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Abstract

In tokamak plasmas, the interaction among the micro-turbulence, zonal �ows (ZFs) and

energetic particles (EPs) can affect the turbulence saturation level and the consequent

con�nement quality and thus, is important for future burning plasmas. In this work, the EP

anisotropy effects on the ZF residual level are studied by using anisotropic EP distributions

with dependence on pitch. Signi�cant effects on the long wavelength ZFs have been found

when small to moderate width around the dominant pitch in the EP distribution function is

assumed. In addition, it is found that ZF residual level is enhanced by barely passing/trapped

and/or deeply trapped EPs, but it is suppressed by well passing and/or intermediate trapped

EPs. Numerical calculation shows that for ASDEX Upgrade plasmas, typical EP distribution

functions can bring in −3%to+ 5.5% mitigation/enhancement in ZF residual level, depending

on the EP distribution functions.

Keywords: tokamak plasmas, zonal �ow residual level, energetic particle, anisotropic species

(Some �gures may appear in colour only in the online journal)

1. Introduction

In tokamak plasmas, zonal �ows (ZFs) can regulate the micro-

turbulence and reduce the transport. In burning plasmas or the

present experimental plasmas with fast particles, the interplay

among micro-turbulence, ZFs and energetic particles (EPs)

can affect the eventual con�nement. As shown in �gure 1,

the interaction between ZFs and micro-turbulence has been

intensively studied theoretically [1–3] and numerically [4].

The effect of micro-turbulence on EP transport has been

demonstrated in gyrokinetic simulations [5]. In turn, EPs’

effect on micro-turbulence suppression has been suggested by

gyrokinetic simulations using realistic EP distribution func-

tions [6]. Recent simulations using ASDEX Upgrade H-mode
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parameters suggest that a high-con�nement regime can be gen-

erated in the core with fast particles due to a full suppression

of the turbulence by strong shear �ows [7]. However, the EP

effects on ZF residual has not been discussed in this previous

work. One basic element of the EP–ZF interaction is related

to the ZF residual level. In axisymmetric plasmas, ZFs are not

completely damped by collisionless processes but stay in a

�nite level, namely, the ZF residual level [8]. This ZF residual

level (RZF) is determined by the classical polarization density

(n
pol
cl ) due to the �nite Larmor radius effect and the neoclas-

sical polarization density (n
pol
nc ) due to the �nite orbit width

effect, namely, RZF = n
pol
cl /(n

pol
cl + n

pol
nc ). After studies of the

thermal ions’ effect on ZF residual level [8, 9], the impurity

ions’ effect on ZF has been also studied for multiple species

of Maxwellian distribution with different masses and temper-

atures [10, 11] based on the generalized expression for the

polarization density [12], where EPs are viewed as an isotropic

impurity. Besides the isotope effects [10], the effect of the tem-

perature anisotropy on ZF residual level [13], the ZF residual
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Figure 1. Interplay of micro-turbulence, ZFs and EPs. Note that the
causality of two elements relies on the speci�c choices of
parameters as shown in this work or in the references in Section 1.

level in stellarators [14] and the electromagnetic effects on ZFs

[15] have been also investigated. In our previous work, the

EP anisotropic effects have been studied based on analytical

model EP distribution functions [16].

In this work, the effects of anisotropic EPs on ZF resid-

ual level are studied and applied to the analyses using realistic

EP distributions in ASDEX Upgrade discharges and the ZF

residual level solver developed recently. The motivation and

the scope of this work include,

(a) The derivation of the ZF residual level for arbitrary dis-

tribution functions with multiple species included and the

numerical implementation, as a complement of the previ-

ous theoretical and numerical work using the Maxwellian

distribution function [9, 10] or the bi-Maxwellian distri-

bution function [13];

(b) The exploration of the theoretical foundation of the ZF

control using anisotropic particles induced by the neutral

beam injection (NBI) or ion cyclotron resonance heating

(ICRH);

(c) The identi�cation of the effect of anisotropic EPs on ZF

residual level by making use of more realistic analyti-

cal and numerical treatment of EP distribution functions,

following our previous work [16];

(d) The prediction of anisotropicEP effects in burning plasma

or high β plasma, in addition to the present studies related

to isotope effects [10, 17].

This work is organized as follows. In section 2, the equation

for the calculation of ZF residual level is demonstrated with

arbitrary distribution functions taken into account. In section 3,

the ZF residual level for arbitrary wavelength is calculated

numerically and the passing/trapped EPs’ effects on ZF resid-

ual level are demonstrated, using themodel EP distribution and

realistic EP distributions fromASDEXUpgrade discharges. In

section 4, the summary and the outlook are discussed.

