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Abstract
We present a non-parametric inference of impurity transport coefficients by using charge
exchange recombination spectroscopy measurements of Ne X, Ne VIII, O VIII, and C VI
lines. Due to their close atomic numbers, neon, oxygen and carbon impurity ions are assumed
to have the same diffusion coefficient D and convection velocity v. Unlike conventional
techniques that modulate or perturb the impurity contents, we employ a quasi-stationary
plasma with static impurity profiles. Since the ratio of v to D only describes the equilibrated
profile of the sum of all impurity charge states, steady-state measurements can still decouple D
and v if different charge states are simultaneously observed. We have formulated a
non-parametric analysis framework based on the Bayesian probability theory and conducted
transport coefficient measurements for a Type III ELMy H-mode plasma at ASDEX Upgrade.
The charge exchange reactions with the background neutrals, which are known to affect the
impurity charge state balance, are taken into account by introducing additional free
parameters. While D at the pedestal is close to the neoclassical level (<1 m s−2), a large
diffusion coefficient and a strong outward convection are inferred right inside the pedestal top.

Keywords: tokamak, impurity, Bayesian inference, charge exchange recombination
spectroscopy
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1. Introduction

Controlling impurity ions is a critical requirement for devel-
oping a fusion reactor. Impurity accumulation in the core
region hampers the fusion reactions through the fuel dilution
and radiates energy away through line radiation and enhanced
Bremsstrahlung. However, a proper amount of impurity ions
is likely to be required in the edge region in order to mitigate
the heat load on the plasma facing components [1, 2]. Further-
more, impurities modify the heat transport and even improve
the confinement under some circumstances [3–5]. As such,
simply reducing the impurity contents is not sufficient, and
achieving controllability of impurity ions by understanding
their transport processes is necessary.

Impurity transport is often modeled by using the diffusion
coefficient D and the convection velocity v in a simplified
cylindrical geometry. Observing time transient impurity emis-
sion is a common technique to experimentally determine those
transport coefficients. When there is a drastic change in the
confinement property, e.g. ELM bursts or the formation of an
internal transport barrier, impurity ions redistribute, leading to
temporally evolving impurity emission [6–8]. In the case of
quasi-stationary plasmas, time-evolving impurity profiles can
be created by using techniques such as laser-blow-off [9–11]
(LBO), impurity puffing [12], and ion cyclotron resonance
frequency modulation [13]. The transient impurity emissions
are typically modeled by using an impurity transport solver
STRAHL [14], and the D and v profiles that reproduce the
observations are inferred. When the measurements provide the
time evolution of the total impurity density of one species and
its local flux, D and v can be more directly determined from
the transport equation [6, 12]. Recently, a systematic study on
the model selection in the D and v measurements using LBO
and x-ray spectroscopy has been conducted [9]. The study
reports that the inference problem of D and v is ill-posed in the
assumed diagnostic setup, and the inference results strongly
depend on the choice of the model functions used for repre-
senting the profiles. When the model functions are too simple,
the inferred D and v profiles can be quite different from the true
ones, and the uncertainties become unrealistically small even
though the forward model is in a seemingly reasonable agree-
ment with the data. These results indicate that addressing the
model selection problem and properly estimating uncertain-
ties are crucial in the impurity transport coefficient measure-
ments. Reference [9] concludes that this can be achieved by a
Bayesian approach.

Several references [11, 15–17] have already reported impu-
rity transport studies by using the Bayesian formalism. In these
approaches, the probability distribution for the D and v pro-
files, which is called the prior, is first defined without con-
sidering the data. Then, by multiplying this prior distribution
by the likelihood, which depends on the data, we obtain the
results of the D and v profile measurements, the posterior.
Since the Bayesian method calculates the probability distri-
bution for obtaining given pairs of D and v profiles, the robust
uncertainty estimation is possible not only for D and v, but
also for their ratio by taking into account their correlation. In

addition, the optimum model function can be selected among
many candidates by evaluating the Bayes factors [9, 11]. An
additional advantage of the Bayesian approach is the coher-
ent combination of multiple diagnostics, which is referred
to as integrated data analysis (IDA) [18]. The sum of infor-
mation from various diagnostics provides a more localized
likelihood and improves the ill-posed conditions. References
[15, 16] combined charge exchange spectroscopy (CXRS),
vacuum ultraviolet spectroscopy, and soft x-ray measurements
and inferred the D and v profiles that are consistent with all the
diagnostics.

The model selection is also an important problem for more
fundamental plasma parameters such as the electron density
ne and the electron temperature Te. For these parameters, non-
parametric inference techniques based on the Gaussian pro-
cesses are often used [19–21]. In a non-parametric approach,
each spatial grid point has its own degree of freedom, and the
prior specifies the correlation between spatial points by using
a probability distribution such as the Gaussian process. By
tuning this probability distribution the properties that plasma
parameters are expected to have, e.g., the degree of smooth-
ness and variation, can be imposed. For this reason, the pos-
terior given by the non-parametric approach is not restricted
to piecewise connected cubic functions, which is the case for
cubic splines and contains all possible solutions that are con-
sistent with the data and the prescribed properties of the pro-
file. Due to its complete search of the solution space, even
second derivatives of the original profile can be evaluated
by using a non-parametric inference technique [22]. The dif-
ference between parametric and non-parametric inferences is
further discussed in appendix A. High degrees of freedom,
however, lead to a large computation cost, and the applica-
tion of the non-parametric profile inference was originally
limited to the cases where the posterior distribution can be cal-
culated analytically. With the advent of efficient algorithms
[23–25], non-parametric approaches have been applied to
complex models in recent years [26, 27].

This paper reports the non-parametric inference of the
impurity transport coefficients for the first time. In order to
make the complex high dimensional problem tractable, we
employ an unconventional diagnostic setup. Instead of mod-
ulating the impurity contents, we utilize a plasma in a quasi-
stationary state and measure multiple impurity emission lines
from different charge states by using CXRS. When only a
fully-ionized state is present in a steady state plasma, the con-
tinuity equation is given by: dnZ/dr = vnZ/D, where nZ is
the impurity density, and r is the radius. Thus, we can only
probe the ratio of v to D. However, when lower charge states
have significant populations, source and sink terms cannot
be neglected, and multiple continuity equations of different
charge states, which couple to each other, need to be eval-
uated. In this case, D and v can be separated by measuring
different charge states. Indeed, simultaneous modeling of D
and v in quasi-steady state plasmas by using multiple charge
state measurements has already been reported [28, 29]. One of
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the advantages in this technique is that the steady-state impu-
rity profiles can be determined analytically for given back-
ground plasma parameters and impurity transport coefficients.
A steady state also allows for time averaging over a long inter-
val, and precise measurements become possible. In addition,
we take into account the charge exchange reactions due to the
background thermal neutrals, which has been shown to have a
large influence in the charge state balance [17, 30].

