects. This was achieved by studying
the behaviour of the spectral moments: the spectral mean shift
and energy variance (or spectral temperature). In this work, an
analysis based on the work of Ballabio [18] was used to investi-
gate the transformation from reactant distribution functions to
the spectral moment space. This allows one to relate features
of the reactant distributions to the resultant spectral moments,
these are intimately linked through reaction kinematics.

Monoenergetic distributions were used to evaluate the lim-
iting cases for isotropic distributions. When the reactant veloc-
ities were momenta matched, the mean shift was maximised
for a given spectral temperature. When one of the reactants
was stationary, the mean shift was minimised for a given
spectral temperature. Since all isotropic distributions can be
decomposed into a series of monoenergetic shells, we showed
that these cases provide limits for any isotropic reactant distri-
bution. The Maxwellian locus lies between these limits.

General expressions for the directionally dependent spec-
tral moments for anisotropic distributions were derived. These
showed that the lowest order terms contain spherical har-
monics modes up to 2. The spectral anisotropy depends on
the distribution of centre of mass velocities as these intro-
duce Doppler shifts in the fusion products. The 4-π averaged
moments exhibit the same form as that of isotropic distribu-
tions but anisotropic distributions do not exhibit constraints in
the (ΔE, Ts) space. Future work will explore the relationships
between the form of the anisotropic distributions and their
moments.

At the macroscopic level, we considered the effect of a
distribution of fluid elements with varying isotropic reactant
distributions and fluid velocities. As the fluid velocities simply
provide an additional Doppler effect, the upper, momenta-
matched limit still applied even in this case. This analysis
also showed that the Maxwellian locus defines an upper limit
for any hydrodynamic ensemble of fluid elements. Indeed,
recent inertial confinement fusion experiments have shown
primary fusion spectral moments which are incompatible with
a Maxwellian velocity distribution description as the results lie
above the Maxwellian locus [28] but below the isotropic upper
limit for spectral temperatures >10 keV.
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Appendix A. Monoenergetic distributions

In this appendix, we will consider isotropic monoenergetic
distributions and derive formulae for their spectral moments.
These distributions are shells in velocity space and therefore
any general isotropic distribution is a superposition of these
shells. We consider reactions between two shells, each defined
by their particle speeds, v1 and v2. Since the cross section is a
function of relative velocity only, we will also change to a set of
variables which better describe the range of possible relative
velocities. The maximum (v1 + v2) and minimum (v1 − v2)
relative velocities are used to define the following:

Kmax =
1
2

m12(v1 + v2)2, (A1)

χ =
v1 − v2

v1 + v2
, (A2)

where we note that χ is a signed quantity depending on the
ordering of v1 and v2 and takes values between −1 and +1.
The benefit of this variable set is that one can maintain a fixed
Kmax, which sets the cross section for the highest energy reac-
tion, and varyχ, which controls the ‘character’ of the reactions
i.e. the partition of kinetic energy between the reactant species.
The average relative kinetic energy, spectral temperature and
mean shift are given by the following expressions:

〈K〉 = KmaxLK , (A3a)
Ts

12 = KmaxLT , (A3b)

ΔE = Kmax(αKLK + αTLT ), (A3c)

where we have defined scaling functions:

LK ≡
∫ 1
|χ| x4σ(x2Kmax)dx∫ 1
|χ| x2σ(x2Kmax)dx

, (A3d)

LT ≡ 2
3

[
1
4

m1 + m2

m12
(1 + χ2) +

1
2

m1 − m2

m12
χ− LK

]
,

(A3e)

and, in the LK integrals, x =
√

K/Kmax.
We have also defined a new moment coefficient,

αT =
3

m1 + m2
αV , (A4)
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such that Ts can be used over 〈v2
cm〉 by including the appro-

priate coefficient. The function LK gives the average relative
kinetic energy, 〈K〉, as a fraction of the maximum relative
kinetic energy, Kmax. The function LT gives 2/3 times the
average centre of mass energy as a fraction of the maximum
relative kinetic energy, Kmax, where the factor of 2/3 comes
from equipartition (T = 2

3 E).
A few key observations can be made from these general

expressions:
Firstly, the Coulomb barrier penetrability exponentially

suppresses the contributions to LK at low values of K (or x).
For low Kmax, this will lead to LK → 1. In velocity space, only
antipodal points (head-on collisions) lead to successful fusion
reactions. In contrast, particles which are in the vicinity of each
other in velocity space have negligible probability of reaction.
As Kmax increases, reactions with K < Kmax have sufficient
energy to overcome the Coulomb barrier leading to a decrease
in LK .

