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Abstract
The efficient operation of a tokamak is limited by several constraints, such as the transition to
high confinement or the density limits occurring in both confinement regimes. These particular
boundaries of operation are derived in terms of a combination of dimensionless parameters
describing interchange-drift-Alfvén turbulence without any free adjustable parameter. The
derived boundaries describe the operational space at the separatrix of the ASDEX Upgrade
tokamak, which is presented in terms of an electron density and temperature existence
diagram. The derived density limits are compared against Greenwald scaling. The power
threshold and role of ion heat flux for the transition to high confinement are discussed.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The operational space for safe and efficient operation of a toka-
mak is limited by several constraints [1]. Of high interest is
the Greenwald density limit for L-mode [2], accessibility of
high confinement, H-mode [3] and loss of high confinement at
about a Greenwald density fraction of unity [4–7]. The tech-
nically feasible operational range of tokamaks is also limited
due to power exhaust requirements. The power exhaust capa-
bilities of a magnetic confinement fusion device vastly depend
on the plasma conditions around the separatrix [8, 9]. In previ-
ous work, we characterized the plasma conditions at the sep-
aratrix based on global turbulence parameters introduced by
Rogers, Drake and Zeiler (RDZ) [10] and Scott [11]. In [12],
an increase in the plasma decay lengths around the separatrix

a See Meyer et al 2019 (https://doi.org/10.1088/1741-4326/ab18b8) for the
ASDEX Upgrade Team.
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was shown to be correlated with the turbulence parameter αt

(see table 3 for definitions).

αt = 3.13 × 10−18 Rgeo q̂2
cyl

ne

T2
e

Zeff. (1)

Here, we will present and derive three boundary lines describ-
ing the L–H (H–L) transition, L-mode density limit and ideal
ballooning mode limit for the plasma edge (ne,sep − Te,sep)
space just inside the separatrix. The presented model equations
have been developed on the basis of a dedicated and care-
fully established experimental database in conjunction with
heuristic techniques to derive these equations from the com-
plex drift-Alfvén (DALF) model. This heuristic approach does
not guarantee an optimal, complete or self-consistent solution.
Trial and error has been one of our major approaches. It is
the finally accomplished agreement to the experimental data
justifying our ansatz. Characteristic wavenumbers of DALF
turbulence will be key quantities in this study. These are sum-
marized in table 1. Their derivation is found in the appendix
A. All quantities entering the definitions of the characteristic
wavenumbers are summarized in table 2. Fundamental plasma
and discharge parameters are summarized in table 3.
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Table 1. Characteristic perpendicular wavenumbers normalized
to ρs.
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Table 2. Characteristic quantities of DALF turbulence.

ρs

√
Temi/eB

cs

√
Te/mi

μ me/mi

τ i T i/Te

βe μ0neTe/B2

ωB 2λ⊥/R
C 0.51μνei(qsR)2/(csλ⊥)
αt (1 + τ i)CωB

αd 2−
1
4 π−1 ω

1
4
B α

− 1
2

t

The paper is organized as follows: in order to structure
our paper for good readability, we start with the final prod-
uct of our work, which is the separatrix operational space
for ASDEX Upgrade and which is presented in section 2.
Here, the database is introduced. Detailed comparisons of the
derived boundaries with the experimental data set are given in
section 3 for the L-mode density limit, in section 4 for the L–H
(H–L) transition and in section 5 for the H-mode density limit.
Derivations of the boundaries as well as detailed comparisons
to previous work are given in appendix A.

2. Operational space of ASDEX Upgrade at the
separatrix

In the following, the separatrix operational space of the
ASDEX Upgrade tokamak in terms of density and electron
temperature is illustrated. All presented data are estimated
from plasma discharges with a mean plasma current Ip of about
0.83 MA and toroidal field strength B of about 2.5 T. These
conditions provide a well-established operational regime in
ASDEX Upgrade. Important here is that machine safety allows
us to provoke the L-mode density limit either by gas puff-
ing or through an H–L back transition at high densities. The
experimental database has been obtained by edge Thomson
scattering (TS) and need to be averaged for about 300 ms to
give meaningful results. This requires dedicated discharges
which are naturally limited in number. The use of TS allows
us to monitor the entire operational range including the disrup-
tive events that eventually occur at the L-mode density limit.
Overall, 123 discharges are presented containing 1884 data
points including the database presented in [12] at Ip = 0.83
MA and Btor = 2.5 T. The reader is referred to this source for
further details on the profile analysis, e.g. removal of type-
I edge localized mode (ELM) time windows. All data use
deuterium as the main species and favorable field direction
in lower single-null configuration. Discharges with impurity
seeding are not included as an accurate estimation of Zeff at