2. Zonal flow residual level for arbitrary

distribution functions

2.1. General description of the zonal flow residual level

The linear response of plasmas to electrostatic perturbation

can be obtained by solving the linearized gyrokinetic equation

with the separation between the adiabatic and non-adiabatic

responses,

δ f s = −esδφ

T0s
κF0s + δKs e

iLks , (1)

where s is the species index, es the electric charge of

species s, T0s the temperature, δφ the perturbed scalar poten-

tial, δKs the non-adiabatic part of the perturbed distribu-

tion function, F0s the equilibrium distribution function, κ
is de�ned according to κF0s ≡ −(T0s/ms)∂F0s(R,E, µ)/∂E,
ms the mass, µ = v2⊥/(2B), E = v2/2, Lks = k× b · v/ωcs,
ωcs = esB/(cms), b = B/B, B is the equilibrium magnetic

�eld. For Maxwellian distribution function, κ = 1 from the

de�nition of κF0s. Note that for an arbitrary distribution func-

tion, T0s is used as the reference quantity instead of the temper-

ature of species s. All perturbations are written in the eikonal

form for the description of the perpendicular (to b) variation

as a speci�c application of the mode structure decomposition

approach [18–20], e.g. δφ(r) = δφk exp{iS(x⊥)}. The gyroki-
netic and Poisson equations are adopted as a simpli�ed version

of the electromagnetic gyrokinetic equations [21–23],

[

∂t + v‖∂‖ + iωd,s
]

δKs =
es

T0s
κF0sJ0(as)∂tδφ , (2)





∑

s=e,i, f

(
∫

dv3κF̄0s

)

n0se
2
s

T0s



 δφ

=
∑

s=e,i, f

(

es

∫

dv3J0(as)δKs

)

, (3)

where the independent velocity variables E and µ = v2⊥/(2B)
are used, F̄0s = F0s/n0s, ∂‖ = b · ∇, ωd,s = −ivd,s · ∇,

vd,s = −v‖b×∇E,µ(v‖/ωcs), as = k⊥ρs (for ZFs, k⊥ = kr),

ρs = v⊥/ωcs, equilibrium density and temperature pro�les

are assumed to be uniform in radial direction. The source

term in equation (2) is not explicitly written compared with

[2, 8] since we focus on the calculation of the polariza-

tion/neoclassical density for an arbitrary distribution function

that gives the ZF residual level. In the following, the subscript

‘s’ is omitted when no ambiguity is introduced. Equation (2)

is solved in the low frequency limit (ω/ωtr ≪ 1, where

ωtr = v‖/(qR), ω is the mode frequency), as shown in

appendix A. The integral of δ f in velocity space gives the

total polarization density,

〈

δnpol
〉

=
en0δφ

T0

〈
∫

dv3
(

J0 e
−iQJ0 eiQ − 1

)

κF̄0

〉

, (4)

where Q is due to the �nite orbit width effect and is

de�ned in appendix B, 〈. . .〉 indicates the �ux surface

average and the bounce average operation is de�ned as

Ā =
∮

(dl/v‖)A/
∮

(dl/v‖). The classical polarization density is

〈

δnpolcl

〉

=
en0δφ

T0

〈
∫

dv3
(

J20 − 1
)

κF̄0

〉

. (5)

The neoclassical polarization can be also obtained 〈δnpolnc 〉 =
〈δnpol〉 − 〈δnpolcl 〉. Equations (4) and (5) can be reduced to the

previous results forMaxwellian distribution (κF0 = F0) [8, 9].

2
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The ZF residual level for multiple species is [10, 11]

RZF =

∑

ses

〈

δnpolcl

〉

∑

ses 〈δnpol〉
. (6)

2.2. EPs’ effect on ZF residual level in the long wavelength

limit

The ZF residual level is derived analytically in the long

wave length limit using the single pitch EP distribu-

tion, for identifying the underlying physics related to

the negative polarization. Equations (4) and (5) can be

solved in the long wave length (krρs ≪ 1) limit, for which

J0(a) ≈ 1− a2/4, exp{±iQ} ≈ 1± iQ− Q2/2. Noticing

that
∫

dv3 = (
√
2π/h)

∑

σ

∫∞
0
dE

∫ h

0
dλ

√
E/ξ, ξ ≡ |v‖|/v =

√

1− λ/h, λ = v2⊥B0/(v
2B) is the pitch, σ is the sign of v‖,

h = 1+ ε cos θ, ε = r/R0, equation (4) and (5) yields

〈

npolnc

〉

= −n0
eδφ

T0

(

qkr

εωc0

)2

2
√
2π

×
∑

σ=±1

∫

dλ

∮

dθ

2π

∫ ∞

0

dEκF̄E3/2

[

h2ξ − 2πh
∮

dθ
ξ

]

,

(7)

〈

n
pol
cl

〉

= −n0
eδφ

T0

(

kr

ωc0

)2√
2π

×
∑

σ=±1

∮

dθh

2π

∫ ∞

0

dEκF̄E3/2

(

1

ξ
− ξ

)

. (8)

Equations (7) and (8) are consistent with that for

Maxwellian distribution (κ = 1) [8–11, 24, 25], as shown in

appendix B.