Secondly, for a given Kmax, the minimum of LT occurs at
(or just above) the momenta matched condition for the species
velocities:

χmin =
m2 − m1

m1 + m2
+

2m12

m1 + m2

∂LK

∂χ

∣∣∣∣
χ=χmin

. (A5)

As discussed in the previous point, the Coulomb barrier pene-
trability suppresses contributions from low x and thus ∂LK

∂χ
�

1 for small χ. We arrive at the physically intuitive result
that when the species momenta are matched, we obtain the
lowest Doppler broadening as many fusion reactions occur
with low or vanishing CoM velocity. In this case, the spectral
temperature and mean shift are given by:

Ts
12 =

2
3

Kmax(1 −LK |χ=χ∗), (A6)

ΔE =
2
3

Kmax

[(
3
2
αK − αT

)
LK |χ=χ∗ + αT

]
, (A7)

χ∗ ≡ m2 − m1

m1 + m2
. (A8)

Plots and functional fits to LK |χ=χ∗ are given below.
Finally, large differences in the velocities of reactants

(χ→±1) reduces the range of relative velocities possible,
leading to reactions only occurring at Kmax i.e. LK → 1. In
this beam-target limit, LK and LT both tend to constants and
therefore the spectral temperature and mean shift become
directly proportional. The constants of proportionality are as
follows:

ΔE = kTs
12, (A9)

k =

⎧⎪⎪⎨
⎪⎪⎩

3m2

2m1
αK + αT , χ = +1,

3m1

2m2
αK + αT , χ = −1.

(A10)

The Bosch–Hale [29] fusion cross sections of D(D, n)3He
and D(T, n)α were used to evaluate the momenta-matched
relative kinetic energy scaling as a function of Kmax. The results
of this evaluation are shown in figure 6.

Figure 6. The momenta-matched relative kinetic energy scaling as a
function of Kmax for D(D, n)3He and D(T, n)α. In can be seen that
the resonance in the DT cross section at ∼60 keV has a strong effect
on the relative kinetic energy.

Table 2. Coefficients for rational fit given in equation (A11). This
fit has a maximal absolute error of 0.003 within range 0 to 200 keV.

D(D, n)3He D(T, n)α

p1 6.79 × 10 3.18 × 10
p2 1.66 × 10 2.70 × 10−2

p3 4.35 × 10−2 6.02 × 10−4

p4 1.49 × 10−4 5.06 × 10−6

q1 7.08 × 10 3.40 × 10
q2 1.91 × 10 6.33 × 10−2

q3 5.89 × 10−2 −6.79 × 10−5

q4 2.33 × 10−4 1.56 × 10−5

A rational function fit of the following form:

LK(Kmax,χ = χ∗) =
1 +

∑4
i=1 piKi

max

1 +
∑4

j=1q jK
j
max

(A11)

is provided for D(D, n)3He and D(T, n)α. Kmax is in units of
keV and the fit was performed using the data shown in figure 6
in the range 0 to 200 keV. The fitting parameters, qi and pi, are
given in table 2.

When calculating the minimum ofLT , we assumed that ∂LK
∂χ

was small due to Coulomb barrier suppression of low energy
reactions. Numerical calculation of the derivative, within the
[0, 200] keV range, supports this argument.