This paper is organized as follows. Section 2 describes the
experimental scenario and the diagnostic setup. The analy-
sis procedure formulated within the Bayesian framework is
presented in section 3. The results of the impurity transport
coefficient inference are given in section 4. Finally, section 5
presents the conclusions.

In this paper, we use a lower subscript and a vector to repre-
sent a radial position and a profile, respectively, e.g., ne,n is the
value of ne at the radial position of n, and�ne is the profile of ne.
As for the impurity ions, which have multiple charge states, a
vector without a charge state index represents the profiles of
all charge states except the neutral state, e.g., �nNe is a symbol
for the neon ion profiles from �nNe1+ to �nNe10+ .

2. Impurity density measurements using charge
exchange spectroscopy

Charge exchange recombination spectroscopy (CXRS) [31]
provides localized impurity density measurements. Impurity
ions in the plasma undergo charge exchange reactions with
energetic neutral hydrogen or deuterium atoms introduced by
neutral beam injection (NBI). This electron transfer brings
impurity ions into a lower charge state and leaves them in
excited states. CXRS measures line emission associated with
the relaxation of those impurity ions. Since this process occurs
along the trajectory of the neutral beam, the emission inten-
sity, impurity velocity, and temperature near the intersection
between a line of sight (LOS) and the neutral beam can
be obtained through line-shape analysis. The spectral radi-
ance due to the beam-induced charge exchange reaction at
wavelength λ is given by:

Lλ =

∫
los

nzν
λ
z ds, (1)

where nz is the impurity density, and the integral los is along
the LOS. The rate coefficient νλz is a rather complicated func-
tion of local plasma parameters, the energy components of
the neutral beam and their spatial profiles. We use the charge
exchange impurity concentration analysis code COLRAD to
calculate νλz . COLRAD takes into account important effects:
the beam divergence and attenuation, the halo contribution,
and the populations of the beam neutrals in the excited states.
The detailed description can be found in reference [32].

Using CXRS, we measured three emission lines Ne X
524.49 nm, Ne VIII 606.9 nm, and C VI 529.07 nm. In the
vicinity of Ne VIII 606.9 nm, there is another emission line

Table 1. Combinations of spectrometer, optical head and emission
line in the charge exchange recombination spectroscopy
measurements.

Spectrometer Optical head Emission line(s)

CER A 524 nm (Ne X), 529 nm (C VI)
CMR B, C 524 nm (Ne X), 529 nm (C VI)
CAR A 607 nm (Ne VIII + O VIII)
CPR B, C 607 nm (Ne VIII + O VIII)

O VIII 606.9 nm. These lines cannot be discriminated, and we
can only calculate the sum of nNe8+ and nO8+ . Not that Ne VIII
606.9 nm and O VIII 606.9 nm have almost identical νλz . The
LOSs for CXRS and the magnetic geometry of the plasma are
shown in figure 1. A steady neon puff of 8.8 × 1020 atoms s−1

was applied to a Type-III ELMy H-mode discharge in the
ASDEX Upgrade tokamak (AUG). The profiles of the electron
density ne, the electron temperature Te, and the ion tempera-
ture T i are shown in figure 3 in section 4 where the results of the
transport coefficient measurements are discussed. Other main
plasma parameters are Ip = 0.6 MA, κ = 1.65, and δ = 0.38
where Ip, κ, and δ are the plasma current, elongation, and tri-
angularity, respectively. The external heating of 7.5 MW was
provided by NBI, and 2.5 MW by electron cyclotron heating.
NBIs were modulated to allow for the subtraction of passive
emission. When the NBI, on which the LOSs are focused,
was off, another NBI was turned on such that the NBI heating
power stayed constant. The plasma was quasi-stationary from
6.2 to 8.7 s. We calculated the time-averaged net intensities of
active charge exchange emission (including Type-III ELMs)
during this period by subtracting the passive intensities.

Figure 1 shows the viewing geometry of the CXRS mea-
surements. The LOSs originate from three different optical
heads A, B, and C, and each head houses a lens and a bun-
dle of optical fibers. Different colors are used to trace the
LOSs depending on their optical heads. At the marker loca-
tions, the LOSs intersect with the 60 keV neutral beam. The
core regions are measured by head A with the spatial resolu-
tion of a few cm, while the pedestal region is probed by head
B and head C with higher spatial resolution (sub-cm). In this
measurement, we used four spectrometers: CER, CMR, CAR,
and CPR. The setup of the spectrometers, optical heads and the
measured emission lines are summarized in table 1. We take
into account these combinations when estimating systematic
uncertainties in section 3.5. The data points of CXR measure-
ments are shown in figure 6 in section 4 together with the
forward-modeled data.

3. Analysis

3.1. Modeling impurity transport

In the confined region, the continuity equation of impurity ions
with an atomic number Z is given by [28]:
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Figure 1. Flux surfaces of the ASDEX Upgrade plasma in the Type-III ELM regime and lines of sight (LOS) for the charge exchange
recombination spectroscopy measurements. The LOSs are projected onto the poloidal surface. The red solid line is the last closed flux
surface. The blue lines are the lines of sight from optical head A while the green and the magenta lines are from optical head B and
C, respectively. Markers are placed at the intersections between the neutral beam and the LOS. The shapes of the markers represent the
spectrometers, to which the lines of sight are connected. More details about the CXR system at AUG are discussed in reference [33].