To identify the EPs’ effects on ZF residual level in an

explicit way, we choose the Maxwellian distribution in v
direction but a single pitch λ0 for EPs,

FMP = CPδ(λ− λ0)e
−2Ē, CP =

2T1(λ = λ0)n

π3/2v3T
, (9)

where Ē = E/v2T and n is the �ux surface-averaged density.

From equation (A.4), we have

κFMP = FMP + (1/2)(λ/Ē)[∂λFλ(λ)]CP exp[−2Ē] . (10)

In addition, we choose isotropic Maxwellian thermal ions.

Equation (6) yields,

RZF =
ni
(

1+ 3
2
ε2
)

+ nfPcl

nim
(

1+ 3
2
ε2
)

+ nfPcl +
q2

ε2
(niItot + nfPnc)

,

(11)

Pcl(λ0) = −
[

T1

(

1

2
− λ∂λ

)(

T2 −
1

T1

)]

λ0

, (12)

Pnc(λ0) =
{

T1
[

T2 − 2λ∂λT2 − σp(T1 − 2λ∂λT1)
]}

λ=λ0
,

(13)

where it is assumed that EPs and thermal ions are the same

species, the subscript ‘f’ indicates EPs (fast particles), T1, T2

and I are de�ned in equations (B.5) and (B.6), and Pcl/nc =

εpol
cl/nc/ns0, the polarization εpol

cl/nc is de�ned in equation (B.1).

For Maxwellian distribution, the classical and neoclassical

polarization are positive. For the anisotropic distribution func-

tion, ∂T1/∂λ and ∂T2/∂λ in equations (12) and (13) origin

from ∂ f 0/∂λ in the gyrokinetic equation and introduce addi-

tional termswhich can lead to negativepolarization.Generally,

the sign of the polarization can be positive or negative, depend-

ing on the particle distribution function F0. Strong sources

can lead to the deviation of F0 away from Maxwellian and

can introduce the inverted gradients in phase space and thus

can alter the sign of the polarization (‘negative polarization

shielding’). Note in this work, only n = 0 zonal component

is included and other instabilities such as Alfvénic modes

that can be driven by the non-Maxwellian distribution are not

considered.

The plasma density response to zonal scalar potential δφ
is described by (T1, T2) in equation (B.6) and (Pcl,Pnc) in

equations (12) and (13), and determines the ZF residual level

according to equation (11). Figure 2 shows the dependence of

T1, T2, Pcl and Pnc on λ0. In the left frame, the results of T
p
1 ,

T
p,t
2 are consistent with those in [26]. For classical and neo-

classical polarization shown in the central and right frames,

the curve is discontinuous at the passing-trapped boundary,

indicating the different behaviors of passing and trapped par-

ticles. As λ0 increases, the value of Pcl decreases for either

passing or trapped particles. While for a single particle, the

classical polarization increases in the whole λ range since

1− J20(k⊥ρ) ≈ hk2⊥Eλ/ω
2
c0, the dependence of Pcl onλ0 is also

contributed by the phase space gradient (the ∂λ term) and the

normalization factor CP. In the right frame, the negative and

positive values of Pnc for passing and trapped particles indicate

positive and negative contributions to RZF respectively accord-

ing to equation (11), given that the contribution from EPs is

perturbative (nf/ni ≪ 1). The negative and positive Pcl values

indicate negative and positive contributions to RZF and thus the

net effects from EPs on RZF rely on the competition between

Pcl and Pnc.

The ZF residual level RZF is calculated and shown in

�gure 3. With passing EPs, RZF decreases as λ0 increases and
RZF is smaller than the Rosenbluth–Hinton (R–H) result for

pure thermal ions (red dashed line), unless EPs are close to

the passing-trapped boundary where RZF changes its sign. The

barely trapped EPs enhance the ZF residual level while in the

other range, the trapped EPs can suppress RZF. As EP den-

sity increases from nf = 0.01 (left) to nf = 0.1 (right), the

deviation away from the R–H result becomesmore signi�cant.

