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Abstract
Systematic extraction of locally valid dynamic models from experiments is necessary for
controller design and the validation of high fidelity models. This paper describes the extraction
of a dynamic model in the form of a transfer function, giving the dynamic response of the CIII
(465.0 nm) emission front position to deuterium gas puffing in the TCV divertor during flattop,
relevant for heat exhaust control. The model is extracted using frequency response data from
both SOLPS-ITER simulations and perturbative experiments. We use the steady-state
solutions of the model SOLPS-ITER to obtain an additional data point at the zero frequency,
as the identifiable frequency range by perturbative experiments is lower bounded by discharge
time. We specifically approach the problem from a control engineering point of view, aiming
to develop control-oriented models for the systematic design of impurity emission front
controllers. We find a transfer function structure based on a diffusive process to best describe
the obtained frequency response data. The resulting transfer function model accurately
reproduces the local dynamic response measured during experiments, so it can be used to
assess new controllers offline for similar discharge scenarios.
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1. Introduction

Reactor relevant tokamak operations require real-time control
systems to reach and maintain advanced plasma scenar-
ios [1]. The plasma state is analyzed using a large range
of diagnostics, and steered in a desired direction using a
multitude of actuators driven by real-time feedback control
algorithms. These feedback control algorithms need to be
designed systematically (using a model) to prevent excessive
shot-to-shot controller tuning, and guarantee stability and
performance. Development of control-oriented models is
crucial for the systematic design of such feedback controllers
[2]. Control-oriented models capture the dominant dynamic
input–output behavior of a system with low complexity, and
their inputs and outputs match the experimental case. The
value of control-oriented models in fusion has proven its worth
e.g., in suppressing tearing modes [3], control of sawtooth
periods [4], density profile control [5, 6] and q-profile control
[7]. In all of these works model-based controller design was
applied, ranging from the relatively simple design method
loop shaping [8], to advanced methods like model predictive
control and robust control. Additionally, control-oriented
models allow for the development of dynamic estimation
techniques (e.g., Kalman filtering) to estimate and control
unmeasured plasma parameters, necessary to overcome the
sensor deprivation inherently present in fusion power plants.

In this paper, we synthesize a control-oriented model for a
pressing problem: the real-time control of plasma detachment.
Divertor plasma detachment is required to maintain a suffi-
cient reduction of power flux densities impacting the divertor
material [9]. Left unmitigated, the expected power fluxes dur-
ing reactor relevant operation exceed present-day engineering
limits [10, 11]. Detachment control is receiving large atten-
tion, with a range of control schemes being developed and
demonstrated [12–16]. However, investigation of its dynam-
ics (time-response) with respect to different actuators is largely
overlooked. Notable exceptions include an investigation of the
ITER divertor plasma response to impurities [17], emission
front controller design using system identification [18] and
power load feedback controller design based on first-principle
modeling [19]. We specifically approach this problem from a
control engineering point of view, aiming to develop control-
oriented models for systematic detachment controller design.

We report on the systematic extraction of a first control-
oriented model (in the form of a transfer function) of the
divertor plasma response to deuterium gas puffing in toka-
mak à configuration variable (TCV) [20]. In TCV, the onset
of detachment is correlated with CIII (465.0 nm) emission
extinguishing near the divertor target [21–24]. This extinc-
tion near the target allows a CIII emission front position to
be defined strongly related to the local electron temperature,
typically 5–8 eV. We use this CIII emission front location to
diagnose the dynamic response of the divertor plasma to deu-
terium gas puff. We combine perturbative dynamic identifica-
tion experiments with SOLPS-ITER [25, 26] simulations to
obtain frequency response function (FRF) data points, which
are used to find a locally valid transfer function of the CIII
front response to deuterium fueling. The governing dynamic

process is unknown. Therefore, we consider three different
transfer function structures which each depend on a different
dynamic process: a time-delay, a first-order inventory model
and a diffusion based model. From these, we find that the dif-
fusion based model structure best describes the combination
of perturbative measurements and SOLPS-ITER simulations.
The extracted transfer function model is compared with exper-
iments and found to accurately reproduce the experimentally
observed dynamic response, which shows it can be used for
offline design, and assessment of, feedback controllers which
operate in a similar plasma scenario.

This paper is organized as follows: section 2 details the
control problem, the use of perturbative experiments, and
SOLPS-ITER, as a method to obtain FRF data. This section
also includes explanations of control related notions as FRF’s,
transfer functions and Bode plots for the reader unfamiliar
with this terminology. Section 3 describes the experimental
set-up. Section 4, presents the perturbative experiments and
SOLPS-ITER simulations and their resulting FRF data points.
In section 5 we synthesize the three transfer function mod-
els, each with a different structure, and estimate their parame-
ters with the obtained FRF data. The diffusion based model
is found to best fit the FRF data, and is compared to addi-
tional experiments in section 6. We end with conclusions and
a discussion in section 7.

2. Theoretical background

We introduce the general control loop in section 2.1, and the
identification of the dynamics of a system which needs to be
controlled in section 2.2. The reader familiar with general con-
trol theory and system identification can skip to section 2.3,
where we detail the use of a time-independent model to com-
plement perturbative identification experiments.