the separatrix is not available. The value for Zeff is set to 1.24
± 0.13 (see appendix J). Table 4 summarizes some selected
plasma discharge parameters. These are the plasma current Ip,

toroidal magnetic field strength Btor, cylindrical safety factor
q̂cyl, heating power crossing the separatrix Psep, heating power
Pheat, Greenwald fraction f GW, plasma elongation κgeo and
triangularity δgeo. The cylindrical safety factor is defined in
appendix K. The minor radius, ageo, of ASDEX Upgrade is
about 0.5 m and the major radius, Rgeo, about 1.65 m.

Figure 1 shows measured pairs of separatrix electron den-
sity and temperature. All figures throughout the L-mode data
are marked with circles (◦) and H-mode data with rectan-
gles (�). Data points at the disruptive L-mode density limit
are indicated by (�). When a disruptive L-mode density
limit is detected after a back transition to L-mode condi-
tions, (�) is used. The time interval of the discharge expos-
ing L-mode conditions after an H–L back transition are dif-
ferently marked for clarity by using diamonds (�). The data
from different regimes are separated by three boundaries due
to the turbulence properties discussed in this paper. These
three boundaries describe the L–H (H–L) transition, L-mode
density limit and ideal ballooning mode limit in H-mode.
Together, they establish a separatrix operational space of the
ASDEX Upgrade tokamak in terms of density and electron
temperature.

The three lines are constructed by seeking the solution of
equations (3), (8) and (12) by simply testing a range of elec-
tron temperatures (25–150 eV) for each density value. For this
purpose, the ASDEX Upgrade scaling law for the electron
pressure decay length (see [12]) is used. In addition, typi-
cal discharge parameters are set for elongation, triangularity,
minor and major radius. To draw the lines, a plasma current,
Ip of 831 kA and the toroidal magnetic field Btor of 2.47 T
have been used. These values correspond to the mean values
of the 123 discharges presented. The variation in the boundary
lines w.r.t. toroidal magnetic field, plasma current,plasma elon-
gation and triangularity, as present in the database, is drawn
as vertical lines. It should be noted that the presented data
in the following sections (figures 2, 3 and 6) are calculated
straight from the measured electron pressure decay lengths,
exact geometries and all other discharge parameters.

Operation in the low-confinement regime is clearly sep-
arated from operation in the high-confinement regime (blue
line, equation (8)) in the ne,sep − Te,sep diagram. At low
densities, the critical electron temperature for the L–H tran-
sition decreases with increasing density and vice versa for
high densities. In L-mode, the accessible density is limited
by a transition from electrostatic to electromagnetic resistive
ballooning mode (RBM) turbulence (red line, equation (3))
and described in section 3. In H-mode, clearly higher densi-
ties can be achieved at the separatrix. Operation under high-
confinement conditions is restricted at high temperatures and
densities by ideal magnetohydrodynamic (MHD) (black line,
equation (12)). At lower temperatures, back transition to L-
mode occurs, which is stable only when the transition is below
the RBM condition.
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Table 3. Fundamental plasma and discharge parameters entering the definitions to
characterize DALF turbulence.

Symbol Unit Selected as

Te/i eV Electron/ion temperature
me/i kg Electron/ion mass
Zeff Effective charge
B T Magnetic field strength
ne m−3 Electron density
νei 1 s Electron–ion collision frequency
R m Rgeo Major radius
a m ageo Minor radius
λ⊥ m λpe Typical perpendicular length (equation (K.1))
k‖ 1/qsR

√
αc Typical parallel wavenumber (equation (K.5))

qs q̂cyl Safety factor (equation (K.6))

Table 4. Discharge parameters of analyzed L-mode and H-mode plasmas.