3. Numerical studies using model and

experimental EP distributions

3.1. Equations and numerical implementation

For numerical implementation, the total polarization and the

classical polarization in equations (7) and (8) are written in

3
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Figure 2. The response function for ε = 0.2. Left: the integral kernel de�ned in equation (B.6); central and right: the coef�cients in classical
and neoclassical polarization for Maxwellian distribution with a single pitch λ0 de�ned in equations (12) and (13). The vertical dashed line
indicates the passing-trapped boundary.

Figure 3. ZF residual for nf/ne = 0.01 (left) and nf/ne = 0.1 (right).

(E,λ) coordinates,

〈

δnpol
〉

=
esn0δφ

T0

√
2

∫ ∞

0

dE
√
E

×
∫

dλK(E,λ,Q)κF̄0 , (14)

K(E,λ,Q) = 2

∮

dθ

ξ
(J0 cos Q− 1)+

(
∮

dθ

ξ

)−1

×
{

[
∮

dθ

ξ
(J0 cos Q− 1)

]2

+

[
∮

dθ

ξ
J0 sin Q

]2
}

, (15)

〈

δnpolcl

〉

=
en0δφ

T0

√
2

∫ ∞

0

dE
√
E

∫

dλ

×
∮

dθ

ξ

(

J20 − 1
)

κF̄0 , (16)

where exp{±iQ} = cosQ± i sinQ has been used and the can-

cellation between J0 cosQ and 1 has been considered [9]. In

numerical implementation, Gaussian quadrature is used for

the integral in E, λ and θ directions in equations (14)–(16).

Integrals are calculated numerically using
∫ xb
xa
f (x)dx ≈

∑n
i=1ci f (xi), where xi and ci are nodes and weights using

the Gaussian quadrature. The integral along Ē is replaced

with
∫

dĒ =
∫

v̄ dv̄, where Ē = v̄2/2. In order to eliminate the

singularity in the denominator of the integral kernel, the inte-

gral along θ is modi�ed by de�ning the time-like variable τ
according to,

τt =

√

2

ε
F(α,κ2), τp =

1√
2ε
F(θ, 1/κ2) , (17)

for trapped particles and passing particles, respectively, where

κ sinα = sin(θ/2), κ2 = (1+ ε− λ)/(2ε), F(a, b) is the

incomplete elliptic integral of the �rst kind.

3.2. Parametric studies using model EP distribution

functions

In order to demonstrate the dependence of the ZF residual

level on EP anisotropy parameters, two types of model EP

distributions are considered. The �rst one is the Maxwellian

distribution in v with �nite width in pitch λ,

F̄MX = CMX exp{−2Ē} exp
{

−
(

λ− λ0
∆λ

)2
}

, (18)

4
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Figure 4. The ZF residual level for the model distributions with
Maxwellian (MX) distribution along v (solid lines) in equation (18)
and with slowing down (SD) distribution along v (dashed lines) in
equation (20). Other parameters are ǫ = 0.15, q = 2, krρTi = 10−3,
nf/ne = 0.1, T f/T i = 10.

CMX =

{

√
π

∫ π

0

dθ

∫ 1

0

dξ exp

[

−
[

h(1− ξ2)− λ0
∆λ

]2
]}−1

,

(19)

where CMX (or CDS in equation (20)) is chosen so that
∮

dθh
∫

dv3F̄/
∮

dθh = 1. The other model distribution is the

slowing down distribution in v with �nite width in pitch λ,

F̄SD =
CSDH(Eb − E)

E3/2 + E
3/2
c

exp

{

−
(

λ − λ0
∆λ

)2
}

, (20)

CSD =

{

8
√
2

3
ln

[

(

Eb

Ec

)3/2

+ 1

]

∫ π

0

dθ

×
∫ 1

0

dξ exp

[

−
[

h(1− ξ2)− λ0
∆λ

]2
]}−1

, (21)

where Eb is the birth energy, the Heaviside function

H(x) = 0 for x < 0 and H(x) = 1 for x > 0, Ec is determined

by the plasma parameters. The ZF residual level for differ-

ent values of λ0 is calculated for∆λ = 0.2, 0.4, 0.6, as shown
in �gure 4. We choose krρTi = 10−3 since the anisotropic

effects are more signi�cant in the moderate to long wave-

length (krρTi < 0.1) [16]. For Maxwellian EP distribution,

T f/T i = 10. For slowing down distribution T f/T i = 10, Eb =

2T f/mf , Ec = 0.2T f/mf , Eb/c = v2b/c/2, where vb and vc are
birth velocity and critical velocity respectively (note that the

rigorous effective EP temperature is different than T f but vary-

ing T f in the long wavelength limit hardly changes ZF residual

level). For the slowing down EP distribution, the ZF residual

level is closer to 1 than that of the Maxwellian distribution

and thus, the enhancement of the ZF residual level can be

overestimated if Maxwellian distribution is adopted. However,

the dependence on λ0,∆λ are similar for both model distribu-

tions. In the following, we choose the anisotropic Maxwellian

distribution for parametric studies. More realistic calculation

relies on the consideration of experimental EP distribution, as

shown in section 3.3.