2.1. The control loop

Figure 1 shows the general control loop used as a basis for the
majority of control theory [8, 27, 28]. To design a controller
C with guarantees on stability and performance margins, the
dynamics of the to be controlled plant H need to be identified.
That is, how is the output y related to the input u of a dynamic
system H. The plant H is often described by a differential
equation. Most real systems have a non-linear input–output
characteristic, however, a locally valid linear description is
often sufficient to describe the dynamics within a certain oper-
ating range [27]. We denote such a locally valid description of
the plant H as Ĥ, which can be seen as a local linearisation
of H around a certain operating point (y0, u0). Identifying Ĥ
experimentally is done by exciting the system with carefully
designed perturbations to the input u while measuring the out-
put y. Under the assumption of small perturbations, a local lin-
ear approximation of H is identified which describes the rela-
tion of the output y to the input u at the operating point which
was perturbed. The local linear approximation in the time
domain takes the form of a linear time-invariant (LTI) ordinary
differential equation (ODE). Such an ODE can be uniquely
described by a FRF, which relates the relative amplitude
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Figure 1. The general control loop. A desired reference r is
compared with a measured output ym subject to measurement noise
η. The difference is the control error e which is fed to a controller
C. The controller C computes the needed input u to steer the output
y closer to its desired reference value r.

and phase of y with respect to u in the frequency domain.
Therefore, a perturbation on u is generally done by using a
periodic signal with specific frequency components [29]. We
detail this with an example in the next section, where we trans-
late an ODE to a transfer function and FRF and elaborate on
how to identify it experimentally.

2.2. Experimental identification of the plant

Consider the local linearisation around (y0, u0) of the plant H:
Ĥ, to be a linear dynamic model as

τ
dδy
dt

(t) = −δy(t) + k∗δu(t), (1)

with input δu = u(t) − u0, output δy = y(t) − y0 and constants
τ , k∗. Translation of (1) to the Laplace domain results in the
transfer function Ĥ(s) as

δy(s)
δu(s)

=
k∗

1 + τs︸ ︷︷ ︸
G(s)

, (2)

with s = σ + jω a complex number frequency parameter
called the Laplace variable, with real numbers σ and ω. The
FRF of (2) is obtained by evaluating its transfer function in
the Fourier domain as s = jω, which can be interpreted as
only looking at constant amplitude oscillations. We obtain a
complex value for Ĥ( jω) per frequency ω (rad s−1), which
is the systems complex response per frequency, hence FRF.
A system’s FRF is depicted in a Bode diagram, showing the
relative input–output magnitude and input–output phase per
frequency. The magnitude is the absolute value of the complex
response:

∣∣Ĥ( jω)
∣∣, and the phase the angle between its real and

imaginary part∠Ĥ( jω). Identification of Ĥ( jω) can be done by
injecting an input signal δu(t) with specific frequency compo-
nents and subsequently measuring the output δy(t). Analyzing
the relative phase and magnitude of δy(t) with respect to δu(t)
over frequency then gives the system’s FRF. FRF data points
of Ĥ( jω) can then be used to estimate the parameters of a
proposed transfer function Ĥ(s), in this case resulting in an
estimate of the constants τ and k∗.

It is important to note that there is a strong additional ben-
efit of the Laplace domain for analysis and design of linear
systems and controllers. Namely, obtaining the output y(t) of
a linear system H for a given input u(t) no longer requires the

computation of the convolution

y(t) = H(t) ∗ u(t) =
∫ ∞

∞
H(τ )u(t − τ )dτ , (3)

or solving the ODE. Instead the problem simplifies to a product

y(s) = H(s)u(s). (4)

This means when considering the general control loop of
figure 1, the closed-loop response of r(s) to y(s) becomes an
analytic expression

y(s) =
C(s)H(s)

1 + C(s)H(s)
r(s). (5)

Additionally, the plant H(s) generally consists of an actuator
A(s), a process G(s), and a sensor S(s), with each a different
transfer function. The plant is then a straightforward multipli-
cation of those terms: H(s) = S(s)G(s)A(s). Separately identi-
fied sensors and actuators can thus be analytically incorporated
for analysis of the control-loop performance and stability.

2.3. Complementing perturbative experiments with a
time-independent model

A FRF can be identified using perturbation experiments, of
which the identifiable frequency range is limited by exper-
imental time and hardware limits. For a meaningful com-
putation of the variance and signal to noise ratio of FRF
measurements, at least three periods of the lowest frequency in
the chosen excitation signal is required [29]. Discharge dura-
tion is limited, which means the experimental time during
which perturbations can be applied, τ exp (s), is in the order of
seconds for small to medium size tokamaks. This results in a
lower bound on the identifiable frequency range of 3/τ exp (Hz)
considering the minimum of three periods. The upper limit of
the identifiable frequency range is dictated by the limitation
of the actuator (ability to inject signals at high frequency) and
the sensor (ability to measure signals at high frequency). The
resulting limited identifiable frequency range of an FRF can
result in a non-unique identification of the parameters for a
given transfer function. Figure 2 illustrates this, showing five
different realizations (values for τ , k∗) of the transfer func-
tion Ĥ(s) = k∗

1+τs (2), which are indistinguishable when the
identifiable frequency range by perturbative experiments is as
depicted.

