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Abstract
A simple 0D model which mimics the plasma surrounded by the conducting structures
(Kiramov and Breizman 2017 Phys. Plasmas 24 100702) and including self-consistently the
vertical plasma motion and the generation of runaway electrons during the disruption is used
for an assessment of the effect of vertical displacement events on the runaway current
formation and termination. The total plasma current and runaway current at the time the
plasma hits the wall is estimated and the effect of injecting impurities into the plasma is
evaluated. In the case of ITER, with a highly conducting wall, although the total plasma current
when the plasma touches the wall is the same for any number of injected impurities, however
the fraction of the plasma current carried by runaway electrons can significantly decrease for
large enough amounts of impurities. The plasma velocity is larger and the time when the
plasma hits the wall shorter for lower runaway currents, which are obtained when larger
amounts of impurities are injected. When the plasma reaches the wall, the scraping-off of the
runaway beam occurs and the current is terminated. During this phase, the plasma vertical
displacement velocity and electric field can substantially increase leading to the deposition of
a noticeable amount of energy on the runaway electrons (∼hundreds of MJ). It is found that an
early second impurity injection reduces somewhat the amount of energy deposited by the
runaways. Also larger temperatures of the companion plasma during the scraping-off might be
efficient in reducing the power fluxes due to the runaways onto the PFCs. The plasma reaches
the qa = 2 limit before the runaway electron current is terminated and by that time the amount
of energy deposited on the runaway electrons can be substantially lower than that expected
until the beam is fully terminated. Negligible additional conversion of magnetic into runaway
kinetic energy is predicted during the runaway deconfinement following the large magnetic
fluctuations after qa = 2 is crossed for characteristic deconfinement times lower than 0.1 ms
which is a characteristic timescale for ideal MHD instabilities to develop.
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scraping-off, ITER

(Some figures may appear in colour only in the online journal)

∗ Author to whom any correspondence should be addressed.

1741-4326/22/076013+12$33.00 1 © 2022 IAEA, Vienna Printed in the UK

https://doi.org/10.1088/1741-4326/ac637b
https://orcid.org/0000-0001-6043-8803
https://orcid.org/0000-0001-9592-1117
mailto:solis@fis.uc3m.es
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ac637b&domain=pdf&date_stamp=2022-5-5


Nucl. Fusion 62 (2022) 076013 J.R. Martín-Solís et al

1. Introduction

Large amounts of runaway electrons are predicted during
ITER disruptions which could lead to severe damage (erosion
and melting) and limit the lifetime of the plasma facing com-
ponents (PFCs) [1]. Indeed, the control and mitigation of the
runaway electrons constitute one of the priorities of the dis-
ruption mitigation system in ITER [2], the injection of high-Z
impurities by shattered pellet injection actually constituting
the most promising candidate.

Modelling and evaluation of the runaway current forma-
tion during the disruption has been often carried out without
including self-consistently the vertical motion of the plasma
[3] which often occurs during the disruptive event [4]. During
the current quench phase of the disruption, the plasma cur-
rent decays and runaway electrons are generated, replacing
the plasma current and, at the same time, the plasma moves
vertically until it finally hits the wall. Then, the scraping-off
of the plasma column starts leading to the deposition of the
runaway energy onto the PFCs, which can noticeably increase
due to the conversion of magnetic into runaway kinetic energy,
as has been extensively studied in the past [5–11]. Moreover,
it has been predicted that mitigation of disruptions by injec-
tion of a large amount of impurities can accelerate the vertical
plasma motion which, when the scraping-off of the beam hap-
pens, can largely increase the amount of energy deposited by
the runaway electrons [7].

Here, a simple 0D model which mimics the plasma sur-
rounded by the conducting structures [12], including self-
consistently the vertical plasma motion and the generation of
runaway electrons during the disruption, will be used for an
evaluation of the effect of vertical displacement events on the
formation of the runaway current and its termination (scraping-
off) during the disruption. Despite being simple, the 0D model
is able to capture the physics essential to the problem, includ-
ing in some cases analytical approximations, and allows an
easier and faster identification of the dominant processes and
essential parameters, while requiring less detailed knowledge
of density, temperature and current density profiles during
the current quench which are poorly known. The basics of
the model [12] are reviewed in section 2, whereas the con-
sequences for the formation and termination of the runaway
beam constitute the subject of sections 3 and 4, respectively.
The conclusions are summarized in section 6.

2. The three-loop model

The model here used is based on references [12, 13] and
approximates the plasma-wall system by a set of three
parallel thin circular coaxial rings of radius R0. The bot-
tom and top conductors carry currents I1, I2, respectively,
and represent the current in the conducting wall, while
the middle conductor represents the plasma current, Ip,
which can move vertically. The three-loop model also
includes a static external magnetic field created by two
constant circular currents, Ie. Their current Ie does not
change, which mimics shielding of the additional loops by
the first wall. The corresponding circuit equations are [12]:

Lw
dI1

dt
+ L12

dI2

dt
+ Lwp

d
dt

[1 − κ ln(1 + ξ)] Ip = −RwI1,

(1)

L12
dI1

dt
+ Lw

dI2

dt
+ Lwp

d
dt

[1 − κ ln(1 − ξ)] Ip = −RwI2,

(2)

Lwp
d
dt

[1 − κ ln(1 + ξ)] (I1 + Ie) + Lwp
d
dt

[1 − κ ln(1 − ξ)]