The overall EP anisotropy effects on ZF residual level

can be demonstrated by the parametric studies in (λ0,∆λ)
space for different values of ε. As observed in our previous

work [16], this effect is more signi�cant for moderate to large

scale ZF (krρTi < 0.1 where ρTi = vTi/ωc, vTi =
√

2Ti/mi)

and thus we take krρTi = 0.1. The value of ∆λ describes the

EP distribution width in λ direction. As shown in �gure 5,

RZF is affected by the EP parameter λ0, considering several

critical values, namely, the passing-trapped boundary λc =
1− ε and the maximum pitch λm = 1+ ε, where ε = r/R0.

The ZF residual level w/o EPs (RZF,w/oEP) is used as a base-

line to evaluate the EP effects. The left frame of �gure 5

shows RZF/RZF,w/oEP for ε = 0.15. RZF/RZF,w/oEP is slightly

suppressed compared with the R–H result when the applied

EPs are dominated by passing particles except when λ0 is very
close to λc (0.6 < λ0 < 0.85). For trapped EPs, RZF is sup-

pressed in the intermediate trapped region (0.9 < λ0 < 1.1).
As λ0 approaches λ0 = 1.15, the ZF residual level increases

due to the enhancement effects from deeply trapped parti-

cles. The right frame of �gure 5 shows RZF/RZF,w/oEP for

ε = 0.3. Since the trapped particle portion is larger than that

with ε = 0.15, the enhancement of ZF residual level by the

deeply trapped particles is more signi�cant. In oneword,RZF is

enhanced signi�cantly if barely passing, barely trapped or/and

deeply trapped EPs are dominant. For ∆λ = 0.15, ε = 0.15,
the barely passing EPs (λ ≈ 0.78) can enhance RZF by a factor

of 1.4–1.5. As the EP becomes isotropic (large∆λ), the devi-
ation of RZF away from the R–H result is small as indicated by

RZF/RZF,w/oEP with ∆λ > 0.5.
The dependence of the ZF residual level on EP density

and temperature effects are studied. The ZF residual level

normalized to that w/o EPs is calculated for different val-

ues of (nf/ne, T f/T i), as shown in �gure 6. We take λ0 =
0.8 and ∆λ = 0.2 where the EP leads to the enhancement

of RZF according to �gure 5. In the long wavelength limit,

RZF/RZF,w/oEP is mainly affected by the EP density but the EP

temperature’s effect is negligible, as shown in the left frame

of �gure 6. From equations (14)–(16), in the long wavelength

limit, K(E,λ,Q) ∝ T0 and (J20 − 1) ∝ T0 and thus, consider-

ing the factor 1/T0, it can be found that RZF is independent

on T0. In the moderate wavelength (krρTi = 0.1) range, as T f

increases, the classical and neoclassical polarization shielding

becomes less effective and the EP contribution to RZF becomes

smaller as T f increases, as shown in the right frame of �gure 6.

Note that in experiments, (nf , T f) is constraint by the accessible

EP pressure. Thus in order to achieve higher RZF by manipu-

lating EPs, higher nf is preferable for both moderate and long

wavelength ZFs for the same (λ0,∆λ) value.

5
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Figure 5. The ZF residual level RZF versus EP parameters (λ0,∆λ) for ε = 0.15 (left) and ε = 0.3 (right), given the EP distribution in
equation (18).

Figure 6. ZF residual level for different EP densities and temperature T f for krρTi = 0.01(left) and krρTi = 0.1 (right). Other parameters are
λ0 = 0.8,∆λ = 0.2.

3.3. ZF residual calculation using experimental EP

distribution

The ZF residual level is calculated using realistic ASDEX

Upgrade EP distribution functions induced by NBI, calcu-

lated by the TRANSP-NUBEAM [27, 28] code. The EP dis-

tribution function data is in (R, Z,E, ξ) space where (R, Z)

corresponds to a series of positions aligned along magnetic

�ux coordinates as shown in �gure 7. The EP distribution

at one given point (red cross ‘×’ on the left) is shown in

the right frame of �gure 7. The EP distribution function cal-

culated by TRANSP is in (E, ξ) space and is converted to

(E,λ) space as the input of the calculation in this work. In this

work, two typical AUG cases (shot 31 213 at 0.84 s and shot

33 856 at 2.14 s) are chosen. For shot 33 856@2.14 s, the NBI

source Q2 and short Q3 blip are applied with full injection

energyof 60 keV and the injected EPs aremainly intermediate-

perpendicular. For shot 31213@0.84 s, the NBI source Q7 is

applied with full injection energy of 93 keV and the injected

EPs are more tangential. More information of the NBI source

Q1–Q8 can be found in previous work [29]. ICRH has not

been applied for both cases (but our ZF residual level solver

can take the EP distribution with ICRH applied as the input).