Although under weak assumptions FRF data around the
desired closed-loop bandwidth is sufficient to design a con-
troller with stability guarantees [8], uniquely identifying all
transfer function parameters is desirable. Knowledge of all
transfer function parameters means guarantees of both sta-
bility and performance of the closed-loop can be given for
a given controller. In the case of figure 2 the measure-
ment range limits the obtainable data to the already con-
verged constant phase and constant amplitude slope. Addi-
tional data at lower frequencies than the characteristic pole
location of Ĥ(s) (the frequency where the magnitude changes
slope, and the phase crosses −45 degrees) is required to
obtain a unique identification of τ , k∗. In section 4, we
show the experimentally obtained FRF results from D2
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Figure 2. Bode diagram of a FRF. Five realizations of a transfer
function model of the form G(s) = κ∗/(1 + τs). Top: the magnitude
amplification per frequency, and bottom: the phase shift per
frequency. The purple lines illustrate the experimental time and
actuator/sensor limit of using perturbative experiments. A
time-independent model (like steady-state SOLPS-ITER solutions)
can identify an FRF data point at f → 0, indicated in green.

gas puffing to CIII front position in TCV, are converged
in phase and magnitude slope just like the example. There-
fore, we complement the experiments by the use of a time-
independent model, which can be used to obtain an additional
FRF data point on the zero-frequency also called the DC-gain.
We give here an explanation of this method by means of an
example, the general derivation is detailed in appendix A.

Assume a time-independent model of the to be identified
system is available. The time-independent model gives all
equilibrium solutions (yeq, ueq), i.e. the points where dy

dt = 0.
For the dynamic model (1) this yields

yeq

ueq
= k∗. (6)

This can be interpreted as the amplification of the converg-
ing output y(t)|t→∞ with respect to some step input δu(t) = c,
∀t � 0, which is called the system’s DC-gain. For stable sys-
tems, the final-value theorem states the DC-gain is equal to the
transfer function evaluated at s = 0 [28]. A time-independent
model of the system can thus be used to identify a specific
point of the FRF: the one at the zero-frequency. In the case
shown in figure 2 the DC-gain is equal to k∗. Combining the
DC-gain gained from the time-independent model with the
FRF data obtained by experiments now allows a unique iden-
tification of both k∗ and τ . We take this exact approach to
identify the parameters of a transfer function describing the
dynamics from D2 gas puffing to CIII front position in TCV:
we combine FRF data from perturbative experiments with a

DC-gain estimate obtained from steady-state SOLPS-ITER
solutions.

Note that, it is possible to obtain the DC-gain experimen-
tally. This requires a predefined input ust(t) which brings the
system to a stationary state yst

1 . A step input δu(t) = c, ∀t � 0,
is then added to ust(t) to reach a new stationary state yst

2 , leading
to the DC-gain as (yst

2 − yst
1 )/c. However, obtaining ust(t) under

time-varying conditions like wall-recycling, without using a
controller is not trivial, making this a time-consuming option.
This especially holds for machines where wall conditions do
not saturate within a discharge, as is the case in TCV.

3. Experimental set-up

The experiments performed for this work were done on TCV
[20]. Results are obtained using a lower single-null 250 kA
Ohmic L-mode scenario in reversed field (unfavourable for H-
mode access), with 〈ne〉 ≈ 1 × 1020 m−3 and Btor = 1.4 T.

3.1. Control goal

In TCV, the onset of detachment is correlated with CIII
(465.0 nm) emission extinguishing near the divertor target
[21–24], which allows an emission front to be defined. The
location of this emission front is defined as a 50% emissivity
decrease of CIII 465 nm emission along the divertor leg. The
CIII front location is closely related to local electron tempera-
ture, typically 5–8 eV. Below this front, the electron tempera-
tures reached in the divertor are sufficiently low for detachment
enabling processes. It was shown that the CIII position can
be controlled in real-time using fueling of D2 by gas valve in
the divertor [18]. We aim to identify a transfer function model
Ĝ(s) which is capable of describing the local dynamic response
from D2 gas puff to CIII front location during flat top.

3.2. Sensor

The CIII emission front location is measured using a real-time
detection algorithm [30] applied to spectrally filtered images
originating from the multi-spectral imaging diagnostic MAN-
TIS [31]. The MANTIS camera runs at 800 Hz and we use
the time stamp of shutter opening plus half the exposure time
(≈0.5 ms) for each image. We define the output of our system
yCIII (m) as the distance of the CIII front from the target along
the divertor leg.

3.3. Actuator

The front position can be controlled by the injection of D2

molecules in the divertor using a piezo-electric gas valve
[32]. The piezo-electric valve has a dynamic response from a
requested gas flow to an actual gas flow, these dynamics have
been identified separately and can be well described with an
first-order plus dead time model. From the identification we
obtained a valve bandwidth of 50 Hz, i.e. the valve cannot
follow gas flow requests above 50 Hz. This induces the hard-
ware limited upper bound on the identifiable frequency range
at 50 Hz from our actuator. A pressure transducer in the valve is
absolutely calibrated to measure the exact mass flow entering
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Figure 3. Overview of the control problem input and output. From
left to right: (1) MANTIS view in the TCV vessel, (2) CIII 465 nm
filtered image during one of the experiments with the identified CIII
front location indicated with the red cross, (3) poloidal view of the
equilibrium, definition of the front location (yCIII) and valve location
(upuff). Equilibrium and MANTIS frame from discharge #63163.

the vacuum vessel, which we define as our input upuff (D2 s−1).
As we can measure the exact mass flow of D2 entering the ves-
sel as our input, the FRF data contains the plasma response
only and not that of the valve itself.