Ip (MA) Btor (T) q̂cyl Psep (MW) Pheat (MW) f GW κgeo δgeo

0.83–0.84 2.38–2.56 3.8–5.4 0.3–14 0.4–16 0.2–1.0 1.5–1.8 0.16–0.33

Figure 1. Separatrix operational space of ASDEX Upgrade in terms of electron density and temperature. Different operation regimes are
indicated by different symbols. Red line shows boundary of the L-mode density limit (equation (3)). Blue line indicates the L–H–L
transition (equation (8)). Black line indicates the ideal MHD boundary (equation (12)). Error bars are plotted only for a subset of the data for
clarity in the figure.

3. L-Mode density limit

In this section, the boundary given by the L-mode density limit,
as shown by the red line in figure 1, will be derived. The
L-mode density limit has been observed already in the very
beginning of tokamak operation. Greenwald codified the max-
imum achievable density in tokamaks for L-mode operation.
The commonly agreed upon upper limit for the density is thus
given by so-called Greenwald density limit and is expressed

as,

nGW =
Ip

πa2
geo

[1020 m−3], (2)

with Ip given in MA and ageo being the minor radius of the
tokamak equilibrium. An important feature of the L-mode den-
sity limit is that plasmas reaching a Greenwald density fraction
of unity are observed to disrupt, which imposes most serious
constraints on tokamak operation [13].

3



Nucl. Fusion 61 (2021) 086017 T. Eich et al

Figure 2. Characteristic electromagnetic wave number (kEM) against the characteristic wave number of the resistive ballooning mode (kRBM).

Figure 3. Stabilizing (abscissa) and destabilizing elements (ordinate) of condition 8. Blue line gives a 1:1 ratio and effectively acts as a
distinction line for the confinement mode.

The density limit is a result of a sequence of events [14,
15]. It starts with radiative cooling of the edge, after which the
multifaceted asymmetric radiation from the edge and MHD
instabilities develop [15]. Finally, it ends with a disruption. A
central question is which mechanism is initiating the cool-
ing of the edge? Enhanced transport has been observed in
advance of any change in the MHD activity in both experi-
ments and numerical simulations when the Greenwald density

is approached [16–19]. A transition from the drift wave to the
resistive ballooning regime induces a strong increase in tur-
bulence transport. Approaching the density limit in ASDEX
Upgrade L-mode conditions, turbulence is already in the
regime of the RBM, as indicated by the values of the turbulence
control parameters in [12]. Being in the RBM regime is not
enough to trigger the density limit. An additional enhancement
of the already strong turbulent transport is needed. As RBM
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turbulence increases with increasing collisionality, a further
increase in density leads to stronger transport. But at which
point does turbulent transport gets catastrophically large? In
[10], the strongly enhanced transport approaching the density
limit has been ascribed to a further destabilization of the RBM
by electromagnetic effects [20]. Also in [21], it has been found
that magnetic induction effects can destabilize RBMs below
marginal ideal stability.

The importance of electromagnetic effects depends on the
considered scale (appendix D). The dynamic of sufficient
large-scale structures is always electromagnetic. However, this
does not necessarily imply that they drive strong transport.
With increasing plasma beta the characteristic wave number,
below which electromagnetic effects are important, shifts to
higher wave numbers (appendix D). At some point the char-
acteristic wave number of the RBM (appendix B) is within
the wave number range of electromagnetic activity. This pro-
vides the condition that the scale of the RBM (equation (B.12))
is equal to the characteristic electromagnetic scale (equation
(D.3)),

kRBM = kEM, (3)

as the trigger condition for strongly enhanced transport. An
increase in density is reflected both in the level of collisionality
and plasma beta. Thus, the condition in equation (3) is in agree-
ment with the increase in turbulent RBM-dominated trans-
port by increasing collisionality triggering the density limit,
as described in [19]. A more detailed discussion of the com-
parison of this condition 3 to the work by RDZ [10] is found
in appendix F.