∂nz

∂t
= −1

r
∂

∂r
(rΓz)

+

(
Rz+1ne + Rcx

z+1n0 +
∑

i

Rcx, b
z+1,in

b
0,i

)
nz+1

−
{

(Iz + Rz)ne + Rcx
z n0 +

∑
i

Rcx, b
z,i nb

0,i

}
nz

+ Iz−1nenz−1, (2)

where t is time, r is the radius, and n0 is the neutral den-
sity except the beam neutrals. z = 2, 3, 4, . . . , Z − 1 represents
a charge state. The continuity equations for z = 1 and z =
Z can be obtained by removing interactions with lower and
higher charge states from equation (2), respectively. In this one
dimensional model, r ≡

√
V/(2π2Raxis), where V is the vol-

ume enclosed by a flux surface, and Raxis is the major radius
at the magnetic axis. Rz and Iz are the effective recombina-
tion and ionization coefficients, respectively, which depend on
ne and Te. The charge-exchange recombination rate with ther-
mal neutrals is given by Rcx

z . An explicit expression of this rate
coefficient is [34]

Rcx
z =

∑
q

fq(ne, Te)Qq(Tred), (3)

where T red ≡ (T imD + T0mZ)/(mD + mZ) is the reduced tem-
perature. T i and T0 are the impurity ion temperature and the
neural particle temperature, respectively. mD and mZ are the
masses of the deuterium atom and the impurity ion. fq is a

fraction of n0 in a quantum state q. For each q, Qq defines the
charge exchange recombination rate coefficient. nb

0,i and Rcx, b
z,i

are the beam neutrals and their recombination rate coefficient
for the beam energy component i and the impurity charge state
z, respectively. The energy components of NBIs and their pro-
files have already been characterized at AUG [32]. Since we
can determine Rcx, b

z,i by using the charge exchange cross section
provided by reference [35], the recombination due to the beam
neutrals is treated as a known quantity in the present work. We
use the diffusion coefficient D and the convection velocity v to
model the particle flux Γz as follows:

Γz = −D
∂nz

∂r
+ vnz. (4)

In this transport model, the same transport coefficients D and
v are used for all charge states of the three different impurity
species: carbon, oxygen, and neon.

In the SOL, we add a parallel loss term −nz/τ ‖ to the rhs
of equation (2), where

τ−1
‖ ≡ 2Mv

L‖

√
3Ti + Te

mD
. (5)

Here, Mv is the Mach number, and L‖ is the connection length.
We set Mv = 0.1 and L‖ = 25 m, which are often used for
AUG plasmas [7, 8]. While this modeling for the parallel loss
effect is somewhat ad hoc, the inference results in the confined
region are relatively insensitive to the details in the SOL, which
will be shown in section 4.
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3.2. Modeling the neutral profile

We model the transport process of neutral particles using a
Monte Carlo code in a cylindrical geometry [30]. Neutral deu-
terium atoms are released from the wall with the energy E0,wall.
When ionization happens, tracking of the deuterium atom ends
at that location. When it experiences a charge exchange recom-
bination event, the velocity of the tracking particle is replaced
by that of the ion involved in the reaction. The frequencies
of ionization and charge-exchange events at each radial loca-
tion are determined by the background plasma profile. In this
model, the profiles of n0 and the neutral temperature T0 are
determined by E0,wall and the neutral density at the wall n0,wall.
We use these two quantities as free parameters to describe �n0

and �T0.

3.3. Prior

We introduce a prior that defines the probability distribution
of the parameters of interest before measurements are made.
�T0 and the relative profile shape of n0 for a given energy at
the wall E0,wall are uniquely determined by using the Monte
Carlo code discussed in section 3.2. We calculate �T0 and the
profile shapes of n0 for E0,wall = 10, 20, 40, 80, and 120 eV.
By interpolating those profiles, �n0 and �T0 for arbitrary E0,wall

between 10 and 120 eV can be obtained without running the
Monte Carlo code again. We use the neutral density at the wall
n0,wall to determine the absolute density, and define the prior
distribution of �n0 and �T0 as

p(�n0, �T0|E0,wall, n0,wall)p(E0,wall)p(n0,wall),

p(E0,wall) ∝ 1/E0,wall 10 eV � E0,wall � 120 eV,

p(n0,wall) ∝ 1/n0,wall 104 m−3 � n0,wall � 1018 m−3. (6)

Here, we choose logarithmic priors for p(E0,wall) and p(n0,wall)
to avoid a bias toward high amplitudes [36, 37].

Since equation (2) is linear with respect to nz, the profile of
each charge state for given �D and �v can be solved analytically.
The analytical solution and its derivation are given in appendix
B. We use the Gaussian process and introduce the probability
distribution of �D as follows:

p(�D|Σ̂) ∝ exp

(
−1

2
�θᵀΣ̂−1�θ

)

�θᵀ = [log10 D1, log10 D2, . . . , log10 DN], (7)

where

Σ̂n,n′ = σ2
D exp

(
− (rn − rn′)2

2l2co

)
. (8)

σD = 1. (9)

Note that the Gaussian process provides the profile of log10 D
instead of D. This parameterization avoids a bias toward a
larger scale and removes negative D, which is unphysical.
Other impurity transport studies by using the Bayesian frame-
work also infer the power of D [11, 15, 16]. The spatial cor-
relation length lco shown in figure 2 is set to be proportional
to the spacing between spatial grids. lco is reduced near the

Figure 2. Correlation length lco used for equations (8) and (11) vs
the radial grid points. The location of the last closed flux surface is
shown by the red dashed line.

pedestal region, where large variations in D and v over small
spatial scales are expected.

Instead of defining the prior distribution of �v directly,
we introduce the probability distribution of

∫ r
0 v dr′/D. This

parametrization leads to a significantly better performance of
MCMC compared with the direct parametrization of �v. In
equation (B.4), v is contained only in the form of

∫ redge
r v dr′/D.

Thus, the original parameter space becomes simpler when we
use

∫ r
0 v dr′/D. The probability distribution of �v can still be

calculated when all constituents of the prior distributions are
multiplied. First, we use the Gaussian process again to define:

p(�ψ|Ω̂) ∝ exp

(
−1

2
�ψᵀΩ̂−1 �ψ

)
, (10)

where

Ω̂n,n′ = F2 exp

(
− (rn − rn′)2

2l2co

)
. (11)

Using ψ, we define the discrete form of
∫ r

0 v dr/D as follows:

n∑
i=1

vi

Di
Δri = (ψn − ψ1) − (F + ψn − ψ1) · rn

rN
. (12)

By this definition,
∫ r

0 v dr′/D varies from 0 to −F. The pro-
file shape of

∑Z
z=1nz is proportional to exp (

∫ r
0 v dr/D) in the

confined region. Thus, the sum of all charge states of one impu-
rity species varies by a factor of e−F from the core to the edge
if there is no parallel loss term in the SOL. We use F = ln 2
in this inference problem. We found that equation (12) leads
to a smaller autocorrelation of MCMC samples, and reduces
the computation expense compared with the other parameter-
izations that had been tested. Using equations (10)–(12), we
define the conditional probability density p(�v|Ω̂, �D).