Figure 3 shows an overview of the system with the MAN-
TIS view, an example of the front identification algorithm, the
definition of the front location (yCIII), and the gas valve location
(source of upuff).

4. Results of perturbation experiments and
SOLPS-ITER simulations

In this section we show the FRF results from perturbation
experiments and the estimated DC-gain (FRF data point at the
zero-frequency) from SOLPS-ITER simulations.

4.1. Measurement of the local frequency response with
perturbative experiments

FRF data was obtained using sinusoidal perturbations around
a feedforward of D2 gas puff [18]. The used discharge sce-
nario allows for a perturbation time τ exp of approximately 1 s,
placing a lower bound on the identifiable frequency range, or
fundamental frequency f0, at 3 Hz.

The perturbation applied to gas input is a multisine wave-
form, consisting of a sum of sinusoids with each a distinct
frequency, phase and amplitude. Information on the specific
design of the used multisine perturbations in these experiments
can be found in [18], and more information on the general
theory in [29, 33].

A perturbation was applied in two discharges: #63135 and
#63163, where a multisine was injected with f0 = 6.25 Hz
with three harmonics and f0 = 4 Hz with four harmonics,
respectively. We define the gas-puff feedforward trajectory and
corresponding unperturbed front trajectory as usol

puff and ysol
CIII,

and the perturbation around this trajectory as δupuff and δyCIII.
No back-to-back experiment without a perturbation has been
performed, ysol

CIII is therefore estimated by a linear function
through yCIII. Figure 4 shows the input and output time traces

Figure 4. Time traces of system identification experiment #63163.
Traces are shown for four periods of the 4 Hz fundamental
frequency of the perturbation from 0.68–1.68 s. (top) Total
deuterium gas-puff input upuff and its feedforward trajectory usol

puff.
(bottom) Total response of the CIII front location yCIII and estimated
trajectory due to feedforward only ysol

CIII.

for discharge #63163 during the time window used for the
perturbation analysis, exactly four periods of fundamental fre-
quency f0 = 4 Hz. As #63135 and #63163 are repeat dis-
charges, we take the estimated ysol

CIII from #63163 to be equal
for #63135.

Figure 5 shows the identified FRF data for the two experi-
ments, including the 3 Hz lower bound and 50 Hz upper bound
on the identifiable frequency range induced by τ exp and the
gas valve bandwidth respectively. The FRF data shows the
phase to be roughly converged and no clear change of magni-
tude slope is present, indicating the need of FRF data below
the measurement range to fit a (at least first order) transfer
function. Therefore, as detailed in section 2.3, we estimate the
DC-gain (response at the zero-frequency) of the system using
SOLPS-ITER.

4.2. Estimation of the DC-gain using SOLPS-ITER

A scan of SOLPS-ITER [25, 26] simulations with different
gas puff magnitudes based on the same magnetic equilibrium
as the experiments (#62807, t = 1 s) are used to estimate
the DC-gain. The simulations use a fixed heating power of
330 kW, comparable to the experiment, equally distributed
between electrons and ions. The coupled Eirene code [25, 26]
describes the neutral particle distribution using a kinetic
Monte-Carlo approach. Atomic and molecular reactions as
well as surface interactions are included. The simulations were
performed both without and with full drifts, including both
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Figure 5. Frequency response measurements of the CIII emission
front to multisine perturbations of deuterium gas-puff.
Measurements are compensated for non-periodic behavior like
transients using the local polynomial method as described in [33].
The 2σ errorbars are computed using the propagation of uncertainty
for magnitude and phase as in [34], assuming a noiseless input case.
The dashed lines indicate the lower and upper bound of the
experimentally identifiable frequency range.

kinetic neutrals and carbon impurities [35]. During the scan
of simulations the D2 gas puff was increased from 0.5 × 1020

to 5 × 1020D2 s−1. The gas input upuff is introduced by a source
at coordinates close to the experimental location.

For each simulation an analogous algorithm to [30] is used
to identify the CIII front location, yCIII. A region of interest
is defined around the divertor leg consisting of a predefined
number of cells to the left and right of the seperatrix, from the
x-point to the target. For each cell the CIII (456.0 nm) emis-
sivity is determined from the local plasma parameters using
the ADAS database. The 50% emissivity decrease along the
leg is then computed to pinpoint the CIII front location (as
in the experiments), which is then translated to yCIII by tak-
ing the poloidal distance along the seperatrix from the target
to this point. From the simulations, an electron temperature of
7–10 eV at the CIII front position was identified [35]. Figure 6
shows the resulting identified front location for a relatively
low- and high gas puff SOLPS-ITER simulation from the per-
formed scan, these correspond to a low and high CIII front
location respectively.