As shown in �gure 8, for shot 31213@0.84 s (left), well pass-

ing EPs are dominant near the middle minor radius, since

the local maxima of the iso-contour is close to λ = 0, as

shown in the middle (r̄ = 0.35) and right (r̄ = 0.55) frames

on the top, where r̄tor =
√

(ψt − ψt,axis)(ψt,edge − ψt,axis), ψt

6
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Figure 7. Left: the AUG equilibrium and the position of the EP data (red cross ‘×’). Right: the EP distribution calculated by
TRANSP-NUBEAM.

Figure 8. The EP distribution function f (E, λ) of shot 31 213 (upper) and shot 33 856 (lower) at different radial locations. The red dashed
line indicates the passing-trapped boundary.

is the toroidal magnetic �ux function. Near the axis, some

barely passing EPs and trapped EPs are also generated due

to the EP drift/diffusion from the source location. For shot

33 856@2.14 s (right), barely passing EPs and trapped EPs

are dominant as shown in �gure 8 at the bottom. In the outer

region (r̄ = 0.675), the dominant EPs are trapped particles

since λ at the local maxima of the iso-contour is larger than

the passing-trapped boundary (the red dashed line).

The numerical solver has been developed recently

to treat arbitrary experimental EP distributions when

7
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Figure 9. The density, temperature, safety factor pro�les of the AUG shot 31 213 (upper) and shot 33 856 (lower). For shot 31 213, ni is
constructed from ni = ne − nf . Pro�les of shot 33 856 are all from TRANSP data. Besides the q pro�le, another input pro�le (nf/ni) for
calculation of the ZF residual level is also shown with dash-dot line in the left frame.

solving the ZF residual level with the input parameters

(ε, q, krρTi, T f/T i, nf/ne). Numerical interfaces in the ZF

residual level solver have been implemented to collect the

parameters from the TRANSP and TRANSP-NUBEAM

data. The EP distribution function data f (E,λ, r) is recon-

structed from the TRANSP-NUBEAM data using spline

functions. In our calculation, concentric circular magnetic

surfaces are assumed with the inverse aspect ratio calculated

according to ε = (Rmax − Rmin)/(Rmax + Rmin) where Rmax

and Rmin are the maximum and minimum major radii in a

given magnetic surface. The reference EP and thermal ion

density and temperature as well as the safety factor are chosen

according to the experimental values as shown in �gure 9. The

enhancement factor of ZF residual level RZF,w/EP/RZF,w/oEP

is calculated and is shown in �gure 10. For shot 31 213,

except in the near-axis region, well passing EPs are dominant

as shown in �gure 8 and the main effects on ZF residual is

suppressing, especially in the intermediate wavelength range

(krρTi ∼ 0.1). The ZF residual at r̄ = 0.55 is suppressed by

∼3%. In the near-axis region where signi�cant barely passing

and trapped EPs are present (λ close to 1), the ZF residual

level is enhanced by ∼5.5% as indicated by the red line, at

krρTi ∼ 0.1. The ZF residual enhancement RZF,w/EP/RZF,w/oEP

in (r̄, krρTi) space is shown in the right frame on the top. In

the 0.35 < r̄ < 0.75 region, EPs suppress the ZF residual

level by 1%–2%. EPs’ effects near the edge (r̄ > 0.8) is small

since nf/ni is small (nf/ni < 0.03) as indicated in the left top

frame of �gure 9. For shot 33 856, the main EP effects on ZF

residual is enhancement in the intermediate wavelength range

krρTi ∼ 0.1 and suppression in the long wavelength range

krρTi < 10−2, in most of the radial locations. ZFs residual

level can be enhanced by ∼2% at r̄ = 0.375 for krρTi ∼ 0.1.
As shown in the lower frame of �gure 8, signi�cant portion of

EPs are barely passing, barely trapped and/or deeply trapped.

In contrast to shot 31 213, the well passing EPs are few in

shot 33 856. The absence of the well passing EPs is correlated

with the enhancement of ZF residual, which is consistent

with the results of shot 31 213 and the the studies using

the model EP distributions in section 3.2. The intermediate

trapped EPs (λ ∼ 1) also take a signi�cant portion for shot

33 856, which is expected to suppress the ZF residual level

found in section 3.2. The results of the ZF residual level

suggest that the overall effect is mainly dominated by barely

passing/trapped and deeply trapped EPs compared to the

intermediate EPs.