× (I2 + Ie) +
d(LpIp)

dt
= −Rp(Ip − Ir) (3)

where Ir is the runaway current (note that Ip = Ir + IOH,
where IOH is the ohmic or resistive current), ξ ≡ z/aw

is the normalized vertical displacement of the plasma
(2aw is the distance between the two wall conductors),
κ =

(
ln

[
8R0/aw

]
− 2

)−1
, and all the resistance and induc-

tance coefficients are defined in [12]: Rw and Lw are the
resistance and inductance of the wall conductors, respectively,
L12 is the mutual inductance between the wall conductors, and
the mutual inductances of the plasma and the wall conductors
are L1p = Lwp [1 − κ ln(1 + ξ)], L2p = Lwp [1 − κ ln(1 − ξ)],
respectively; Lp is the total plasma inductance,
Lp ≡ Lint + Lext, where Lint and Lext are the internal
and external plasma inductances, respectively, with
Lext ≡ μ0R0

(
ln

(
8R0/a

)
− 2

)
, and Rp is the plasma resis-

tance, Rp ≈ η2R0/a2 (η is the plasma resistivity and a the
plasma minor radius).

The force free-constraint

ξ =
I1 − I2

I1 + I2 + 2Ie
, (4)

is used for the vertical plasma motion [12].
The model also includes an equation for the runaway cur-

rent
dIr

dt
=

(
dIr

dt

)
seed

+

(
dIr

dt

)
avalanche

. (5)

The first term in equation (5) corresponds to the generation of
the runaway seed current (which can include different mecha-
nisms such as the Dreicer [14, 15] process, the hot tail runaway
electron generation mechanism [16], tritium decay or Comp-
ton scattering of γ rays emitted by the activated wall in the case
of DT plasmas [3]). The second term describes the avalanche
runaway generation, approximated by [17]

(
dIr

dt

)
avalanche

≈ e
(
E‖ − ER

)
Ir

mec lnΛa(Z)
. (6)

Here, a(Z) ≡
√

3 (5 + Z)/π, ER = nee3 lnΛ/4πε2
0mec2 is the

critical field for runaway generation [15, 18], and the paral-
lel electric field, E‖, is determined taking into account the
replacement of the plasma current by the runaway current,

E‖ = η ( jp − jr), (7)
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where jp,r = Ip,r/πa2k and k is the plasma elongation. For sim-
plicity, runaway losses will be neglected during the current
quench phase of the disruption, until the scraping-off of the
beam starts when the plasma touches the wall. Also, as in ref-
erence [17], we will assume ad hoc constant values for lnΛ
(typically ∼10 − 17) and Z. In fully ionized plasmas, Z is the
effective ion charge, whereas in disruptive plasmas with impu-
rities, Z includes the effect of the scattering of the runaway
electrons on the impurity ions and atomic nuclei. In that case
the expression for the avalanche amplification must be gen-
eralized to include the effect of the collisions with the bound
electrons [19–22].

3. Runaway formation

During the current quench phase of the disruption, the plasma
current decays and runaway electrons are generated.

Our modeling starts just after the thermal quench, assum-
ing an initial primary runaway seed Iseed = Ir(t = 0). Then,
according to equation (6), the runaway current at each time
can be written

Ir(t) = Iseed exp

(∫ t

0

ec(E‖ − ER)
Tr

dt′
)

, (8)

with T r ≡ mec2 lnΛa(Z), and the plasma current at each
time during the vertical motion can be obtained solving the
equations (1)–(3) for the inductively coupled circuits and tak-
ing into account the force-free condition (4) for the vertical
displacement.

Full line in figure 1 shows the numerically calculated
plasma current at the time the plasma hits wall as a function of
the ratio of the current quench time (τCQ ∼ Lint/Rp) to the wall
time (τw ≡ Lw/Rw) for a 15 MA ITER-like disruption, assum-
ing a runaway seed Iseed = 0.03 MA and ne = 4 × 1021 m−3.
Note that, when τCQ � τw (the case of a perfectly conducting
wall) no external magnetic energy penetrates into the plasma
and the plasma current when the plasma hits the wall tends to
a constant limiting value. In contrast, when τCQ > τw, pene-
tration of external magnetic energy leads to an increase of the
plasma current at wall contact. Note that for sufficiently large
τCQ/τw the plasma current at the time of wall contact might
exceed 15 MA, corresponding to τCQ in excess of 50 s which
is unphysical for ITER.

The vertical velocity during the plasma motion can be esti-
mated from the equation for the plasma current. Hence, from
equation (3), the electric field can be written

E‖ =
IOHRp

2πR0
= − 1

2πR0

dF
dt

(9)

where IOH = Ip − Ir is the ohmic current, and F is the mag-
netic flux across the circular contour of the plasma current,

F = Lwp [1 − κ ln(1 + ξ)] (I1 + Ie)

+ Lwp [1 − κ ln(1 − ξ)] (I1 + Ie) + LpIp, (10)

Figure 1. Comparison between the plasma current at the time the
plasma column touches wall as a function of τCQ/τw for a 15 MA
ITER-like disruption and ne = 4 × 1021 m−3 (full line),
ne = 2.5 × 1020 m−3 (dashed line). A runaway seed
Iseed = 0.03 MA is assumed.

and so

E‖ = − 1
2πR0

dF
dt

= − 1
2πR0

dF
dz

vp ⇒ vp

= −2πR0
E‖

(dF/dz)
= −Rp(Ip − Ir)

(dF/dz)
. (11)

Then, the time to hit the wall would be given by

τ = −
∫ zc

z0

(dF/dz)
Rp(Ip − Ir)

dz (12)

(z0: initial vertical position; zc: vertical position when contact-
ing the wall).