The CIII impurity emission front position, yCIII is identified
for each of the SOLPS-ITER simulations, resulting in a map of
equilibrium solutions for the scan of constant gas source upuff.
We note here that the needed gas puff upuff in SOLPS-ITER to
reach a certain equilibrium is strongly dependent on the recy-
cling coefficient cR, and was observed to give similar results
when upuff(1 − cR) is kept constant. For the used simulations,

Figure 6. Identification of the CIII front location in SOLPS-ITER.
The CIII front position is determined by taking the 50% emissivity
decrease of CIII emissivity along the divertor leg. yCIII is the
distance from target to front along the seperatrix, indicated by the
red line. A low fueling and high fueling case is shown with a
relatively low and high front location respectively.

cR = 99% was chosen to closely reproduce the base discharge
#62807 at t = 1 s. However, during experiments the recycling
coefficient is not constant: the wall is slowly loaded with gas
which leads to cR approaching 100% over time. Therefore, we
add an uncertainty of ±15% to the required gas puff upuff to
reach an equilibrium, which is the approximate change in gas
puff to maintain a density flattop in the used scenario. The DC-
gain is estimated by making a least squares fit using a 2nd
order polynomial through the obtained equilibrium solutions,
neglecting the data points for which yCIII = 0. Figure 7 shows
the CIII front location for the equilibrium solutions obtained
by the SOLPS-ITER simulations, data is shown for both the
simulations with and without drifts. As the difference is min-
imal we make no distinction between these two cases and use
both to estimate the DC-gain within the perturbation operating
range.

The experimental perturbations were done around yCIII ≈
0.24 m, corresponding to the simulation input of upuff ≈
4 × 1020 (D2 s−1). We take the local derivative of the fitted
polynomial at upuff ≈ 4 × 1020 (D2 s−1) to obtain the local
DC-gain of

δyCIII(s)
δupuff(s)

∣∣∣∣
s=0

= 4.22 · 10−22 (m s−1). (7)

In the next section, we propose three different transfer func-
tion models and estimate their parameters using the exper-
imental FRF measurements and the obtained DC-gain from
SOLPS-ITER.

5. Transfer function estimation

In this section, we take the experimental and simulation data
obtained in section 4 and determine an appropriate trans-
fer function model. There are several black-box methods to
provide a good transfer function estimate of FRF data. The
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Figure 7. Obtained solutions of yCIII for the scan of upuff in
SOLPS-ITER. The resulting fit yields yCIII · 1020 = −0.0149u2

puff +
0.1611upuff − 0.1646.

general approach is to find a minimum order transfer function
polynomial of the form

y(s)
u(s)

=
b0sm + b1sm−1 + · · ·+ bm−1s + bm

a0sm + a1sm−1 + · · ·+ an−1s + an
, n � m, (8)

which is able to describe the measurements [29]. However, this
method does not yield any insight in the underlying mecha-
nism of the measured process. Instead, we make an assumption
on the process at play based on measurements and knowledge
of the system, and derive a corresponding transfer function.
The obtained FRF data is then used to estimate the parameters
of this transfer function. The result gives insight in how well a
suggested transfer function model can reproduce the obtained
FRF data, and subsequently if the suggested process could be
responsible for the measured dynamics. We take the ansatz that
the neutral gas dynamics are the slowest time-scale of the chain
of processes from gas injection to CIII front movement, and
that the neutral gas dynamics are thus dominating our measure-
ments. This coincides with earlier work in density control [36]
and is supported by a clear proportionality between divertor
neutral pressure and CIII front location during the perturbation
experiments. Furthermore, preliminary results show the CIII
front location is directly proportional to the total ionisation
rate in the divertor, inferred from the Balmer series emissivity
measured by MANTIS [37].

We derive three low order transfer functions with each
a different approach of how these neutral dynamics can be
described in a simple manner. These consist of: (1) a gain and
delay model as used in [18], (2) a simplified extraction from the
modeled gas injection dynamics in [5] as used in [36], and (3) a
model based on diffusive neutral transport. These three models
are based on the gas dynamics being dominated by: (1) con-
vection, i.e. the neutrals travel a distance from the gas source
to the plasma with constant (thermal) speed, (2) the ideal gas
law, i.e. the vacuum volume outside the plasma being filled
with neutrals, and (3) diffusion, i.e. neutral density buildup by

a diffusive (collisional random walk) process from collisions
within the plasma and the vessel wall. First the correspond-
ing transfer function models are introduced, then we show the
results of estimating their parameters with the data we obtained
in section 4.

5.1. Gain and delay model

The transfer function model used for controller design of the
same control problem (D2 injection to CIII front location) in
[18] was a 0th order gain and delay model as

δyCIII(t) = Kδupuff(t − τdelay), (9)

with K the input–output gain and τ delay the input–output delay.
Transforming this model to the Laplace domain results in the
transfer function

δyCIII(s) = Ke−sτdelay︸ ︷︷ ︸
Ĝdel

δupuff. (10)

The underlying mechanism can be interpreted as the injected
gas needing to travel a certain distance d with constant
(thermal) velocity vthermal before interacting with the plasma.
The parameter τ delay should then be in the order of vthermal/d,
which for TCV results in ≈1 ms. The gain K describes the
translation from the amount of injected neutrals to a change in
CIII front position, here assumed constant over frequency. We
term this transfer function model Ĝdel.