In addition to the rate coefficients, �D, and �v, the boundary
conditions for each charge state need to be specified in order
to calculate impurity density profiles using equation (B.15).
We use the ratios between charge states when there is no
transport at the edge, and introduce the line-averaged high-
est charge state density n̄Z ≡

∫ redge
0 nZ dr/redge, for which we

have a good estimate from the CXRS measurements, as a
parameter for specifying the absolute impurity densities. As
discussed in appendix B, the edge boundary conditions have a
small impact on the profile shapes in the confined region when
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Figure 3. Profiles of the electron density: core (a1) and edge (a2), the electron temperature and the ion temperature: core (b1) and edge
(b2) for a Type-III ELMy H-mode discharge (#38498, time: 7.060–7.075 s). Inferred neutral profile: core (c1) and edge (c2). Inferred
diffusion coefficient profile: core (d1) and edge (d2). Inferred convection velocity profile: core (e1) and edge (e2). Inferred profile of the
convection-velocity-to-diffusion-coefficient ratio: core ( f 1) and edge ( f 2). The blue shaded areas represent the ranges between the 16th and
84th percentiles at each radial point. The blue solid lines show the 50th percentiles at each radial point. The green dashed lines are the
neoclassical prediction calculated by neoclassical code (NEO) while the purple diamonds are given by the quasi-linear gyro-fluid code
(TGLF-SAT2). The number of samples and autocorrelation are 39 000 and <200 samples, respectively.

equation (B.15) is solved. Thus, somewhat arbitrary choices
for the boundary conditions can be tolerated.

Finally, our prior distribution is given by:

p(�D,�v,�nC,�nO,�nNe,�n0, �T0|�Iall)

∝ p(�nC|�D,�v,�n0, �T0, n̄C6+ )p(�nO|�D,�v,�n0, �T0, n̄O8+)

× p(�nNe|�D,�v,�n0, �T0, n̄Ne10+ )

× p(�v|Ω̂, �D)p(�D|Σ̂)p(�n0, �T0|E0,wall, n0,wall)

× p(n̄C6+ )p(n̄O8+ )p(n̄Ne10+ )p(E0,wall)p(n0,wall), (13)

where�Iall represents all the prior beliefs contained on the rhs.
We use logarithmic priors for p(n̄C6+ ), p(n̄O8+ ), and p(n̄Ne10+ ).

3.4. Likelihood

We calculate the CX emission intensities for given impurity
density distributions by using equation (1). The impurity den-
sity nz is given by the prior equation (13), and νλz can be
calculated by using COLRAD. The main consideration in
defining the likelihood is to take uncertainties into account.
In this paper, we neglect uncertainties in the νλz , ne, Te, and T i

profiles and the atomic data. If these parameters are not fixed,
the prior given by equation (13) needs to be modified, and cal-
culating the posterior distribution becomes challenging. Note
that since the decoupling of D and v depends solely on the
charge state balance in this analysis, the inference results can
be more susceptible to the atomic data compared with the con-
ventional approaches. Characterizing this dependency remains
future work. The NBI modeling using COLRAD has already

6
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been validated against experimental data [32]. We determine
the most probable ne, Te, and T i profiles through IDA [18],
which utilizes multiple diagnostics. Due to the long time-
averaging of the CX emission data (over 15 ms), the photon
noise has insignificant contributions. Hence, we model cor-
related and uncorrelated systematic uncertainties within the
Bayesian framework.

One of the sources of the correlated uncertainties originates
from the darkening of lenses in the optical heads. Access to the
inside of the vacuum vessel is limited during an experimental
campaign of AUG, which usually lasts around 7 months. We
use the calibration data that were taken prior to the experimen-
tal campaign. Therefore, some degree of degradation in the
transmission was expected when the measurement was carried
out. It is expected that the LOSs that share the same optical
head are affected by this effect in a similar fashion. In addi-
tion, the transmission of the optical heads and the sensitivities
of the spectrometers were calibrated individually by using an
integrating sphere. There could be different systematic errors
when optical systems were irradiated, which also lead to cor-
related systematic uncertainties. We take into account these
uncertainties by forward-modeling CX emission intensities as
follows:

Lmodel
524, j = ζk(524, j)ηl(524, j)

∫
los(524, j)

nNe10+ν524
Ne10+ ds, (14)

Lmodel
529, j = ζk(529, j)ηl(529, j)

∫
los(529, j)

nC6+ν529
C6+ ds, (15)

Lmodel
607, j = ζk(607, j)ηl(607, j)

∫
los(607, j)

(nNe8+ + nO8+ )ν607
Ne8+ ds,

(16)
where ζk and ηl model the uncertainties in the abso-
lute intensity calibration due to the optical heads and due
to the spectrometers, respectively. The subscript k = A,
B, C represents the optical heads, and the subscript l =
CER, CMR, CAR, CPR is for the spectrometers. k and l depend
on the wavelength of an emission line λ = 524, 529, and
607 nm and a LOS j. We estimate that the absolute intensity
calibration of the optical heads and that of the spectrometers
have an uncertainty of 10%. This uncertainty can be imple-
mented by using N (1, 0.12) for the probability distribution of
ζk(λ, j) and ηk(λ, j) where N (μ, σ2) is a normal distribution
with a mean of μ and a variance of σ2.

The main source of uncorrelated uncertainties is an optical
fiber coupler. The fibers housed in an optical head are con-
nected to couplers on a fiber adapter panel. Depending on the
needs of experiments, the connections between the LOSs and
the spectrometers are configured differently. It is known that
the transmission of a fiber coupler differs slightly each time,
when a fiber is removed and reconnected. We estimate that this
process leads to a 10 % error, which has no correlation between
the spatial channels. Another source of uncorrelated uncertain-
ties is the subtraction of the base line and passive emission
intensities. We assume that this leads to the error of ε = 1014

photons/(m2 s sr), which is non-negligible only for 529 nm and
607 nm line measurements in the core region.