How this strongly enhanced transport finally leads to the
chain of events of the L-mode density limit is not in the scope
of this work. As the separatrix is in the RBM regime, strong fil-
amentary activity can be expected. Due to the high divertor col-
lisionality, the filaments are likely to be in the inertial regime
of propagation [22]. Also with being in the electromagnetic
regime, these filaments are similar to edge-localized-mode
(ELM) filaments, even faster [23] and propagating deeper into
the far scrape-off layer (SOL) and enhancing the plasma wall
interaction. The resulting enhanced impurity source leads to
cooling, likely first around the X-point. Enhanced conduction
from the midplane to the X-point region leads to cooling at the
outboard midplane, further enhancing this process.

Condition 3 is shown in figure 2 for the experimental
database. The characteristic electromagnetic wave number
is equal to the RBM wave number. These L-mode density
limit disruptions are detected, explicitly when condition 3 is
fulfilled. This condition describes all L-mode density limits
achieved by gas puffing. Interestingly, it can be seen that H-
mode discharges are not affected by this condition. However,
plasmas falling back to L-mode also fulfill this condition and
are observed to disrupt eventually. This effect is well illustrated
in figure 1.

It is interesting to compare the separatrix density ne,sep

when equation (3) is fulfilled to the Greenwald density nGW.
Inserting the definitions for kEM and kRBM we have,

2βe

μ
=

αc

αt

√
ωB, (4)

which is rewritten by assuming B2
tor ≈ B2 as,

2μ0ne,sepTe,sep

μB2
tor

=
3.2 × 1017 · αc

Rgeoq̂2
cyl

ne,sep

T2
e,sep

Zeff

√
2λp

Rgeo
. (5)

Using,
Btor

μ0Rqcyl
=

Ip

2πa2 ̂

κ2
=

1
2 × 1020

nGW

̂

κ2
, (6)

we resolve for the Greenwald density fraction at the separatrix
and find,

ne,sep

nGW
= 0.11

√
αc

κ̂2

√
Te,sep

Zeff
λ

1
4
p R

1
4
geo. (7)

Thus, condition 3 is written in terms of the Greenwald frac-
tion. We note that λp itself depends on turbulent transport
and in this way on the separatrix density. Thus, the ratio of
ne,sep and Greenwald density nGW is not fully self-consistent.
Inserting typical values in equation (7) just prior to the actual
L-mode density limit, we calculate ne,sep/nGW = 0.21 in accor-
dance with the actual measured values of ne,sep/nGW ranging
between 0.19–0.25 while the line-averaged Greenwald den-
sity fraction ranges between 0.51–0.63. These latter values are
taken here for a typical L-Mode discharge at Btor = 2.47 T
and Ip = 0.831 MA, Te,sep = 45 eV, Zeff = 1.24, αc = 2.4,
κ̂ = 1.4 and Rgeo = 1.65 m. The mean value for the pres-
sure fall-off length just prior to the L-mode density limit in
the database is about λp = 25 mm, in line with previous
measurements [24, 25].

It can be seen from equation (7) that the leading depen-
dency for the separatrix density ne,sep is the Greenwald density
nGW. Comparison of ne,sep and the line-averaged density in con-
junction with L-mode decay length studies [26] are needed
to draw further conclusions. However, it can be seen that
large values of Zeff lead to lower density values, fairly mod-
est dependence on geometry and weak dependence on heat-
ing power, as the square root of the separatrix temperature at

high densities is described by
√

Te,sep ≈ P
1
7
sep [24, 25]. These

latter findings are characteristic of the Greenwald density
limit [4].

4. Low to high confinement transition (L–H
transition)

The lower boundary of efficient operation is the L–H transition
shown by the blue line in figure 1. The main difference between
L- and H-mode is the reduced level of turbulent transport in the
H-mode compared to the L-mode. Turbulent transport can be
suppressed by E × B shear flows, which are particularly pro-
nounced in H-mode. L–H transition occurs when turbulence
collapses. This happens when the shear flow is sinking energy
from turbulence faster than turbulence grows. As an approxi-
mation of the flow shear we take here the flow shear due to the
neoclassical electric field, proportional to the gradient of the
ion background pressure. This is the leading effect of stabi-
lization in ASDEX Upgrade close to the L–H transition [27].
However, additional stabilizing effects were tested and selec-
tively included to obtain better agreement with experimental
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Figure 4. Individual dependence of the terms related to the effective turbulence suppression by flow shear (αckEM, red), effective turbulence
growth of electron thermal turbulence ( 1