It is noted for D(D, n)3He and D(T, n)α that, for any givenχ,
ΔE is an increasing (ΔE′ > 0), concave (ΔE′′ < 0) function
of Ts. It also follows that if 〈K〉 is an increasing, concave
function of Ts then ΔE will also be. This can be related to
requirements on LK and the fusion cross section. In order for
〈K〉(Ts) to be an increasing function:

0 <
∂

∂Kmax
[KmaxLK] < 1, (A12)

and in order for 〈K〉(Ts) to also be a concave function:

∂2

∂K2
max

[KmaxLK] < 0. (A13)
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Since LK is defined as integrals over the fusion cross section,
these inequalities are constraints on the shape of the cross
section.

Appendix B. Expressions for anisotropic
moments

It is expected that anisotropic velocity distributions will give
rise to anisotropic spectra. Evaluating spectral moments where
we consider the anisotropy of emission requires a more general
expression for the reaction rate weighting which is emis-
sion direction dependent. First, we must start with the full
differential reaction rate and the directional neutron energy
moments:

dR = vr
dσ
dΩ

F(�vcm,�vr)d
3�vcm d3�vr dΩs, (B1)

〈En
3〉 =

∫
En

3δ(v̂3 − Ω)dR∫
δ(v̂3 − Ω)dR

, (B2)

where

• F( �vcm, �vr)—joint probability distribution of �vcm and �vr

given by the product of the reactant velocity distributions,
f 1(�v1[�vcm,�vr]) f 2(�v2[�vcm,�vr]).

• �u3—fusion product velocity in CoM frame
• dσ

dΩ (vr, v̂r · û3)—standard centre of mass frame differen-
tial cross-section with the scattering angle between �vr and
�u3. Hatted vectors are normalised.

Where the Dirac delta ensures that we only consider emis-
sion along a particular direction, Ω. Transformation of vari-
ables is required to integrate out this Dirac delta and produce
a tractable form for theoretical analysis.

First we note that the emission solid angle, Ωs, defines the
direction of the outgoing fusion product velocity in the CoM
frame and therefore dΩs = dû3. Given this, we seek to carry
out the transformation

d3�vcm d3�vr dû3 → d3�vcm d3�vr dv̂3, (B3)

i.e. we need to specify the direction of the outgoing neutron
velocity in the lab frame rather than in the CoM frame (in
which the differential cross section is defined).

The Jacobian determinant for a solid angle transformation
is given by [30]:

dv̂3

dû3
=

u2
3

v2
3

(û3 · v̂3) (B4)

and therefore we require kinematic relations for û3 · v̂3 and v2
3

in terms of known quantities.
Now, using the velocity addition equation from CoM to lab

frame, �v3 = �vcm + �u3, we obtain the relations:

v3 = �vcm · v̂3 +

√
u2

3 − v2
cm + (�vcm · v̂3)2,

û3 · v̂3 =
v3 − �vcm · v̂3

u3
=

1
u3

√
u2

3 − v2
cm + (�vcm · v̂3)2.

We can also find a kinematic relationship between u3 and K
via conservation of energy and momentum in the CoM frame:

u2
3 =

2m4

m3(m3 + m4)
(Q + K),

and therefore we have all terms of the Jacobian, equation (B4),
written in terms of known quantities (�vr,�vcm, v̂3).

Thus, we convert the differential reaction rate to the follow-
ing form:

dR =

[
u2

3 − v2
cm + 2(�vcm · v̂3)2 + 2(�vcm · v̂3)

√
u2

3 − v2
cm + (�vcm · v̂3)2

]

u3

√
u2

3 − v2
cm + (�vcm · v̂3)2

× vr
dσ
dΩ

F( �vcm, �vr)d3�vcm d3�vr dv̂3
(B5)

and in this form the requirement that the emission direction
is along Ω can be trivially satisfied by substituting v̂3 for
Ω. We will use this expression to build a general theory for
anisotropic spectral moments. In particular, we are interested
in the term introduced by specifying a particular emission
direction for the nth order energy moment:

An(K, vcm,Ω) =

[
u2

3 − v2
cm + 2(�vcm ·Ω)2 + 2(�vcm ·Ω)

√
u2

3 − v2
cm + (�vcm ·Ω)2

]n+1

u3

√
u2

3 − v2
cm + (�vcm ·Ω)2

.