These results indicate that the vertical plasma velocity must
be larger (and hence the time to reach the wall shorter) for low
runaway currents and vice versa, the plasma velocity must be
lower (and the time to reach the wall larger) for large amounts
of runaway electrons (note that our model is 0D and does not
account for possible changes to the current profile depending
on the proportion of runaway electrons which can have a sec-
ond order effect on the speed of the plasma movement). As a
result, if a large runaway production occurs before the plasma
touches the wall, the plasma velocity might be so small and the
time to hit the wall increase so much that a large penetration
of external magnetic energy can occur, leading to an effective
current quench time larger than its nominal value, τCQ, and
increasing the value of the current when the plasma touches
the wall. This is illustrated by the dashed line in figure 1
which shows the plasma current at the time the plasma hits
the wall as a function of τCQ/τw for a lower density, ne =
2.5 × 1020 m−3. The case of lower density (dashed line) leads
to larger runaway production and hence to a slower plasma
motion and a longer time to reach the wall which explains
the larger value of the plasma current when hitting the wall
for τCQ/τw � 1 due to the penetration of external magnetic
energy. When the density is sufficiently increased (for densi-
ties larger than ∼3 × 1021 m−3 in this example), due to the
reduction of the runaway current, the motion of the plasma is

3
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fast enough so that the penetration of external magnetic energy
is not playing a role for τCQ/τw � 1 and the current at the wall
approaches to the full line curve. This is the limit of a highly
conducting wall.

In this work, from now on, we will be interested in the case
of disruptions mitigated by impurity injection, for which the
density is large enough so that in the case of ITER (τCQ � τw)
the limit of a highly conducting wall can be applied. This limit
was discussed in reference [12] and allows to get some ana-
lytical results. Hence, following [12], assuming Rw → 0, from
equations (1) and (2), the plasma current as a function of the
normalized vertical displacement, ξ ≡ z/aw, can be obtained,
yielding

Ip(ξ) =
c2 − 2Ieξ(Lw − L12) − Lξc1

Lwp(l1(ξ) − Lξl2(ξ))
, (13)

with

L ≡ Lw − L12

Lw + L12
; l1(ξ) ≡ κ ln

1 − ξ

1 + ξ
; l2(ξ) ≡ 2 − κ ln(1 − ξ2),

(14)
and c1, c2 constants given by the initial conditions [12],

c1 ≈ 2LwpIp(0); c2 ≈ 2ξ(0){Ie(Lw − L12) − κLwpIp(0)}.
(15)

Equation (13) shows a monotonic dependence of Ip on the
vertical displacement, ξ. It also implies that the plasma should
always hit the wall at the same current, Ip.

For the currents I1, I2 at the wall conductors, assuming
again Rw → 0, it is obtained:

I1 =
q + p

2
; I2 =

q − p
2

(16)

with

q ≡ c1 − Lwp[2 − κ ln(1 − ξ2)]Ip

Lw + L12
;

p ≡
c2 − Lwpκ ln

[
1−ξ
1+ξ

]
Ip

Lw − L12
. (17)

From equation (11), in the limit of a highly conducting wall,
the plasma velocity can be written straightforwardly in terms
of the normalized vertical displacement as

vp(ξ) = −2πR0aw
E‖

(dF/dξ)
= −awRp(Ip(ξ) − Ir(ξ))

(dF/dξ)
, (18)

and the corresponding time to reach a given vertical
position, ξ,

τ (ξ) = −
∫ ξ

ξ0

(dF/dξ)
Rp(Ip(ξ) − Ir(ξ))

dξ. (19)

We can consider now, for a given runaway seed current,
Iseed ≡ Ir(t = 0), the amount of runaway electrons that can be
expected to be generated during the disruption current quench
due the avalanche mechanism as a function of the plasma
vertical displacement. In order to simplify the analysis, we

first neglect the collisional dissipation of the runaway beam
(E‖ � ER). Thus, from equation (8),

Ir ≈ Iseed exp

(∫ t

0

ecE‖
Tr

dt′
)

, (20)

and taking into account that E‖ = −(1/2πR0)dF/dt, it is
straightforward to obtain

Ir ≈ Iseed eGav (ξ), (21)

where

Gav(ξ) ≡ ec(F0 − F(ξ))
2πR0 Tr

, (22)

is the avalanche gain at ξ, determined by the change in the mag-
netic flux, F(ξ), given by (10) (F0 is the value of the magnetic
flux after the thermal quench).