2αt, blue), kinetic turbulence (αtk2
EM, black) and ion thermal turbulence ( 1

2αck−2
EM

√
ωB, green) on

ne,sep at the L- to H-mode transition.

observation. The included additional stabilization mechanisms
are the so-called diamagnetic and beta stabilization. The tur-
bulent field is divided into three parts, fluctuations in the elec-
tric field, electron and ion pressure. The distinction between
the different fields is necessary since the interchange effect
on the electron pressure fluctuations can be efficiently sup-
pressed by the drift-wave mechanism, whereas ion tempera-
ture fluctuations cannot be compensated. Therefore, for the
ion pressure fluctuations ideal interchange growth rates can
be assumed corresponding to ion temperature gradient (ITG)
turbulence. For the electron pressure fluctuations this is dif-
ferent. The stabilization by drift waves is called diamagnetic
stabilization (see appendix E), which introduces a dependency
on turbulence control parameterαt. Turbulence control param-
eter αt determines the cross-phase between plasma potential
and electron pressure fluctuation, and thereby controls the tur-
bulent transport. For L–H transition, diamagnetic stabiliza-
tion is quite strong as turbulence close to the L–H transition
occurs in the drift-wave dominated regime. In addition, the
efficiency of the energy transfer between shear flow and turbu-
lence depends on αt, which is taken into account. This effect
is not very important for L–H transition occurring at low αt,
but shows significant modification for H–L back transition. It
is assumed that the turbulent transport is mainly electrostatic
in stable L-mode plasmas [28–30]. We further assume that the
largest electrostatic structures are the dominant ones for the
turbulent transport and take kEM as the characteristic perpen-
dicular wavenumber. In this way, beta stabilization is taken into
account and a dependency on the plasma beta is introduced. A
detailed derivation of the L–H criterion (equation (H.10)) can
be found in appendix H.

Ion temperature measurements at the separatrix are only
available for isolated discharges and time windows of the
database. Thus, ion and electron temperatures are assumed to
be equal. Hence, τ i = Λpi = 1, and equation (H.10) is given
by,

αckEM

1 +
(

αt
αc

kEM

)2 > αt

(
1
2
+ k2

EM

)
+

1
2
αc

k2
EM

√
ωB. (8)

Figure 3 shows the stabilizing effect related to the energy trans-
fer into the shear flow on the abscissa and the destabilizing
effect of turbulence growth related to the electron free energy,
kinetic energy and ion free energy on the ordinate. Discharges
in the low-confinement regime show pronounced destabilizing
influences. The term αt( 1

2 + k2
EM) + 1

2
αc

k2
EM

√
ωB frequently

exceeds one and approaches values up to three, while the
term αckEM hardly exceeds one but often appears below one.
On the other hand, the discharges in the high-confinement
regime show much stronger stabilizing effects. The term
αckEM/(1 + ((αt/αc)kEM)2) is usually above one and
approaches values of up to five. The transition from L- to
H-mode appears somewhere close to the (blue) 1:1 line in
figure 3, which describes condition 8. Therefore, condition 8
is fulfilled within the error bars of the measurements. Seeking
the electron temperature for the plotted range of ne,sep values
in figure 1 to fulfill equation (8) then gives the blue line.

We have a closer look at the individual contributions to
turbulence at the L–H transition. This is shown in figure 4
in dependence of the separatrix density. Note that L–H tran-
sitions can only appear in ASDEX Upgrade for separatrix
densities of less than nLH

sep = 2.7 × 1019 m−3 (figure 1) for the

6
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given field and current (Ip = 0.83 MA, Btor = 2.4–2.6 T).
In this range, the ion channel 1

2
αc

k2
EM

√
ωB is the most rele-

vant one, which has to be suppressed by the flow shear to
trigger the L–H transition. In the most common discharge
scenario, the separatrix density is very close to nLH

sep ≈ 1.0 ×
1019 m−3. Here, all contributions other than the ion channel
can be neglected, which supports the importance of the ion
heat flux [31, 32].