The analysis using experimental EP distribution also sheds

some light on improving the ZF residual enhancement by

manipulating the EP source and plasma parameters. Note that

for shot 33 856, the EP portion is low (nf/ni ∼ 2.96% at r̄ =

0.375) due to the higher ion density compared with the low

ion density shot 31 213. For example, by increasing the ratio

nf/ni of shot 33 856 four times (by either decreasing the ion

density or increasing EP density in experiments), the ZF resid-

ual is expected to be enhanced by 9.1% at r̄tor = 0.375 and

8
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Figure 10. The ZF residual level for shot 31 213 (top) and shot 33 856 (bottom) with different values of radial location and krρTi.

by 13.7% at r̄tor = 0.025 from our calculation. Higher val-

ues of EP concentration (e.g. nf/ni ∼ 0.4) have been obtained

in other ASDEX Upgrade discharges such as shot 30 809 as

reported in previous work [30] and the systematic analysis

using various experimental parameterswill be our futurework.

In addition, by optimizing the NBI injection parameters such

as selecting the NBI with different injection angles and injec-

tion energy, the anisotropy of EPs can be adjusted in order

to reduce the portion of well passing or intermediate trapped

EPs, which is preferable for the enhancement of the ZF resid-

ual level. Nevertheless, using the present AUG cases, for the

intermediate wavelength krρTi ≈ 10−1, the EP effects on ZF

residual can be suppressed or enhanced by −3%to+ 5.5%.

In a nonlinear system where the ZF is driven via nonlinear

interaction, the correspondingZF residual level changes by the

same factor if the nonlinear drive stays at the constant level.

Nonlinear simulations demonstrate that ZFs can be generated

by Alfvén eigenmode (AE) via wave-wave nonlinearity ([31,

32] and references therein). In turn, ZFs can reduce the AE

saturation and the EP transport level. The wave-particle non-

linear interaction and the related power exchange as well as

particle transport in phase space can modify the distribution

of the thermal ions and EPs and thus change the ZF residual

level. For more realistic evaluation of the ZF residual level,

comprehensive consideration of the nonlinear EP–AE–ZF

system needs to be considered in future. Note that for cases

with lower EP pitch scattering due to, e.g. higher EP energy,

the distribution width in λ direction can be smaller in other

devices [33, 34], and the EP effects on ZF residual can bemore

signi�cant for the same portion of EPs.

4. Summary and conclusions

In this work, the effects of anisotropic EPs on ZF residual level

are studied. The equations for classical and neoclassical polar-

ization densities are derived and implemented for arbitrary

distribution functions. Model EP distributions or experimen-

tal ones are adopted to demonstrate the underlying physics of

the ZF enhancement or suppression and to evaluate the possi-

ble impact on experiments. The main results are summarized

as follows.

(a) As is well known [8], for Maxwellian particles and

in the long wavelength limit, the neoclassical polar-

ization density is contributed by passing and trapped

9
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particles, with similar magnitude, of order (krρTiq)
2/2/ε2

but with opposite signs; and with the passing and trapped

particle contributions cancel partly, one can get δnpolnc ≈
1.6n0eδφ(krρTiq)

2/(2ε1/2T0). As shown in this work, for

anisotropic EPs, the cancellation of trapped and pass-

ing particle contribution is different and the polarization

density is different, which indicates different levels of

residual ZFs.

(b) The anisotropic EPs have more signi�cant impact

on intermediate (0.1 < krρTi < 1) and long wavelength

(krρTi < 0.1) ZFs. For short wavelength (krρTi > 1) ZFs,

EPs’ effects are not signi�cant.

(c) In the long wavelength (krρTi < 0.1) range, passing EPs

(except barely passing EPs) and intermediate trapped

(neither barely trapped nor deeply trapped) EPs lead to

the decrease of ZF residual level. Barely passing, barely

trapped or deeply trapped EPs lead to increase of ZF

residual level.

(d) For ASDEX Upgrade plasmas, EP distribution functions

in two selected shots can bring in −3%to+ 5.5%mitiga-

tion/enhancement in ZF residual level, depending on the

EP distribution functions. Higher ZF enhancement (e.g.

∼ 10%) is expected by appropriate manipulation of EP

and equilibrium parameters, such as by raising EP density

and increasing barely passing/trapped or deeply trapped

EPs.