Based on the considerations above, we introduce the fol-
lowing likelihood:

p(�L524,�L529,�L606|�nC,�nO,�nNe)

∝
∏
λ, j

exp

(
−

(Lλ, j − Lmodel
λ, j )2

2(0.1Lmodel
λ, j + ε)2

)
, (17)

where Lmodel
λ, j is given by equations (14)–(16).

3.5. Markov chain Monte Carlo method

We numerically calculate the posterior probability distribution
by using a Markov chain Monte Carlo (MCMC) method [38].
In our model, the probability distributions of equations (7) and
(10) have the same number of degrees of freedom as that of
the spatial grid points. Since the computation rapidly becomes
more expensive as the dimensionality increases, an efficient
MCMC algorithm is necessary in this inference problem.
We employ No-U-Turn Sampler algorithm [25], which has a
favorable scaling property for dimensionality compared with
other MCMC algorithms, such as random-walk Metropolis
[25, 39, 40].

Due to the complexity of the model, Markov chains often
get trapped at local maxima before they reach a typical set
when the likelihood equation (17) is evaluated in its original
form. In order to facilitate the MCMC sampling, we rewrite
equation (17) in the asymptotic form [27]:

p̆(�L524,�L529,�L606|�nC,�nO,�nNe)

∝
∏
λ, j

exp

(
−|z(λ, j)|2

2
· 1 + uv2|z(λ, j)|

1 + v2|z(λ, j)|2/2

)
,

(18)

where

z(λ, j) =
Lλ, j − Lmodel

λ, j

0.1Lmodel
λ, j + ε

, (19)

u = 1, and v = 0.2. This asymptotic form simplifies the
probability distribution in the volume where the probabil-
ity is extremely low while p̆(�L524,�L529,�L606|�nC,�nO,�nNe) ≈
p(�L524,�L529,�L606|�nC,�nO,�nNe) holds in the typical set. Markov
chains robustly reach and explore the typical set when
equation (18) is used for the likelihood. The MCMC com-
putation for this model took <400 h to obtain around 200
independent samples by using an Apple M1 chip.

4. Results of impurity transport coefficient
inference

We have defined the prior equation (13) and the likelihood
equation (17) in section 3. Using these probability distribu-
tions, the posterior is given by:

p(�D,�v,�nC,�nO,�nNe,�n0, �T0|�L524,�L529,�L606,�Iall)

∝ p(�L524,�L529,�L606|�nC,�nO,�nNe)

× p(�D,�v,�nC,�nO,�nNe,�n0, �T0|�Iall). (20)
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Figure 4. Profiles of the diffusion coefficient (a) and the
convection-velocity-to-diffusion-coefficient ratio calculated by
marginalizing the prior equation (13). The blue shaded areas
represent the ranges between the 16th and 84th percentiles at each
radial point. The blue solid lines show the 50th percentiles at each
radial point. The number of samples and autocorrelation are 40 000
and <200 samples, respectively.

We calculate the posterior distribution using MCMC, the
details of which are already discussed in section 3.5. The prob-
ability distribution of one plasma parameter profile can be
obtained by marginalizing other parameters. For example, the
probability distribution of the D profile is

p(�D|�L524,�L529,�L606,�Iall)

=

∫
p(�D,�v,�nC,�nO,�nNe,�n0, �T0|�L524,�L529,�L606,�Iall)

× d�v d�nC d�nO d�nNe d�n0 d�T0. (21)

The marginalized posterior distributions of the transport coef-
ficients and the neutral profile for the type-III ELMy H-mode
discharge are shown in figure 3 together with the ne, Te, and T i

profiles, which are treated as known parameters. The inferred
neutral profiles are similar to the ones for the type-I ELM cases
reported in reference [30]. Without taking into account the CX
reactions with the thermal neutrals, the forward model is not
able to reproduce the Ne X and Ne VIII intensities, which is
already pointed out in reference [30]. The D and v profiles
for neon calculated by a NEO and a quasi-linear gyro-fluid
code (TGLF SAT-2) [11, 17] are also plotted for compari-
son. Fast ions are neglected in both calculations while elec-
tromagnetic terms are included in the TGLF modeling. In the

Figure 5. Examples of the impurity profiles taken from the posterior
distribution.

pedestal, the diffusion coefficient D is below one, being close
to the neoclassical level provided by NEO. The inferred v/D
profile indicates that an inward pinch exists in this region.
These observations are in a qualitative agreement with the
D and v measurements of type-I ELMy H-mode discharges
[8, 15, 30]. Just inside the pedestal top ρpol = 0.9–0.95, the
diffusion coefficient peaks around D = 20 m2 s−1, and a strong
outward convection ∼100 m s−1 is seen. Neither NEO or
TGLF modeling predicts such a magnitude of convection. The
Type-III ELM crashes, which are included in the CXRS mea-
surements but not in the NEO and TGLF calculations, may
contribute to this discrepancy. Since the Type-III ELM con-
sisted of major crashes with the frequency of around 200 Hz
and minor crashes with higher frequencies, filtering out ELMs
was difficult by using the current CXRS system.

The posterior is proportional to the product of the likeli-
hood and the prior. Therefore, it is important to inspect how
much the likelihood updates the prior distribution. The pro-
files of D and v/D calculated by running MCMC without
the likelihood are shown in figure 4. The prior distribution
of �D given by equation (7) should produce the distribution
with the mean of 1 and the standard deviation of a factor of
10 over all radial positions, which is shown in figure 4(a) as
expected. Small deviations are due to the statical uncertainties
in the MCMC sampling. Since we allocated shorter correla-
tion lengths lco in the edge, the prior leads to a wider distri-
bution of v/D as ρpol increases. The inferred D distribution in

8
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Figure 6. Charge exchange emission intensities and forward-model data points. (a) and (c) are for CER while (b) and (d) are for CMR.
(e) and ( f ) are for CAR and CPR, respectively. The shapes of the green markers represent the optical heads used for the measurements. The
blue points are forward-modeled data points corresponding to the posterior distributions. Their explicit expressions are given by
equations (14)–(16).