Turbulence suppression balances the ion thermal turbulence
channel, which is also due to the αc dependence of both terms.
For typical ASDEX Upgrade discharges, αc is significantly
above one, which strengthens the capability to suppress turbu-
lence (αckEM). In addition, the relative importance of the ion
thermal channel (proportional to αc) compared to the electron
channel (not proportional to αc) increases. At reduced elonga-
tion (lower αc) the relative importance of the electron to the
ion channel increases and the shear suppression capabilities
decrease.

At nLH
sep ≈ 3 × 1019 m−3, all turbulence channels contribute

equally and for high densities the electron channel is the most
relevant one. Therefore, for the L–H transition the ion chan-
nel is the most relevant one. For H–L back transitions at
high αt (high density) the electron channel is the most rel-
evant one. In addition, αckEM/(1 + ((αt/αc)kEM)2) increases
less strongly for high densities. This is due to the influence of
the denominator taking into account the efficiency of energy
exchange between turbulence and flow shear. At low densities
the energy exchange is very efficient and the denominator can
be neglected. At high densities this effect can possibly trigger
an H–L back transition.

4.1. Comparison to L–H power threshold scaling laws

Rigorous comparison of the proposed mechanism for the L-
to H-mode transition to the scaling by Martin [33] and esti-
mates by Ryter [31] cannot be performed as all considerations
here apply strictly to the separatrix domain. Martin scaling
uses heating power and line-averaged density. The work by
Ryter puts the ion energy fluxes at about 10 mm inside the
separatrix in focus. In order to present a sanity check and to
compare the mechanism to the total heating power and ion
power crossing the very edge region, we proceed in the fol-
lowing way. We generate for different toroidal magnetic fields
numerically the solutions of relation (8) and solve for the elec-
tron temperature, TLH

e,sep, in dependence of the electron density,
i.e. generating the blue graph of figure 1 for Btor = 2.1, 2.3, 2.5
and 2.7 T.

We use the model by Stangeby [34]:

Te,sep ≈
(

7
4

Psep × Lc

κe
0 · ASOL

) 2
7

. (9)

The connection length, Lc from the outer mid-plane region
to the divertor is Lc = πqcylR. The effective area, ASOL is

written as ASOL = 4π Rλq
Bpol
Btor

with λq as the power fall-off

length, which is approximated using λq = 2
7 λT. Using the

effective elongation (see equation (K.7)) κ̂, the aspect ratio
A = R/a , q̂cyl and with κe

0 being Spitzer–Härm electron heat

conduction, we rewrite equation (9) as,

Te,sep ≈
(

7 Psep q2
cylA

16κe
0 κ̂ λq

) 2
7

. (10)

From this, we calculate the electron heat flux at the L- to H-
mode transition by inserting TLH

e,sep according to,

PLH
sep,e ≈

16κe
0 κ̂ λq ageo

7 q̂2
cylRgeo

× (TLH
e,sep)

7
2 . (11)

The power associated with the electron heat flux crossing
the separatrix is shown on the left-hand side of figure 5. This
shows the typical non-monotonic density dependence at its
typical minimum. On either side of this minimum, the critical
power increases. These are called the low- and the high-density
branches. At a typical toroidal magnetic field of 2.5 T, rela-
tion 8 predicts the minimum power at the local minimum to be
about 700 kW at a separatrix density slightly above 1019 m−3.
Note that the separatrix density varies between 1/4 to 1/3 of the
line-averaged density in this database at the L- to H-mode tran-
sition. The power increases with the magnetic field, as can be
seen in figure 5. Thus, relation 8 recovers the behavior of the
L–H power threshold in terms of density and magnetic field
strength qualitatively. Quantitatively, good agreement is found
for both total power as well as minimum density. However, the
major radius dependence established in Martin scaling is not
found by the estimated electron heat flux.