If the collisional dissipation, ER, cannot be neglected
equation (21) must be generalized to

Ir ≈ Iseed eGav (ξ) e
− ec

Tr
ERτ (ξ)

= Iseed e
ec(F0−F(ξ))

2πR0 Tr e
ecER

Tr

∫ ξ
ξ0

(dF/dξ)

Rp(Ip(ξ)−Ir(ξ))
dξ

, (23)

where equation (19) for τ (ξ) has been used.
Taking logarithms on both sides of (23) and then taking

the derivative with respect to ξ, the calculation of Ir(ξ) can be
reduced to the first order differential equation

I′r +

(
ecF′

2πR0 Tr

)
Ir = −ecER

Tr

F′

Rp
+

ecER

Tr

F′

Rp

Ip

Ip − Ir
. (24)

Figure 2 shows the numerically calculated plasma and
runaway currents when the plasma hits the wall as func-
tion of ne for a 15 MA ITER disruption (τw = 0.5 s) and
Iseed = 0.03 MA. The plasma touches the wall always at the
same current (∼9 MA in this case), whereas the runaway cur-
rent decreases, approximately in an exponential way, with
ne (Ir ∼ exp(−(ec/T r)ERτ ), and ER ∝ ne). The vertical
plasma velocity when the beam touches the wall, as illustrated
in figure 3, increases with density due to the decrease of the
runaway current with ne, indicating the acceleration of the
VDE for larger amounts of impurities.

4. Scraping-off and current termination

When the runaway beam touches the wall, the scraping-off
phase starts, during which the plasma radius is progressively
reduced, and the runaway energy is deposited onto the wall.
The effect of the scraping-off of the beam, for ξc < ξ < 1
(ξc is the normalized vertical position of beam at the con-
tact point, ξc ≡ zc/aw), can be modelled using again the
equations (1)–(3) for the inductively coupled circuits, together
with the force-free condition (4), and including in the equation
for the runaway current a loss term dIr/dt ≈ 2ȧIr/a [23],
so that,

dIr

dt
≈ ec(E‖ − ER)

Tr
Ir +

2ȧ
a

Ir (25)

(note that during the scraping-offphase, ξ = (aw − a(t))/aw =
1 − a(t)/aw).

4
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Figure 2. Plasma current (open dots) and runaway current (full
dots) as a function of density for a 15 MA ITER-like disruption
(Iseed = 0.03 MA, Te = 5 eV, τw = 0.5 s).

Figure 3. Vertical plasma velocity as a function of ne for a 15 MA
ITER-like disruption for the same conditions than previous
figure.

According to (25), the scraping-off of the beam leads to
a radial loss of the runaway current which can be described
by a characteristic loss time, τd ≈ a/2ȧ and, as a result,
the formation of the runaway current during scraping-off
takes place under an effective critical field for the generation
of the runaway current enhanced by the radial losses [28],
Eeff

R = ER + Tr/ecτd, so that dIr/dt ∝ (E‖ − Eeff
R ). If E‖ > Eeff

R ,
runaway current can be generated by avalanche whereas, when
E‖ < Eeff

R , runaway current is lost and the termination of the
runaway current takes place.

Equation (25) can be solved to yield the runaway current
during the scraping-off phase,

Ir = Ir0

(
a
a0

)2

exp

(∫ t

tc

ec(E‖ − ER)
Tr

dt′
)

, (26)

where Ir0 is the runaway current when the plasma touches
the wall, a0 the plasma minor radius at that time, and tc

is the time at which the beam hits the wall. And using
E‖ = −(1/2πR0)dF/dt,

Ir = Ir0

(
a
a0

)2

exp

(
ec(Fc − F(ξ))

2πR0Tr

)

× exp

(
−ec

Tr
ERτ (ξ)

)

= Ir0

(
1 − ξ

1 − ξc

)2

exp

(
ec(Fc − F(ξ))

2πR0Tr

)

× exp

(
−ec

Tr
ERτ (ξ)

)
. (27)

Here, the relation a = aw(1 − ξ) for the plasma minor radius
as a function of the normalized vertical displacement during
the scraping-off phase has been used, F(ξ) is the magnetic flux
for the vertical displacement ξ, given by equation (10), Fc the
magnetic flux at the time the beam hits the wall, and

τ (ξ) = −
∫ ξ

ξc

(dF/dξ)
Rp(Ip(ξ) − Ir(ξ))

dξ.

In the case of a perfectly conducting wall, the currents Ip(ξ),
I1(ξ), I2(ξ), are given by equations (13)–(17), and Ir(ξ) during
the scraping-off phase and termination, taking logarithms on
both sides of sides of (27) and then differentiating with respect
to ξ, is determined by the solution of the first order differential
equation

I′r +

(
2

1 − ξ
+

ecF′

2πR0Tr

)
Ir = −ecER

Tr

F′

Rp

+
ecER

Tr

F′

Rp

Ip

Ip − Ir
. (28)

Figure 4 (top) shows as example the numerically calcu-
lated plasma current and runaway current as a function of time
for a 15 MA ITER-like disruption (τw = 0.5 s, Te = 5 eV),
assuming Iseed = 0.03 MA and ne = 1022 m−3. The plasma
touches the wall at ∼9 ms, indicated by the first vertical line,
and the scraping-off phase starts. Note that initially, during
the scraping-off phase the runaway current increases, until at
a certain time, indicated by the second vertical line, the run-
away current starts to decay. This can be better understood
with the aid of the bottom figure which shows the time evo-
lution of the electric field (full line). The dashed line in the
figure indicates the calculated effective critical field, Eeff

R , and
the red horizontal line the avalanche threshold, ER. During
the whole scraping-off phase, the electric field remains larger
than ER. Initially, E‖ > Eeff

R , leading to runaway current gen-
eration and, once E‖ < Eeff

R the runaway current decays. Note
that the runaway decay phase follows a marginal stability sce-
nario determined by Eeff

R [28], during which the electric field
remains close (but below) to Eeff

R , so that also during the run-
away current decay the electric field is larger than ER (as
Eeff

R = ER + Tr/ecτd > ER). This, as a consequence, results in
a substantial energy deposition onto the runaway population,
proportional to (E‖ − ER), and conversion of magnetic into
runaway kinetic energy [28].
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Figure 4. For a 15 MA ITER-like disruption (τw = 0.5 s,
Te = 5 eV), assuming Iseed = 0.03 MA and ne = 1022 m−3: top:
plasma and runaway currents as a function of time; bottom: time
evolution of the electric field (full line). The dashed line indicates
the effective critical electric field, Eeff

R , and the horizontal line
corresponds to the avalanche runaway threshold, ER.