figures 3(d1) and (d2) becomes close to figure 4(a) in the core
and outside the LCFS, indicating that the likelihood does not
provide much constraints in those regions. The profiles of three
highest charge states for neon, oxygen and carbon randomly
taken from the posterior distribution are shown in figure 5. In
the core ρpol < 0.4, the profiles of the highest charge states
are almost the same as those of the sum of all charge states
for all impurity species. In this region we cannot decouple
v and D, and only the ratio of v to D can be inferred. The
probability distributions of v/D shown in figures 3( f 1) and
( f 2) are more localized compared with the distribution shown
figure 4(b), indicating that the distribution is updated by the
likelihood. v/D ∼ 0.5–2.0 m−1 in the core inferred from the
CXRS measurements produces slightly hollow impurity pro-
files as shown in figure 5 while the NEO and TGFL modeling
predicts inward convections and the resultant peaked impurity
profiles in this region. The broad probability distributions of D
and v/D outside the LCFS is expected since no CXRS mea-
surements are available there. While the large uncertainties in
the transport properties exist in the SOL, the probability dis-
tributions become localized sharply once they move into the
confined region.

The consistency between the assumed systematic uncer-
tainties and the CXRS measurements can be examined by
using the forward-modeled data. Figure 6 shows the CX
intensities and the forward-modeled data points correspond-
ing to the posterior distribution. Reasonable agreements are
seen over all channels, indicating that the likelihood given by
equation (17) is appropriate. Note that impurity profiles shown
in figure 5 have rather large variations in shape, but they all
reproduce the CXRS data reasonably well as shown in figure 6.
Unlike the standard fitting technique, the analysis framework
presented in this paper takes into account all possible impurity
profiles that satisfy the prescribed line properties given by the
prior.

5. Conclusions

In this paper, we have introduced a non-parametric inference
framework for the impurity coefficient measurements. The
input data are the intensities of Ne X, Ne VIII, O VIII, and
C VI lines measured by CXRS. Unlike conventional meth-
ods that use transient impurity profiles to decouple the diffu-
sion coefficient D and the convection velocity v, we utilize a

9
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quasi-stationary plasma. The ratio of v to D only describes
the equilibrated profile of the sum of all charge states, and
spatial variations of each charge state depend on both D and
v, not on v/D. Thus, if one impurity species has significant
populations in multiple charge states, D and v can still be
separated by simultaneously observing more than one charge
state.

We have formulated the analysis framework based on the
Bayesian probability theory, which allows for the coherent
integration of data and the systematic uncertainty estimations.
Instead of introducing specific functions for the profiles of
D and v, we employ a non-parametric approach, which does
not reduce the degrees of freedom for representing the pro-
files. Therefore, the posterior distribution contains all possi-
ble solutions that are consistent with the measurements and
the smoothness conditions given by the prior beliefs. The
parametrization of the transport coefficients and other param-
eters necessary for constructing the model is chosen such that
it facilitates the use of MCMC sampling. The impurity pro-
files in a steady state for a given set of D and v are determined
analytically, and the posterior distribution defined in a nearly
200 dimensional space has been calculated. In addition, sys-
tematic uncertainties, which are typically difficult to address in
the conventional fitting procedure, are embedded in the likeli-
hood distribution within the Bayesian framework. The forward
model also takes into account the charge exchange reactions
with the background thermal neutrals in the confined region.
While posing an additional challenge in the inference problem,
addressing this effect is necessary to properly model the charge
state balance of impurity ions.

We have inferred the profiles of impurity transport coef-
ficients of neon, oxygen and carbon for a Type-III ELMy
H-mode plasma at ASDEX Upgrade by assuming that these
three impurity species have the same transport properties. The
forward modeled data points corresponding to the posterior
are in reasonable agreements with the CXRS measurements.
In the edge region where Ne8+ ions have a significant pop-
ulation, D and v are clearly separated. D varies from ∼0.5
to ∼20 m s−2 from the pedestal region to the inside of the
pedestal top. A strong outward convection v ∼ 100 m s−1 is
also observed right inside the pedestal top. All measured impu-
rity species are almost fully ionized in the core, and the inferred
D profile becomes close to the distribution given by the prior
alone. In this region, a meaningful inference is possible only
for v/D.

The analysis framework discussed in this paper is appli-
cable to other impurity species. Currently, argon charge
exchange measurements are being developed at AUG [41].
Due to its higher atomic number, argon impurities have sig-
nificant populations in lower charge states even in the core of
the AUG plasmas. Therefore, we will be able to separate D
and v over the whole radial position if argon charge exchange
emissions are measured. Furthermore, integrating other diag-
nostics, e.g. soft x-ray and vacuum ultraviolet spectroscopy
and bolometry, within the Bayesian framework will further
improve the inference of impurity transport coefficients.
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Appendix A. Parametric vs non-parametric profile
inference in the Bayesian framework

We briefly review the parametric and non-parametric profile
inferences in the Bayesian framework. Firstly, we consider
a general case where �rᵀ = [r1, r2, . . . , rN] are the discretized
radial points, and �θᵀ = [θ1, θ2, . . . , θN] are the radial profile
of some plasma parameter. Then, we visualize probability dis-
tributions for each profile inference approach by using a low
dimensional example.

When �d is an available data set, Bayes’ theorem gives the
posterior distribution as follows:

p(�θ|�d,�I) ∝ p(�d|�θ,�I)p(�θ|�I), (A.1)

where �I is the prior brief, which represents what we know
about the system, or what we assume before measurements are
taken. The prior distribution p(�θ|�I) gives the probability distri-
bution of the θ profile based only on our prior belief. It is not
straight-forward to define a prior that contains only sensible
profiles. For example, when we use uniform distributions for
θ at all radial points, the prior is

p(�θ|�I) = U(θ1,min, θ1,max)U(θ2,min, θ2,max)

. . .U(θN,min, θN,max), (A.2)

where U(θn,min, θn,max) is a uniform distribution ranging from
θn,min to θn,max. In this case, p(�θ|�I) is defined in an N dimen-
sional space. When a point in that high dimensional space
is within the upper and lower limits for all dimensions, it
always has the same probability. If we randomly draw sam-
ples from this distribution, most of them will be non-sensible
profiles, which lack smoothness. While the posterior distribu-
tion is given by the product of the prior and the likelihood, the
likelihood alone typically fails to exclude unphysical profiles
since the number of constraints provided by measurements is
usually smaller than the number of the required spatial grid
points, i.e., the problem is ill-posed. Therefore, we need to
implement some type of smoothness conditions in the prior
and remove non-sensible profiles from the posterior for realis-
tic diagnostic setups. This can be achieved by either parametric
or non-parametric approach.