5.2. Particle inventory model

As a second approach we use the most basic dynamic model
contained in the particle inventory model approach of [5].
This model consists of three inventories, the plasma, the vac-
uum and the vessel wall. The plasma is modeled using a 1D
profile, whereas the vacuum and wall inventories are modeled
in 0D. A gas puff acts as the source of the system and a pump
as the sink. The three inventories interact through a set of
coupled differential equations, exchanging particles through
e.g., ionization (vacuum to plasma), recombination (plasma to
vacuum) and wall retention (plasma to wall). We consider
here only the slowest time-scales of gas injection and (wall)
pumping, and assume all other processes like ionization,
recombination and plasma equilibration time are infinitely fast
in comparison. This results in a simple 0D model for the
neutral density as

ṅ0(t) = − 1
τpump

n0(t) +
1

V0
upuff, (11)

with n0 (m−3) the neutral density, a characteristic pump time
τ pump (s) and the vacuum volume V0 (m3), which is equal to
the gas injection model used in [36]. We take a change in
neutral density n0 to be directly related to a change in front
position yCIII by an arbitrary unit scaling factor ξ = 1 × 10−22.
Note that, this does not constrain the parameter estimation
with the FRF data but simply allows V0 and τ pump to be in the

7
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Table 1. Resulting parameters of transfer function fits.

Model Parameter Value Unit

Ĝdel K 1.191 —
τ delay 0.006 s

Ĝvol V0 0.025 m3

τ pump 0.107 s
Ĝdiff D 0.025 m2 s−1

L 0.109 m

Figure 8. Results of the non-linear least squares fit of the transfer
functions Ĝdel, Ĝvol and Ĝdiff in the frequency domain. Only for Ĝdiff
a fit is obtained which is able to describe both the FRF
measurements and the obtained DC-gain from SOLPS-ITER.

correct order of magnitude. The resulting transfer function for
the local dynamics is then

δyCIII(s) = ξ
1/V0

s + 1/τpump︸ ︷︷ ︸
Ĝvol

δupuff(s), (12)

we term this transfer function model Ĝvol.

5.3. Diffusion based model

The measured phase behavior and magnitude slope as shown
in figure 5 approximately converge to a phase of ≈− 50◦ with
a magnitude slope of ≈ −12 dB per decade frequency. This
behavior is reminiscent of the Warburg-domain, which can
indicate a diffusive mechanism is at play [38]. In the Warburg-
domain a transfer function is described in polynomials of the√

s instead of s as in the Laplace domain. Based on the obser-
vation of Warburg-domain like phase and magnitude behav-
ior, we consider the possibility of a (quasi) diffusive process

Figure 9. Framework of the verification. The signals are the total
injected D2 upuff , programmed feedforward usol

puff, perturbed input
δupuff , perturbed output δyCIII, unperturbed output ysol

CIII and total
output yCIII.

dominating the gas dynamics from D2 injection to neutral den-
sity buildup. We define a spatial domain x, with x = 0 the
valve source at the divertor target and x = L the end of the
domain where all neutrals are ionised. The model structure
then becomes

∂n0(x, t)
∂t

= D
∂2n0(x, t)

∂x2
, (13)

with boundary conditions

−D
∂n0(x, t)

∂x
|x=0 = δupuff(t),

n0(x, t)|x=L = 0,
(14)

with D (m2 s−1) the diffusion coefficient and n0(x, t) (m−3)
the neutral density. Transforming the problem to the Laplace
domain and using the general solution [39] results in the
transfer function

n0(x, s) =
cosh(xλ) tanh(Lλ) − sinh(xλ)

Dλ
δupuff(s), (15)

with λ =
√

s/D, showing the dependence on
√

s. As previ-
ously, we assume a change in target neutral density δn0(0, s)
is directly related to a change in front position δyCIII by a unit
scaling factor ξ = 1 × 10−22. The final model structure then
becomes

δyCIII(s) = ξ
tanh(Lλ)

Dλ︸ ︷︷ ︸
Ĝdiff

δupuff(s), (16)

we term this transfer function model Ĝdiff.

5.4. Estimation results

We estimate the parameters of each transfer function model by
fitting their response on the obtained FRF data in the complex
plane using a non-linear least squares optimization. We use
both measured FRF data and the DC-gain estimate from the
SOLPS-ITER simulations, the DC-gain estimate is positioned
at 10−5 Hz for numerical reasons. As all errorbars are in the
same order of magnitude, no additional uncertainty weight-
ing is implemented. Table 1 and figure 8 show the resulting
estimated model parameters.

The estimated gain and delay model Ĝdel is unable to
describe the FRF measurements as this model assumes no
decay of relative amplitude over frequency. Furthermore, the
phase drops linearly with frequency,which is also not observed
in the measurements.

8
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Figure 10. Open-loop verification with a perturbation experiment.
Top: feedforward input usol

puff and total input upuff used as an input for
the model (see figure 9). Bottom: unperturbed output ysol

CIII, and
experimental and modeled CIII front location.

The first-order model Ĝvol comes closer to the FRF data
and can also describe a change in magnitude from DC-gain
in lower frequencies to a decay of relative amplitude with
frequency. However, this models phase converges to −90◦

whereas the measured phase is closer to a converged −45◦.
Furthermore, the decay over frequency of the relative ampli-
tude is significantly stronger than measured.

We find the diffusion based model Ĝdiff is able to cor-
rectly describe both the FRF measurements and DC-gain esti-
mate from SOLPS-ITER simulations. Therefore, we verify
the model Ĝdiff with additional experimental data in the next
section.

6. Verification of the diffusion based transfer
function with experiments in the time domain

In this section, we verify the obtained local transfer func-
tion model Ĝdiff with experimental data in the time domain.
We use the perturbation discharge #63163, and the repeat
discharge #63197 where the front was moved upwards
by a controlled density puff. Both have equal programmed
feedforward traces usol

puff. We again assume the estimated unper-
turbed trajectory of the CIII front position from the feedfor-
ward ysol

CIII as shown in figure 4, is equal for both. Note Ĝdiff

is a non-rational transfer function and therefore not trivially
simulated in the time domain. We use the Chebyshev collo-
cation method [39] to obtain a time-domain description of

Figure 11. Open-loop verification with a controlled gas puff
experiment. Signals as in figure 10.