The energy transferred to the runaway electrons as a func-
tion of time can be calculated

ΔWrun ≈ 2πR0

∫ t

0
Ir(E‖ − ER)dt′

= 2πR0Ir0

∫ t

0
(E‖ − ER)

(
a
a0

)2

e

∫ t′
0 ec(E‖−ER)dt′′

Tr dt′,

(29)

which, integrating by parts and using (26), yields

ΔWrun ≈ 2πR0Tr

ec

{
(Ir − Ir0) − 2

∫ t

0

Ir

a
da

}

=
2πR0Tr

ec

{
(Ir − Ir0) + 2

∫ ξ

ξc

Ir

1 − ξ′
dξ′

}
. (30)

The calculated energy deposition onto the runaway electrons,
ΔW run, as a function of time is shown in figure 5 (the figure
also includes the energy deposited during the formation phase
∼2πR0TrIr/ec). The total amount of energy deposited onto the
runaways is larger than 100 MJ.

The results for a case with the same parameters but a larger
density, ne = 5 × 1022 m−3, are presented in figures 6 and 7. It

Figure 5. For the same conditions than previous figure: energy
deposited onto the runaway electrons, ΔW run, as a function of time.

is found that although the larger density results in a notice-
able reduction of the runaway current during the formation
phase, the electric field during scraping-off, proportional to
the plasma velocity (and so larger because of the lower run-
away current), is substantially enhanced, which yields a large
increase in the runaway current and substantial energy deposi-
tion during the scraping-off and the termination of the runaway
current.

This is better illustrated in figure 8, which shows for the
same disruption conditions than previous figures, the energy
deposited on the runaway electrons during the scraping-off
phase as a function of density. A density ne = 5 × 1021 m−3

is assumed at the start of the current quench, increasing to ne

due to a second impurity injection at Δt. Even if the density
increase has a large impact on the magnitude of the runaway
current until the beam touches the wall (figure 2), the large
electric field induced during scraping-off compensates to large
extent the effect of the density increase, which results only
in a slight decrease of ΔW run when ne increases. It is also
observed that an earlier second impurity injection (smaller Δt)
favors somewhat a reduction in the amount of energy deposited
on the runaways. Finally, these results are also found to be
strongly sensitive to the assumed temperature during scraping-
off, larger temperatures leading lo larger induced ohmic cur-
rents and so being efficient in reducing the power fluxes onto
PFCs (white squares in the figure).

However, it is not physically correct to assume that the con-
version of magnetic into runaway kinetic energy lasts until
the beam is fully scraped-off since, due to the decrease of
the beam radius, the limit qa = q(r = a) = 2 will be reached
before, as illustrated in figure 9. It is therefore an important
question if additional substantial conversion of magnetic into
runaway energy may occur when the qa = 2 stability bound-
ary is crossed, or as suggested in [24, 25], the global nature
of the deconfinement of the runaways by large magnetic fluc-
tuations, δB, when qa = 2 is reached can give rise to sig-
nificantly larger wetted areas and conversion of magnetic to
kinetic energy of the runaway electrons may be avoided when
they are deconfined by large magnetic fluctuations. As shown
in figure 10, the amount of energy deposited on the runaway
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Figure 6. For a 15 MA ITER-like disruption (τw = 0.5 s,
Te = 5 eV), assuming Iseed = 0.03 MA and ne = 5 × 1022 m−3:
top: plasma and runaway currents as a function of time; bottom:
time evolution of the electric field. The dashed line indicates the
effective critical electric field, Eeff

R , and the horizontal line
corresponds to the avalanche runaway threshold, ER.

Figure 7. For the same conditions than previous figure: energy
deposited onto the runaway electrons, ΔW run, as a function of time.

electrons by the time the limit qa = 2 is reached can be notice-
ably lower than the values estimated for the full scraping-
off of the beam (figure 8). This result is also illustrated by
figures 11 and 12 which show for the same conditions than
figure 10 the runaway current and Ir/(1 − ξ) (whose integra-
tion determines the energy deposited on the PFCs as indicated

Figure 8. For the same 15 MA disruptions than previous figures:
energy deposited on the runaway electrons during the scraping-off
phase as a function of density. A density ne = 5 × 1021 m−3 is
assumed at the start of the CQ increasing to ne due to a second
impurity injection at Δt.

Figure 9. Time evolution of qa = q(r = a) during the formation,
scraping-off and the termination of the runaway current for the
disruption of figure 4 (ne = 1022 m−3). The horizontal dashed line
indicates qa = 2.

by equation (30)) as a function of the (normalized) vertical dis-
placement, ξ, for different values of the density. The figures
show that, both, the runaway current and Ir/(1 − ξ) substan-
tially decrease for increasing values of ne until qa = 2 (indi-
cated by the second vertical line) but, later on, due to the
increasing plasma velocity and enhanced electric field, both
of them strongly increase reaching similar values for all den-
sities, which explains why the total energy deposited on the
runaways until the beam is fully scrapped-off decreases much
more slowly with increasing plasma density.