First, we consider a parametric profile inference. We let �I
have the belief that θn = f (rn,�x), where f is a function with
undetermined parameters:�xᵀ = [x1, x2, . . . , xM]. They corre-
spond to the fitting parameters in the conventional fitting
procedure. Here, M < N. Using f , the prior is given by:
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p(�θ|�I) ∝
N∏

n=1

δ(θn − f (rn,�x))p(�x|�I), (A.3)

where δ(. . .) is a delta function, which takes a non-zero value
only when θn − f (rn,�x) is zero. The prior equation (A.3) has
finite probabilities only for �θ that can be represented by a
function f .

Next, we discuss a non-parametric profile inference. In this
case, we directly assign probabilities to �θ without introducing
a specific functional model. While there are many techniques
to achieve this, we limit ourselves to the non-parametric profile
inference based on the Gaussian process. When we employ the
Gaussian process, the prior distribution is given by:

p(�θ|�I) = p(�θ|�μ, Σ̂) ∝ exp

(
−1

2
(�θ − �μ)ᵀΣ̂−1(�θ − �μ)

)
,

(A.4)
where �μ and Σ̂ are a mean vector and a covariance matrix,
respectively. The prior beliefs such as smoothness conditions
can be implemented in those quantities. �μ and Σ̂ are called
hyper-parameters, which play a different role than�x since they
are used to define the probability distribution of �θ without
reducing the dimension of its original parameter space.

In order to obtain the intuitive understanding of the para-
metric and non-parametric profile inferences, we consider a
simple case where there are only three spatial points �r ᵀ =
[1, 2, 3] as shown in figure A1(a). We assume that the measure-
ments lead to the likelihood shown in figure A1(b). Due to the
insufficient constraints, the maximum likelihood is not a point,
but a line. Therefore, we cannot find a single optimum point
based on the likelihood alone. In addition, the high probabil-
ity volume contains non-smooth profiles. For the parametric
approach, we use a linear function:

θn = x1rn + x2. (A.5)

The prior distribution for this function is shown in
figure A2(a). We employ uniform distributions for p(x1)
and p(x1). Since we have only two parameters to describe
three spatial points, the prior distribution spans on a two-
dimensional surface defined in the three dimensional space.
While the probability is the same on the surface in this
specific parametrization, there are generally variations in
probability on the surface or in the volume that a model
function defines. As for the non-parametric inference, we use
a squared exponential covariance matrix:

Σn,n′ = σ2 exp

(
− (rn − rn′)2

2l2

)
, (A.6)

where σ = 1, l = 2. We choose �μ = �0 for the mean vector in
equation (A.4). The prior distribution given by the Gaussian
process is shown in figure A2(b). The probability is high near
the surface corresponding to linear profiles. However, the prior
has a three-dimensional distribution unlike figure A1(a). As
Bayes’ theorem equation (A.1) states, the posterior distribu-
tion is given by multiplying the prior figure A2(a) or (b) by
the likelihood figure A1(b). Figures A2(c) and (d) show the
posterior distributions for the parametric and non-parametric

Figure A1. Relation between rn and θn (a) and an example of the
likelihood that leads to an ill-posed inference problem (b).

inferences, respectively. In the parametric inference, the pos-
terior does not contain any points that are not on the surface
defined by the prior even though the volume near the surface
represents rather smooth profiles. On the other hand, the non-
parametric inference provides the posterior distribution whose
degrees of freedom are the same as the number of spatial
points. Even for non-straight profiles, the posterior shown in
figure A2(d) has high probabilities as long as they have reason-
able smoothness. The relative importance between the likeli-
hood and the smoothness conditions is controlled by the hyper
parameters.

When inferring plasma parameter profiles from experimen-
tal data, much larger numbers of spatial points are required.
In such a case, a further reduction in the degrees of free-
dom is expected in the parametric approach. Furthermore, the
volume defined by the model function does not necessarily
overlap the high probability regions in the likelihood. While
complex functions are more likely to contain the high likeli-
hood regions, profiles with non-sensible structures may also
be included in the posterior distributions. The Bayes factor
[9, 11] is often used for optimizing the function model. The
non-parametric approach preserves the degrees of freedom
even when many more spatial grid points are used for repre-
senting spatial profiles. Since the true plasma parameter pro-
files are reasonably smooth, the posterior contains the high
probability regions in the likelihood unless the smoothness
condition is too strong. While criteria exist for the hyper-
parameter optimization [42], they require unpractically large
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Figure A2. Prior distributions for a parametric approach (a) and a non-parametric approach (b). Posterior distributions for a parametric
approach (c) and a non-parametric approach (d). The line of the maximum likelihood is shown by the purple line. Each axis shown in these
plots spans from 0 to 1.

amounts of computation for the inference problem discussed
in this paper. Therefore, we use fixed hyper parameters. In
the non-parametric profile inference, all solutions with the
smoothness prescribed by the prior are contained in the pos-
terior distribution.

Appendix B. Analytical solution for impurity
profiles in a steady state

We consider an impurity species with the atomic number of
Z. A particle balance for a charge state z(� Z) in a cylindrical
coordinate system is given by:

∂nz

∂t
=

1
r
∂

∂r
r

(
D
∂nz

∂r
− vnz

)
+ sz, (B.1)

where sz is the source term, and the definitions of other quanti-
ties are the same as the ones already given in this paper. When
the system is stationary, e.g., all quantities are independent of
t, the following equation holds:

d
dr

r

(
D

dnz

dr
− vnz

)
= −rsz. (B.2)

This leads to

dnz

dr
− v

D
nz = − 1

Dr

∫ r

0
dr′ sz(r′)r′ +

C
Dr

, (B.3)

where C is a constant. At r = 0, dnz/dr = 0, and v = 0 due to
the cylindrical geometry. Thus, C = 0. By solving for nz, we
have

nz(r) = exp

(
−
∫ redge

r
dr′

v(r′)
D(r′)

)[∫ redge

r

dr′

D(r′)r′

× exp

(∫ redge

r′

v(r′′)
D(r′′)

dr′′
)