(B6)

This will be used in the following sections to calculate the
isotropic and anisotropic spectral moments.

B1. 4π-averaged moments

First, we will show that equations (B5) and (B6) return the
familiar isotropic moment results. To do this we will assume
an isotropic differential cross section and integrate over all
emission directions,Ω. Separating out the angularly dependent
terms and assuming that v̂cm is in the polar direction without
loss of generality, the integration over dΩ involves:

9
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1
4π

∫
An(K, vcm,Ω)dΩ

= v2n
cm · 1

2

∫ 1

−1

[
a + 2x2 + 2x

√
a + x2

]n+1

√
a + 1

√
a + x2

dx

where a =
u2

3
v2

cm
− 1 � 0 and x = v̂cm · Ω. The above integral

can be performed analytically for any given energy moment
order, n. For n = 0, 1 and 2, the integral over dx has the
following values

n = 0: 1

n = 1: u2
3 + v2

cm

n = 2:
1
3

(
3u4

3 + 10u2
3v

2
cm + 3v4

cm

)
.

The results for the isotropic moments for n = 0, 1 and 2 are
then:

n = 0:
∫

vrσF( �vcm, �vr)d
3 �vcm d3�vr = 〈σv〉

n = 1:
m3

2
〈u2

3 + v2
cm〉 = E0 +

m4

m3 + m4
〈K〉+ 1

2
m3〈v2

cm〉

n = 2:
m2

3

12
〈3u4

3 + 10u2
3v

2
cm + 3v4

cm〉 = E2
0

+ E0

(
2m4

m3 + m4
〈K〉+ 5

3
m3〈v2

cm〉
)

+

(
m4

m3 + m4

)2

〈K2〉+ 5m3m4

3(m3 + m4)
〈v2

cmK〉

+
m2

3

4
〈v4

cm〉

where v0 =
√
ηQ and E0 = m3v

2
0/2 are the velocity and

energy of the fusion product for K = vcm = 0. From these
moments we can get the first two cumulants of the spectrum:

〈E3〉 = E0 +
m4

m3 + m4
〈K〉+ 1

2
m3〈v2

cm〉, (B7)

〈E2
3〉 − 〈E3〉2 =

2
3

m3E0〈v2
cm〉

+
m4

m3 + m4

(
〈K2〉 − 〈K〉2

)

+
1
2

m3

(
〈v4

cm〉 − 〈v2
cm〉2

)

+
m3m4

m3 + m4

(
5
3
〈v2

cmK〉 − 〈v2
cm〉〈K〉

)
.

(B8)

These match the classical kinematics results of Ballabio [18]
and Brysk [7]. We have shown that the form of the 4-π
averaged moments for anisotropic distributions match those
of purely isotropic distributions. Therefore, if it is possible
to infer the 4-π averaged moments, we can know we are

comparing the same v2
cm and K moments of the reactant

velocity distribution regardless of any anisotropy.

B2. Anisotropic moments

In experiments, detectors measure spectra along particular
lines of sight so we must understand the anisotropy that
anisotropic distributions introduce to these measurements.
With sufficient measurements, modes of this anisotropy can be
isolated and analysed individually. This analysis has already
been performed for the effect of fluid velocity which intro-
duces a L = 1 mode [20, 23, 26].

For the anisotropic moments, no integration over emission
direction is performed. Instead, Ω is treated as known constant
unit vector and integration over the velocity space of �vcm

and �vr is performed. To simplify the problem, we consider
a small expansion parameter, 1/v0, for expansions of An. We
used Mathematica to accurately perform the expansions to the
required order in v0. We will denote directionally dependent
moments as {x}. First, we must determine the directionally
dependent reactivity as it is used to normalise all energy
moments. This involves expansion of the function A0:

{σv} = 〈σv〉〈A0〉 (B9)

= 〈σv〉
(

1 +
2
v0
〈�vcm · Ω〉+ 3

2v2
0

〈(�vcm · Ω)2 − 1
3
v2

cm〉

+O
(

1
v3

0

))
.