In order to evaluate the effect of the runaway deconfinement
when qa = 2 is crossed, a loss term −Ir/τ d has been added
to the equation for the runaway current, where τ d is a char-
acteristic time describing the deconfinement of the runaway
electrons when the limit qa = 2 is reached. In reference [10] it
was shown that for short enough deconfinement times, below
1 ms, the amount of energy deposited on the runaway electrons
for ITER-like conditions would be noticeably reduced. How-
ever, such analysis did not consider the vertical displacement
of the beam which, as illustrated in figure 13 for an example
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Figure 10. Energy deposited on the runaway electrons during the
scraping-off phase when qa = 2 is reached as a function of density
for the same conditions than previous figures, assuming Δt = 0 ms,
Te = 5 eV (open squares) and Te = 10 eV (open circles). For
illustration, the results for the energy deposited during scraping-off
until the beam is fully terminated (black squares) are also shown.

Figure 11. Runaway current as a function of the (normalized)
vertical displacement, ξ, for the same conditions than previous figure
and different values of the density. The first vertical line indicates the
start of the scraping-off phase and the second one the qa = 2 limit.

assuming ne = 1022 m−3, Te = 5 eV and τ d = 0.25 ms, can
greatly increase the energy deposited on the runaway popula-
tion. The top figure shows the time evolution of the plasma
current (full line), ohmic current (dashed line) and runaway
current (dashed dot line), the electric field during deconfine-
ment is presented in the middle figure, and the bottom figure
shows the energy deposited on the runaway electrons. The
runaway current initially decreases but the plasma current
decays before the runaway current is terminated so that the
plasma moves and the electric field increases due to the plasma
motion (the electric field is not anymore proportional to the
ohmic current because of the increase in the plasma resis-
tance when the plasma radius is reduced). Such increase in
the electric field yields substantial runaway avalanche which
eventually leads to the recovery of the runaway current and to
a large energy deposition on the runaway electrons (more than
100 MJ). We note that some of the features of our simple mod-
elling can lead to a higher rate of magnetic to runaway kinetic
energy conversion than would happen in the real disruptive
plasma conditions in ITER. For example the three-conductor

Figure 12. Ir/(1 − ξ) as a function of the (normalized) vertical
displacement, ξ, during scraping-off for the same conditions than
previous figures and different values of the density. The vertical line
indicates the qa = 2 limit.

model that we have used allows for higher penetration of exter-
nal magnetic energy, which can eventually convert to runaway
kinetic energy during the current quench than the previous co-
axial model for the vacuum vessel with a static single wire
plasma [10]. To reduce the conversion of magnetic into run-
away kinetic energy to low enough values demands shorter
deconfinement times, close or below 0.1 ms, as in the example
presented in figure 14, for which ne = 1022 m−3, Te = 5 eV
and τ d = 0.1 ms. In this case, the decay of the runaway cur-
rent is so fast that Ir is terminated before the plasma current
can change and the plasma moves, so that during runaway ter-
mination there is no increase of the electric field due to the
plasma motion and the energy deposited on the runaways is
kept small (∼3 MJ). The enhancement of the electric field due
to the plasma motion occurs later when there are no runaways
in the plasma.

If the losses are assumed to be due to large magnetohydro-
dynamic instabilities, an estimate of the associated fluctuation
level might be obtained using τd ∼ a2/ j20Dr where j0 is the
first zero of the Bessel function J0, and Dr the radial diffu-
sion coefficient describing the runaway losses in the stochastic
magnetic field which, assuming free streaming along the field
lines, could be estimated Dr = Dmv‖ [26], where v‖ is the par-
allel electron velocity and Dm is the magnetic line diffusion
coefficient Dm = L‖b̃2 (b̃ is the normalized radial magnetic
fluctuation amplitude b̃ ≡ B̃r/B0, L‖ ≈ πq0R0 is the parallel
correlation length of the magnetic fluctuations, and q0 = 2 the
safety factor), yielding for τ d < 0.1 ms a magnetic fluctuation
level b̃ > 6 × 10−4. Note that timescales <0.1 ms are typi-
cal for ideal MHD instabilities leading to sudden confinement
losses during disruptions [27].

5. Runaway heat loads

The analysis carried out in the previous section has shown
that substantial conversion of magnetic energy into runaway
kinetic energy might be expected during the scraping-off
phase of disruptions in ITER, unless the density is sufficiently
large and short enough deconfinement times are assumed after
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Figure 13. For ne = 1022 m−3, Te = 5 eV, and τ d = 0.25 ms: top:
time evolution of the plasma current (full line), ohmic current
(dashed line) and runaway current (dashed dot line) during
deconfinement (after qa = 2 is reached); middle: time evolution of
the electric field after qa = 2 is reached; bottom: time evolution of
the energy deposited on the runaway electrons during
deconfinement.

qa = 2 is reached. Nevertheless, for an assessment of the possi-
ble consequences for the PFCs, not only the magnitude of the
deposited energy but also the timescale of the energy depo-
sition should be considered. Hence, figure 15 shows for the
same cases than figures 5 and 7, as a function of time, the
energy deposited by the runaway electrons onto the PFCs,
WPFC, determined by the difference between the total energy
deposited on the runaways, ΔW run, calculated in the previous
section, minus the instantaneous kinetic energy of the run-
away beam, Wkin ≈ 2πR0T rIr/ec [28], also shown in the figure
(dashed lines), so that WPFC ≡ ΔW run − Wkin (full lines). Note
that the energy deposited on the PFCs, WPFC, is determined by
the second term in equation (30).