×
∫ r′

0
dr′′sz(r′′)r′′ + nz(redge)

]
, (B.4)

where redge is the outermost radial point in the system. The
densities of all charge states need to be specified there. We
found that the overall profile shapes in the confined region for
given background plasma parameters and impurity transport
coefficients are relatively insensitive to the boundary condi-
tions at the edge. In contrast, small changes in the charge state
balance in the core lead to large differences in the resulting
profiles. Therefore, we choose to define boundary conditions
at the edge.
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When z 	= Z, 1, the source sz arises through recombination
and ionization, which involve the interaction with nz−1 and
nz+1, namely

sz(r) = +az+1(r)nz+1(r) − bz(r)nz(r)

− az(r)nz(r) + bz−1(r)nz−1(r), (B.5)

where az and bz specify recombination and ionization, respec-
tively. For simplicity, we neglect the parallel loss term in the
SOL while it is included in the impurity transport analysis pre-
sented in this paper. The parallel loss can be added by follow-
ing a procedure similar to that of recombination and ionization
given below. By plugging equation (B.5) into equation (B.4),

nz(r) =nz(redge) exp

(
−
∫ redge

r
dr′

v(r′)
D(r′)

)

+ Az+1nz+1(r′′) − Bznz(r′′)

− Aznz(r′′) + Bz−1nz−1(r′′), (B.6)

where

Az = e
−

∫ redge
r dr′ v(r′)

D(r′)

∫ redge

r
dr′

e
∫ redge

r′ dr′′ v(r′′)
D(r′′)

D(r′)r′

×
∫ r′

0
dr′′az(r

′′)r′′, (B.7)

Bz = e
−

∫ redge
r dr′ v(r′)

D(r′)

∫ redge

r
dr′

e
∫ redge

r′ dr′′ v(r′′)
D(r′′)

D(r′)r′

×
∫ r′

0
dr′′bz(r

′′)r′′. (B.8)

Note that r′′ in equation (B.6) is an integration variable. The
density of the highest charge state nZ is given by removing +
Az+1nz+1(r′′) and −Bznz(r′′) from equation (B.6) while omit-
ting −Aznz(r′′) and +Bz−1nz−1(r′′) leads to n1. We neglect the
impurities in the neutral state in this analysis.

Next, we discretize the profiles and use vectors to represent
the density profiles of charge states:

�nz =

⎡
⎢⎢⎢⎣

nz,1

nz,2
...

nz,N

⎤
⎥⎥⎥⎦ , (B.9)

where nz,1 and nz,N represent the core and edge densities,
respectively. Using this notation,

�nz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nz,N+1�u + Âz+1�nz+1 − B̂z�nz, if z = 1

nz,N+1�u − Âz�nz + B̂z−1�nz−1, if z = Z

nz,N+1�u + Âz+1�nz+1 − (Âz + B̂z)�nz + B̂z−1�nz−1, otherwise,
(B.10)

where

�u =

⎡
⎢⎢⎢⎣

u1

u2
...

uN

⎤
⎥⎥⎥⎦ , ui = exp

(
−

N+1−i∑
l=1

vN+1−l

DN+1−l
ΔrN+1−l

)
,

(B.11)

Âz =

⎡
⎢⎢⎢⎣

u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
0 0 . . . uN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Δr1 Δr2 . . . ΔrN

0 Δr2 . . .
...

...
...

. . .
...

0 0 . . . ΔrN

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1D1r1

0 . . . 0

0
1

u2D2r2
. . . 0

...
...

. . .
...

0 0 . . .
1

uNDNrN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣
Δr1 0 . . . 0

Δr1 Δr2 . . .
...

...
...

. . .
...

Δr1 Δr2 . . . ΔrN

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

az,1r1 0 . . . 0
0 az,2r2 . . . 0
...

...
. . .

...
0 0 . . . az,NrN

⎤
⎥⎥⎥⎦ , (B.12)

B̂z =

⎡
⎢⎢⎢⎣

u1 0 . . . 0
0 u2 . . . 0
...

...
. . .

...
0 0 . . . uN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Δr1 Δr2 . . . ΔrN

0 Δr2 . . .
...

...
...

. . .
...

0 0 . . . ΔrN

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1D1r1

0 . . . 0

0
1

u2D2r2
. . . 0

...
...

. . .
...

0 0 . . .
1

uNDNrN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣
Δr1 0 . . . 0

Δr1 Δr2 . . .
...

...
...

. . .
...

Δr1 Δr2 . . . ΔrN

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

bz,1r1 0 . . . 0
0 bz,2r2 . . . 0
...

...
. . .

...
0 0 . . . bz,NrN

⎤
⎥⎥⎥⎦ . (B.13)
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Equation (B.10) for different charge states can be combined and written as a linear equation:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�n1

�n2

�n3
...

�nZ−1

�nZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1,N+1�u
n2,N+1�u
n3,N+1�u

...
nZ−1,N+1�u
nZ,N+1�u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−B̂1 Â2 0 0 . . . 0 0 0
B̂1 −Â2 − B̂2 Â3 0 . . . 0 0 0
0 B̂2 −Â3 − B̂3 Â4 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . B̂Z−2 −ÂZ−1 − B̂Z−1 ÂZ

0 0 0 0 . . . 0 B̂Z−1 −ÂZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�n1

�n2

�n3
...

�nZ−1

�nZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(B.14)

By moving the second term on the RHS in equation (B.14) to the LHS, and by multiplying both sides by the inverse matrix, an
analytical solution for charge state profiles for given D and v is given by:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

�n1

�n2

�n3
...

�nZ−1

�nZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= M̂−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1,N+1�u
n2,N+1�u
n3,N+1�u

...
nZ−1,N+1�u
nZ,N+1�u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B.15)

where

M̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̂ + B̂1 −Â2 0 0 . . . 0 0 0
−B̂1 1̂ + Â2 + B̂2 −Â3 0 . . . 0 0 0

0 −B̂2 1̂ + Â3 + B̂3 −Â4 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . B̂Z−2 1̂ + ÂZ−1 + B̂Z−1 −ÂZ

0 0 0 0 . . . 0 −B̂Z−1 1̂ + ÂZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.16)

Here, 1̂ is an identity matrix. The validity of equations (B.15)
and (B.16) are confirmed by comparing the impurity profiles
calculated by STRAHL.
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