The ion heat flux at the L- to H-mode transition is calculated
assuming the electron and ion temperature and their gradi-
ent to be equal around the separatrix. The latter assumption
is certainly not a rigorous choice. However, we are interested
in the basic parameter dependencies of the heating power
and, in particular, its machine size dependence. The power
crossing the separatrix associated to neoclassical ion heat flux
is given by PLH

sep,i = 2πκageo 2πRgeone,sepχneo
Te,sep
λT

. Ryter pro-
posed a linear dependency of the ion heat flux required for
the L- to H-mode transition on density [31]. The neoclassi-
cal thermal diffusivity χneo is calculated according to Angioni
and Sauter [35]. In the derivation of the neoclassical trans-
port coefficients in [35] it has been assumed that the poloidal
ion Larmor radius is small compared to the pressure gradient
fall-off length ρi,pol 	 λp, which is only marginally fulfilled.
The calculated neoclassical ion heat flux is shown in figure 5.
For the typical density range of the L- to H-mode transition,
ne,sep = 1–3 × 1019 m−3, an approximate linear relationship
between ion heat flux and both density and toroidal field is
found. Also of major importance is the linear dependence of
the heat flux both with the major and the minor radius, which is
absent for the electron heat flux. This supports the importance
of the ion heat flux and thus is considered here to be an impor-
tant link between the well-known power threshold depen-
dency with the plasma surface area in Martin scaling and the
approach by Ryter.

Finally, we check the consistency of our model with the
well-established experimental findings of the radial electric
field in ASDEX Upgrade. By using the electron density and
temperature values at the L- to H-mode transition (given by

7
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Figure 5. Power threshold for the L–H transition in the electron and ion channel. Different colors show different magnetic field strength.

condition 8) and their fall-off lengths, we calculate the radial
electric field at the very edge of ADEX Upgrade in H-mode
[36] as well as close to the L–H transition [27] by making

use of Er ≈ ∇pi
e Zeffne

≈ Ti
eZeff

(
1
λTi

+ 1
λne

.
)

. We remind the reader

that we have set τ i = 1 so that we can further approximate

Er ≈ Te
eZeff

(
1

λTe
+ 1

λne

)
. Inserting typical values for ne,sep at the

L- to H-mode transition in ASDEX Upgrade ranging from
1–1.5 ×1019 m−3 (see figure 1) we calculate an electric field

ranging from Er = 6–12 kV m−1. The reference position is
λp/2 = 2.5 mm inside the confinement region. These latter
values are in line with those found by direct measurements
for the radial electric field at the L–H transition of about 10
kV m−1 at the radial position R = Rsep − 2.5 mm (ρ = 0.995)
[37, 38]. This estimate here will only serve as an initial check.
We need to gain more insight by using direct ion temperature
profile measurements around the separatrix.

8
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Figure 6. Comparison of the characteristic wavenumber kideal determining the boundary between resistive and ideal parallel dynamics and
the characteristic wavenumber of the resistive ballooning mode kRBM. Plot (a) shown with identical markers as in the other figures and
(b) shown with color coding for αMHD.

5. Boundaries of H-mode operation at high
densities

The boundaries occurring at high densities in the H-
mode regime are discussed next. The limitation of H-mode
operation at high densities is proposed to be the consequence
of two distinct phenomena; first, an ideal-ballooning-mode
limit and second, due to the loss of H-mode confinement prop-
erties. The loss of H-mode confinement properties is closely

related to the L–H transition, which was discussed in more
detail in section 4. At high densities, however, transition to a
stable L-mode is no longer possible and the condition of the
L-mode density limit (section 3) sets in.

5.1. Ideal-ballooning-mode limit

The ideal-ballooning-mode limit is shown by the black line in
figure 1. A condition of the transition from resistive to ideal

9
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Figure 7. Separatrix operational space with isobars for αt = 0.2, 0.4, 0.6, 0.8, 1.0.

MHD is provided by,

kideal = kRBM, (12)

as derived in appendix G. In order to draw the latter criterion
into the (ne,sep, Te,sep) space, as shown in figure 1, i.e. con-
struct the black line in the figure, we set psep = nsepTsep(1 + τ i)
and insert λp from equation (K.1). If this condition is fulfilled,
the separatrix becomes unstable to ideal MHD ballooning.
For clarity, we note that the condition refers to the inter-ELM
background quantities, which is different to ELMs appearing
transiently.