Figure 14. For ne = 1022 m−3, Te = 5 eV, and τ d = 0.1 ms: top:
time evolution of the plasma current (full line), ohmic current
(dashed line) and runaway current (dashed dot line) during
deconfinement (after qa = 2 is reached); middle: time evolution of
the electric field after qa = 2 is reached; bottom: time evolution of
the energy deposited on the runaway electrons during
deconfinement.

The resulting power loads due to the deposition of run-
aways, Pr(t) ≡ dWPFC/dt (energy deposited by the run-
aways/time), are illustrated in figure 16. The vertical dashed
lines indicate the time at which the limit qa = 2 is reached.
As observed in the figure, at larger densities, due to the faster
motion of the plasma and the resulting enhancement of the
induced electric field, the runaway power loads increase but
the PFCs are exposed to this power flux for a shorter timescale
which explains the decrease in the total amount of energy
deposited when the density increases.

As it was explained in reference [10], a simple estimate
of the increase in the surface temperature of the PFCs due to
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Figure 15. For the same conditions than figures 5 and 7:
instantaneous kinetic energy of the runaway beam (dashed lines),
Wkin, and energy deposited onto the PFCs (full lines), WPFC, as a
function of time. The arrows indicate the time at which qa = 2 is
reached.

the runaway heat loads can be obtained from the solution of
the one-dimensional heat diffusion equation in a semi-infinite
solid [10, 29]. Hence, assuming an exponential decay of the
runaway electron energy deposition into the PFCs, the surface
temperature increase can be estimated [10, 30, 31]:

ΔT =
κ

Kδ

∫ t

0
qr(t′)eκ(t−t′)/δ2

erfc

(√
κ(t − t′)
δ

)
dt′, (31)

where δ is the e-folding length of the heat source due to
the runaways into the PFCs, erfc(x) = 1 − 2√

π

∫ x
0 e−x′2 dx′ is

the complementary error function, κ = K/ρc (K is the solid
heat conductivity, c the heat capacity, and ρ the solid den-
sity), qr ≡ Pr/Aw is the heat flux density, and Aw the runaway
wetted area.

This simplified analysis does not include a number of
effects which should be considered for a more accurate evalua-
tion of the runaway heat loads such as the runaway distribution
function, the ratio of the perpendicular (to the magnetic field)
to the parallel runaway energy, or the detailed plasma magnetic
configuration and geometry of the PFCs [32–34].

On the other hand, as in the case of reference [10], here
we will focus on the effect of the runaway electrons on the
ITER Be first wall as ‘it is expected that the impact of runaways
on the Be first wall will provide a more restrictive criterion

Figure 16. Runaway power loads onto the PFCs, Pr(t) ≡ dWPFC/dt,
versus time for the same disruption conditions than previous figure.

to assess the requirements to avoid deep melting of the PFCs
by runaways in ITER than that of impact on the W divertor
baffle’ [10].

Figure 17 shows, using the evaluation for the power
deposited by the runaways of figure 16, an estimate of the min-
imum area (Amin) for runaway deposition which would avoid
melting of the Be first wall PFCs (i.e., ΔT < 1000 K) for a
typical penetration depth of MeV runaway electrons in Be,
δ = 2 mm. A deconfinement time τ d = 0.1 ms is assumed
when qa = 2 is crossed. For ne = 1022 m−3 (dashed dotted
line), the minimum wetted area is in the range ∼2 m2 when
qa = 2 is reached, sharply increasing to ∼5 m2 as a result
of the runaway deconfinement. Although low values of τ d

lead to a small conversion of magnetic into runaway kinetic
energy, the runaway power loads can still be large due to the
short deposition time, leading to the increase of Amin. For
ne = 5 × 1022 m−3 (dashed line), Amin is reduced to values
in the range of tenths of m2 when qa = 2 is reached, but
still increasing to Amin ∼ 2 m2 during runaway deconfine-
ment. Reducing Amin to sufficiently low values even dur-
ing the deconfinement phase would require larger densities,
∼1023 m−3, as illustrated by the full line in figure 17 which
shows the results for ne = 7.5 × 1022 m−3. To define the pre-
cise conditions for Be melting avoidance is not a simple task as
it will depend on the expected runaway wetted area, which oth-
erwise will be affected by the large magnetic fluctuations dur-
ing deconfinement [24], but a large enough density to reduce
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Figure 17. Minimum wetted area to avoid Be melting as function of
time for the same disruption conditions than previous figures, for
ne = 1022 m−3 (dash-dotted line), 5 × 1022 m−3 (dashed line) and
7.5 × 1022 m−3 (full line), including the effect of deconfinement
when qa = 2 is reached assuming τ d = 0.1 ms in all cases. t = 0
indicates the start of the scraping-off phase.