Ĝdiff, which is essentially a state-space approximation of the
transfer function using Chebyshev polynomials. An approxi-
mation of order 20 was found to be adequate for the frequency
range relevant to this work. An exact time-domain representa-
tion of Ĝdiff using an infinite-sum representation as in [40] can
be found in appendix B. The comparison with a perturbation
experiment and a controlled puff experiment can be seen as a
relatively high and low frequency verification of the transfer
function model respectively. Figure 9 shows the framework of
the verification.

From the experiments, we take the programmed feedfor-
ward usol

puff, the total gas injection upuff, and the estimated unper-
turbed output trajectory ysol

CIII as shown in figure 4. We compare
the time-traces from t = 0.6 s to t = 1.68 s which corresponds
to the start of the density flat-top and the start of plasma cur-
rent ramp down respectively. The model is initialized with the
experimental value of the front position yCIII and total input
upuff at t = 0.6 s. Note that, it is possible that δupuff > 0 at the
start of the simulation, as a density controller is active up until
this point. Figures 10 and 11 show the experimental results
and their corresponding simulation output. In both cases good
agreement is obtained between the model and experiments
indicating its local validity around the feedforward trajectory.
In figure 11 a deviation is observed after t = 1.4 s, which can
indicate that at this point the CIII front is located outside the
locally valid operating range of the model. This is in line with
the results from the SOLPS-ITER simulations from figure 7,
which shows the effect of an increased gas puff is decay-
ing for a higher CIII front position. The model Ĝdiff is able

9
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to accurately reproduce experiments in both high- and low-
frequency ranges around the feedforward trajectory, which val-
idates the model for controller design for bandwidths within
the measured frequency range.

7. Conclusions and discussion

Systematic design of controllers requires a control-oriented
model of the input–output dynamics of the system. A control-
oriented model should capture the dynamic behavior of a sys-
tem with low complexity, in a desired operating range. In
this paper, we have shown a systematic approach to obtain
a transfer function model when FRF measurements are lim-
ited in frequency range. The model describes the response
of the CIII impurity emission front position to D2 gas puff
in the divertor of TCV. FRF data points were obtained from
periodic perturbation experiments. An additional data point at
the zero frequency was estimated using the steady-state solu-
tions of the model SOLPS-ITER, to gather information out-
side the measurable frequency range. Based on previous work,
we assumed the neutral gas injection dynamics are dominat-
ing the measured response, and therefore fitted three different
transfer functions based on different mechanisms describing
these neutral dynamics. A diffusion based transfer function
was shown to best describe the combination of perturbative
measurements and estimated DC-gain using SOLPS-ITER,
which points toward a (quasi) diffusive process being at play.
The obtained transfer functions dynamic response was veri-
fied with experiments where it was shown the model is able to
accurately reproduce the experimentally obtained response of
the CIII impurity emission front to D2 gas puff in the divertor.
From this we conclude the model is fit to use for offline con-
troller design, and can be used to design for specific control
requirements for repeat discharges.

Note that, strictly speaking, guarantees for the obtained
transfer function model can only be given locally, which means
it is only valid during the (density) flattop of a single scenario
and its repeats. Depending on the nonlinearity of the underly-
ing dynamics, the operational range where the model is valid
might be extended.

Additionally, a diffusive-based model fitting the FRF data
does not prove a diffusive mechanism is at play, but does
provide a clear direction for the further investigation of
control-oriented dynamic gas injection models in tokamaks.
Possibly the multiple reflections of neutrals at vessel walls
and plasma boundary before ionisation act as a quasi diffusive
process.

Finally, we have shown a single identification experiment
in combination with an available time-independent model is
enough to obtain a transfer function model useable for offline
controller design, and useful for e.g., pulse design simula-
tor tools like Fenix [41]. Obtaining dynamic models exper-
imentally, and trying to obtain a physical understanding of
the processes dominating perturbative measurements, can give
insight in what processes need to be modeled with explicit
time dependence in control-oriented models. Physics based
dynamic models can then be validated with experimental data
obtained from these perturbative experiments. For example,

by applying system identification methods on time-dependent
SOLPS-ITER simulations, and comparing the results with
experiments. The systematic approach presented in this paper
hopefully supports the further development of such dynamic
models for relevant control problems in tokamaks like detach-
ment control.
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Appendix A. Theoretical background: the system
theory representation

For this work, we consider the general class of physical
systems defined by nonlinear differential equations of the
form [27]

ẋ = f (x, u),

y = g(x, u),
(A.1)

with state variable x ∈ Rn, input variable u ∈ Rk and output
variable y ∈ Rm. We define (A.1) as the global dynamics of
the system. A locally valid linear model can be identified by
applying small perturbations around a solution to (A.1). Let us
consider an arbitrary solution

usol : [0 ∞) →Rk,

xsol : [0 ∞) →Rn,

ysol : [0 ∞) →Rm,

(A.2)

which is not necessarily constant in time, i.e., it can either be
a trajectory or an equilibrium point. Applying an input

u(t) = usol(t) + δu(t), ∀t � 0, (A.3)

will lead to a corresponding output y(t) which is perturbed with
respect to ysol(t). The perturbation of x(t) and y(t) can then be
investigated by defining

δx(t) := x(t) − xsol(t),

δy(t) := y(t) − ysol(t).
(A.4)
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The dynamics of the perturbation are then obtained by taking
the Taylor series expansion around the solution as

δ ẋ =
∂ f (xsol(t), usol(t))

∂x
δx +

∂ f (xsol(t), usol(t))
∂u

δu

+O(‖δx‖2) +O(‖δu‖2),

δy =
∂g(xsol(t), usol(t))

∂x
δx +

∂g(xsol(t), usol(t))
∂u

δu

+O(‖δx‖2) +O(‖δu‖2).