Future work relies on efforts in modeling, simulations and

experiment sides. More studies include, but are not limited to,

(a) The theoretical analysis and numerical modeling with

the consideration of more realistic tokamak geometry/EP

source [35, 36] and more self consistent nonlinear drive

of ZFs [2];

(b) The simulations of ZFs with non-Maxwellian EP distribu-

tions using gyrokinetic codes [6, 37–39] or hybrid MHD-

gyrokinetic codes [31], with the background turbulence

or EP driven modes self consistently simulated as the

primary instabilities;

(c) The experimental studies of EP effects on the ZF level and

the turbulence control, by manipulating the EP parame-

ters, especially the EP pitch and the EP energy, using NBI

or ICRH.

Noticing the theoretical and numerical analyses in this

work, the effect of the anisotropic EPs on ZF residual level

can be important for tokamak plasmas for which the EP distri-

butions are narrow in pitch [33, 34, 40], as to be studied in the

future.
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Appendix A. Gyrokinetic solution of the axisymmet-

ric perturbation (n = 0 for arbitrary dis-

tribution function)

The gyrokinetic solution for equation (2) is solved pertur-

batively using the small parameter |ω/ωtr| ≪ 1. While early

work is for Maxwellian distribution [8, 9], in this work,

we consider arbitrary distribution functions. For axisymmet-

ric perturbations, ωd = v‖∂‖Q, Q = IS
′
v‖/ωc, I = BφR, S =

S(ψ), S′ = dS/dψ, and ψ is the poloidal �ux function.

With the expansion of equation (2) in ω/ωtr, the zeroth

order equation is

[

v‖∂‖ + iωd
]

δK0 = 0 , (A.1)

whose solution is δK0 = δH exp(−iQ), where ∂‖δH = 0. The

�rst order equation is

[

v‖∂‖ + iωd
]

δK1 = −∂tδK0 +
es

T0s
κF0sJ0(as)∂tδφ . (A.2)

After bounce average operation Ā =
∮

(dl/v‖)A/
∮

(dl/v‖),
where l is the coordinate along b, equation (A.2) leads to the

solution to O(ω/ωtr),

δH =
e

T0
κF0J0 eiQδφ, δ f =

eδφ

T0
κF0(J0 e

−iQJ0 eiQ − 1) .

(A.3)

F0 is an arbitrary distribution function and κF0s ≡
−(T0s/ms)∂F0s(R,E, µ)/∂E. In the (E,λ) coordinates,

where the pitch is de�ned as λ = v2⊥B0/(v
2B), κF0 is obtained

noticing
∂

∂E

∣

∣

∣

∣

µ

F0 =
∂

∂E

∣

∣

∣

∣

λ

F0 −
λ

E

∂

∂λ

∣

∣

∣

∣

E

F0 . (A.4)

Appendix B. Reduction to Rosenbluth–Hinton

results in long wavelength limit for Maxwellian

distribution

For the comparison of equations (7) and (8) with previous

work, we calculate the classical/neoclassical polarization εpol
cl/nc

εpol
cl/nc〈k2r 〉δφ ≡ −4πes〈δnpolcl/nc〉 . (B.1)

Then equations (7) and (8) yield,

εpolcl =
ω2
ps

ω2
c0s

π

2
v3Ts

∑

σ

∫

dλ

∮

dθh

2π

∫ ∞

0

dĒκF̄Ē3/2

×
(

1

ξ
− ξ

)

, (B.2)
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εpolnc =
ω2
ps

ω2
c0s

q2

ε2
πv3Ts

∑

σ

∫

dλ

∮

dθ

2π

∫ ∞

0

dĒκF̄Ē3/2

×
(

h2ξ − 2πh
∮

dθ/ξ

)

. (B.3)

Equations (B.2) and (B.3) are consistent with the previous

results for Maxwellian distribution (κ = 1) [8, 9], i.e.

〈

εpolcl

〉

=
ω2
ps

ω2
c0s

(

1+
3

2
ε2
)

, (B.4)

〈

εpolnc

〉

=
ω2
ps

ω2
c0s

q2

ε2
Itot, Itot =

∑

p,t

[I2 − σpI1] (B.5)

I1,2 ≡
3

2

∫

dλT1,2, T1 ≡
2π

∮

dθ/ξ
; T2 ≡

∮

dθξ

2π
,

(B.6)

where ωps = 4πne2s/ms,
∮

dθ indicates the integral along the

unperturbed orbit, σp = 0, 1 for trapped and passing particles

respectively, the factor (3/2)ε2 is due to the �ux surface aver-

age. In small ε limit, equation (B.5) yields the well known

Rosenbluth–Hinton result εpolnc = 1.6(ω2
ps/ω

2
c0s)(q

2/ε1/2) [8]

noticing I
p
1 ≈ 1− 1.6ε3/2, Ip2 ≈ 1− 1.2ε3/2, It2 ≈ 1.2ε3/2 [26].
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