(B10)
As Ω is a constant vector, it can be taken outside the reaction
rate average. This allows us to use a symmetric traceless ten-
sorial notation to easily separate terms by their angular mode:

{σv} = 〈σv〉
(

1 +
2
v0
ΩT〈�vcm〉+

3
2v2

0

ΩT〈M(�vcm)〉Ω

+O
(

1
v3

0

))
, (B11)

where M is the symmetric, traceless rank 2 tensor given by:

M(�x) = �x ⊗ �x − |�x|2
3

𝟙, (B12)

where ⊗ denotes the outer product and 𝟙 the identity matrix.
The spherical harmonic mode of each contribution is given
by the rank of the tensor or, in an alternative view, the order
of term in Ω. As expected all anisotropy is introduced by the
distribution of CoM velocities. This is because K has an effect
on the outgoing energy of the product but not its direction (for
an isotropic differential cross section). All further moments
follow a similar procedure but are normalised by the reactivity.
For the directionally dependent mean energy:

{E3} =
〈A1〉
〈A0〉

. (B13)
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Again, expanding in small parameter 1/v0 allows us to find the
directionally dependent energy shift:

{ΔE} = {E3} − E0 (B14)

=
m4

m3 + m4
〈K〉+ 1

2
m3〈v2

cm〉+ m3v0Ω̂
T〈�vcm〉

−m3Ω̂
T M(〈�vcm〉)Ω̂− 1

3
m3|〈�vcm〉|2

+3m3Ω̂
T〈M(�vcm)〉Ω̂ +O

(
1
v0

)
.

(B15)

Finally, the directionally dependent spectral temperature is
given by:

{Ts} =
m1 + m2

m2
3v

2
0

(
{E2

3} − {E3}2
)

(B16)

=
m1 + m2

3
〈v2

cm〉+ (m1 + m2)Ω̂T〈M(�vcm)〉Ω̂

− (m1 + m2)Ω̂T M(〈�vcm〉)Ω̂− m1 + m2

3
|〈�vcm〉|2

+O
(

1
v0

)
. (B17)

To better illustrate the form of the mode 2 terms consider the
eigenvalues, λ(i)

cm, of M(�vcm) which sum to 0 by definition.
An isotropic distribution will have no preferred direction and
therefore all eigenvalues must be equal to 0. If these eigenval-
ues are not all equal then the mean shift and spectral tempera-
ture will have mode 2 anisotropy aligned with the eigenvectors,
ŵ(i)

cm, of M(�vcm). In a frame aligned with these eigenvectors:

Ω̂T〈M(�vcm)〉Ω̂ = λ(1)
cm(sin2(θ)cos2(φ) − cos2(θ))

+ λ(2)
cm(sin2(θ)sin2(φ) − cos2(θ)),

(B18)

where we have used the traceless property of M to write
λ(3)

cm = −λ(1)
cm − λ(2)

cm. The above expression is equivalent to the
following spherical harmonic expansion:

Ω̂T〈M(�vcm)〉Ω̂ =

√
2π
15

(λ(1)
cm − λ(2)

cm)(Y2
2 + Y−2

2 )

− 2

√
π

5
(λ(1)

cm + λ(2)
cm)Y0

2 . (B19)

Given the properties of the spherical harmonics, rotation of the
axes will maintain an L = 2 anisotropy.

It is important to note that the 4-π averaged moments are not
equal to the isotropic part of the anisotropic moments. This is
due to the reactivity normalisation. To illustrate this, compare
the 4-π average and isotropic mean energy:

〈E3〉4π =

∫
dΩ〈A1〉∫
dΩ〈A0〉

=

∫
dΩ〈A1〉, (B20)

∫
{E3}dΩ =

∫
dΩ

〈A1〉
〈A0〉

. (B21)

Therefore, one must account for the angular dependence of the
reactivity/yield to extract the 4-π averaged moment:∫

{σv}{E3}dΩ
〈σv〉 =

∫
dΩ〈A1〉 = 〈E3〉4π , (B22)

∫
{Y3}{E3}dΩ

Y3
=

∫
dΩ〈A1〉 = 〈E3〉4π. (B23)
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