Figure 18. Energy deposited on the runaway electrons for an
ITER-like 15 MA disruption assuming Ne injection as a function of
the amount of assimilated Ne. A runaway seed current
Iseed = 10−4 MA has been assumed. Squares: energy deposited until
the beam is fully scraped-off; circles: energy deposited until the
qa = 2 limit is reached. The results for Te = 3 eV (full symbols)
and Te = 5 eV (open symbols) are compared.

the energy deposited on the runaways by the time qa = 2 is
reached to small enough values (<10 MJ) will be a necessary
condition.

6. Conclusions

A simple 0D model which mimics the plasma surrounded by
the conducting structures [12], including self-consistently the
vertical plasma motion and the generation of runaway elec-
trons, has been used for an evaluation of the runaway electron
formation and termination during the disruption, with partic-
ular emphasis on its implications for the case of ITER-like
disruptions.

Regarding the formation of the runaway beam, it is found
that the total plasma current when the plasma hits the wall
increases with the ratio of the current quench time to the
wall time (τCQ/τw) as the longer the current quench time, the

greater the penetration of external magnetic energy through
the vacuum vessel, whereas if τCQ � τw no external magnetic
energy penetrates into the plasma and the current at the wall
tends to a constant limiting value. Hence, in the case of ITER,
with a highly conducting wall, the total plasma current when
the plasma touches the wall is always the same and indepen-
dent of the amount of impurities injected for disruption miti-
gation, but the runaway current at that time can significantly
decrease for a high enough number of impurities. The vertical
plasma velocity increases with the ohmic plasma current and,
therefore, decreases for large runaway currents. As a result, if a
high number of impurities are injected to dissipate the runaway
current, the runaway current decreases, the plasma column is
accelerated and the time to reach the wall can be noticeably
shortened.

Once the plasma touches the wall, the scraping-off and ter-
mination phase of the runaway current occurs. During this
phase, the plasma velocity and electric field can substantially
increase leading to the deposition of a noticeable amount of
energy on the runaway electrons (∼hundreds of MJ). The
effect of injecting a larger amount of impurities is in part coun-
teracted by the increase of the plasma velocity when reducing
the runaway current and, thus, the enhancement of the elec-
tric field, so that the decrease of the energy deposition on the
runaways is smaller than initially expected. An early second
impurity injection can reduce somewhat the amount of energy
deposited on the runaway electrons, and it is found that larger
temperatures of the residual ohmic plasma during scraping-off
might be efficient in reducing the power fluxes onto the PFCs.

It is also found that the plasma reaches the qa = 2 limit
before the current is fully terminated and that the amount of
energy deposited on the runaway electrons by that time can be
substantially lower than the estimates for the full scraping-off
of the beam. Negligible additional conversion of magnetic into
runaway kinetic energy would be expected during the runaway
deconfinement following the large magnetic fluctuations after
qa = 2 is crossed for characteristic deconfinement times lower
than 0.1 ms, which are typical of ideal MHD instabilities.

An assessment of the power loads due to the runaways
on the PFCs has also been carried out. Larger amounts of
impurities result in a faster beam motion and induced elec-
tric fields, which lead to larger power loads although for a
shorter timescale so that, as a whole, the total energy deposited
by the runaways decreases at larger densities. The evalua-
tion of the power deposited by the runaway electrons allows
to get estimates of the minimum wetted area to avoid melt-
ing of the Be FW PFCs for typical penetration depths of
MeV runaway electrons in Be, and suggests that large enough
densities (∼1023 m−3) would be required, assuming that no
more conversion of magnetic energy into runaway energy
occurs after the limit qa = 2 is reached (τ d < 0.1 ms), lead-
ing to very small energy deposition on the runaway population
(typically <10 MJ).

Finally, it must be taken into account that, here, for sim-
plicity, the effect of the injection of impurities has been just
accounted for by increasing the density ne. Nevertheless, a
more accurate treatment taking into account the effect of the

11



Nucl. Fusion 62 (2022) 076013 J.R. Martín-Solís et al

collisions with the free and bound electrons, and with the aver-
age and the full nuclear charge of the impurity ions, including
partial screening effects as in [35], indicates that similar trends
are found for the energy deposited on the runaway electrons,
ΔW run, as a function of the amount of assimilated impurities
and the bulk temperature, Te. This is illustrated in figure 18
which shows the energy deposited on the runaway electrons
for an ITER-like 15 MA disruption assuming Ne injection as
a function of the amount of assimilated Ne (in kPa m3) (for
simplicity only Ne1+ is assumed). The squares correspond to
the energy deposited assuming that the beam has been fully
scraped-off and the circles indicate the energy deposited until
the qa = 2 limit is reached. The results assuming Te = 3 eV
(full symbols) and Te = 5 eV (open symbols) are compared
(of course, this is a simplified approach and a more adequate
calculation would require a self-consistent calculation of Te

as well, instead of assumed given values for the bulk plasma
temperature, which is beyond the scope of this work). In all
the cases a runaway seed current Iseed = 10−4 MA has been
assumed. The figure would suggest that in order to avoid Be
melting, which would demand a very low amount of energy
deposited on the runaways, ∼10 kPa m3 of assimilated Ne
would be required (assuming that no more conversion of mag-
netic energy into runaway energy occurs once the limit qa = 2
is reached). Figure 18 assumes that the impurities are in the
plasma since t = 0 s. The effect of a first injection followed
by a second injection at a time Δt was discussed in figure 8 in
section 4, showing that although ΔW run is somewhat reduced
by earlier injections, the effect is not sizeable.
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