(A.5)

Under the assumption of sufficiently small perturbations, we
only need to retain the first-order terms [42]. This results in
the linearised local dynamics, where local means around a tra-
jectory or equilibrium point. This local linear model can be
represented as a linear state-space system

δ ˙̂x = A(t)δ x̂ + B(t)δu,

δŷ = C(t)δ x̂ + D(t)δu,
(A.6)

with Jacobian matrices

A(t) :=
∂ f (xsol(t), usol(t))

∂x
,

B(t) :=
∂ f (xsol(t), usol(t))

∂u
,

C(t) :=
∂g(xsol(t), usol(t))

∂x
,

D(t) :=
∂g(xsol(t), usol(t))

∂u
.

(A.7)

Finally, we assume the solution (xsol, usol) to be sufficiently
bounded to neglect the time dependence of the matrices A, B,
C and D. This inherently means we assume the local dynamics
can be described by a LTI system for the whole considered tra-
jectory (xsol, usol). Input–output dynamics of LTI systems can
be uniquely described by a transfer function in the Laplace
domain as L(δŷ(t))/L(δu(t)). We can transform (A.6) under
the assumption of its time-invariance to the transfer function
G(s) as

δŷ(s) = (C(sI − A)−1B + D)︸ ︷︷ ︸
G(s)

δu(s). (A.8)

Let a time-independent model of the global dynamics be
available, which essentially gives all equilibrium solutions
(ysol, usol) to (A.1), i.e. ẋ = 0. For stable systems, the time-
independent model gives the converging output over a step-
input

δy(t)
δu(t)

∣∣∣∣
t→∞

=
y(t) − ysol

u(t) − usol

∣∣∣∣
t→∞

, (A.9)

for some step input δu(t) = c, ∀t � 0. The local DC-gain can
then be obtained by taking the local derivative of the equilib-
rium solutions ∂yeq/∂ueq around a chosen equilibrium point
or trajectory (ysol, usol). For stable systems, the final-value
theorem states the DC-gain is equal to the transfer function

evaluated at s = 0 [28]. Under the assumption of stable
systems, the obtained local DC-gain is then the relative
input–output magnitude on the zero-frequency, where the
phase is necessarily zero. From this, we conclude a time-
independent model of the global dynamics can be used to
identify a point of the FRF of the local linearised dynamics
at the zero-frequency, reducing the problem of a limited FRF
measurement range, and solving it in the case of figure 2.

Appendix B. Time-domain representation
of the diffusion based transfer function

The transfer function model Ĝdiff(s) (16) is of a distributed
parameter system, or boundary control problem, and therefore
an irrational function. Contrary to rational transfer functions,
Ĝdiff(s) has an infinite number of poles and zeros, and can
be represented by an infinite sum of rational transfer func-
tions. Its time-domain representation is then simply the inverse
Laplace-transform of the infinite sum representation of ratio-
nal functions in s. We derive here the time-domain representa-
tion of Ĝdiff, and refer to [40, 43] for more details on distributed
parameter systems. First, we rewrite Ĝdiff to

Ĝdiff(s) =
ξ

D
sinh(Lλ)

λ cosh(Lλ)
, (B.1)

with ξ, D, L and λ as in section 5.3. The poles of (B.1) are
obtained from setting the denominator to 0 from which we
obtain

Lλ = (π/2 + kπ)i,

L2λ2 = −(π/2 + kπ)2.
(B.2)

Substituting λ =
√

s
D leads to the systems pole locations at

pk = −(π/2 + kπ)2 D
L2

, for k = 0, 1, 2 . . . . (B.3)

Note that, from first view (B.1) seems to have pole at s = 0.
However, it can be shown that lims→0 Ĝdiff(s) = ξL

D and there-
fore s = 0 is not a pole of (B.1). The obtained poles pk will
be used for the denominator of the infinite sum representation.
The numerator zk of the infinite sum representation is found by
computing

zk = lim
s→pk

(s − pk)Ĝdiff(s). (B.4)

which, after some algebra, reduces to zk =
2ξ
L . The infinite sum

representation of (B.1) becomes

Ĝdiff(s) =
∞∑

k=0

zk

s − pk
=

∞∑
k=0

2ξ
L

s + (π/2 + kπ)2 D
L2

. (B.5)

We can now apply the inverse Laplace transform to obtain

Ĥdiff(t) =
∞∑

k=0

2ξ
L

exp

[
−(π/2 + kπ)2 D

L2
t

]
, (B.6)

as the time-domain representation of Ĝdiff(s). Note that, Ĥdiff(t)
is only defined for t > 0.
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