Figure 6 shows the comparison between kideal and kRBM

using αMHD as the color of each datum point. The figure illus-
trates that the criterion of equality between kideal and kRBM is
identical to αMHD = αc and that actual experiments reach these
highest αMHD values.

The boundary given by this ideal MHD limit is apparently
not a continuation of the red line describing the L-mode den-
sity limit. Both limits occur at very different values of density
and temperature, plasma beta, collisionality and thus turbu-
lence occurs in different regimes. In order to also compare
kideal = kEM to Greenwald density, we write:

αMHD =
Rgeoq2

cyl

λp

(1 + τi)pe

B2
tor/(2μ0)

=
4μ0Rgeoq2

cyl nsep Tsep

1.2(1 + 3.6α1.9
t )ρs, polB2

tor
= αc, (13)

and resolve for the Greenwald density fraction:

ne,sep

nGW
= (1 + 3.6α1.9

t )
1.35√
Te,sep

αcRgeo

κ̂2ageo

≈ (1 + 3.6α1.9
t )

5.5√
Te,sep

. (14)

The latter equation shows that for high-heated, good con-
finement plasmas with high separatrix temperatures (Te,sep ≈
125 ± 25 eV) and thus αt → 0, the separatrix Greenwald den-
sity fraction will approach,

ne,sep

nGW
≈ 5.5√

Te,sep
(1 + 0) =

5.5√
125 ± 25 eV

= 0.49 ± 0.05.

The result is in accordance with [39]. For values ofαt larger
than about 1/2, significantly higher densities than ne,sep

nGW
≈ 1

2 at
the separatrix should also be obtained. However, due to the cor-
relation between αt and H98,y2 [12], consequently lower H98,y2

will be measured. This behavior, namely an onset of confine-
ment degradation scaling with Greenwald density nGW is qual-
itatively in line with studies on the confinement properties at
high densities in various devices [5, 40–43]. These reported
findings on the separatrix properties are consistent with similar
studies both at DIII-D [44] and JET [45].

Figure 7 adds isobars for αt onto the separatrix opera-
tional space plot. Due to the high temperatures, H-modes
are still at low collisionalities and turbulence is in the drift-
wavedominated regime. Thus, for all data points, αt < 1 is
observed.

5.2. Disruptive limit at low temperatures in H-modes

Figure 7 shows that there is another boundary for H-modes
appearing at high densities and limiting its operation range,
given by the blue line and thus by the back transition from
high to low confinement. At low densities, this boundary line
describes both L–H and H–L transitions. At high densities,

10
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however, back transition to a stable L-mode regime is not pos-
sible as this region is not accessible due to the L-mode density
limit (red line in figure 7). After H–L back transition at high
densities, the plasma is in a regime of strongly enhanced trans-
port (the electromagnetic RBM regime) leading inevitably to
a disruption if not avoided by active means [46]. As can be
seen in figure 7, H–L transitions at high densities are also
accompanied by the transition from the drift-wave regime of
turbulence (αt < 1) to the RBM regime of turbulence (αt > 1).
The H–L back transition at high densities initiates the same
process as at the L-mode density limit. With respect to sep-
aratrix density and temperature, this happens at other values,
since these values are determined by the H–L back transition.
The observed high densities and temperatures are not directly
accessible from the L-mode regime. The disruptive density
limit after an H–L back transition is preceded by a collapse
of shear flow. And this can be triggered by non-efficient zonal
flow drive at low adiabaticity [47], as proposed in [48]. The
effect of reduced zonal flow drive at low adiabaticity has been
taken into account in the derivation of the L–H condition in
appendix H.

This shows that the density limit is not a consequence of
a single condition. There are actually three different limits
attributed to a density increase at the separatrix.

6. Summary and conclusion

In the present contribution, the boundaries of tokamak oper-
ation are related to the competition between drift-wave and
resistive ballooning turbulence. The three boundaries dis-
cussed in this work depend on the plasma current Ip and
toroidal magnetic field on axis Btor. Therefore, to draw these
boundaries in the (ne,sep, Te,sep) space, plasma current and
magnetic field strength are kept constant.

(a) L-mode density limit: in the low-confinement regime, the
operation is limited by a disruptive density limit, occur-
ring at high densities and low temperatures and there-
fore at high collisionalities. At these parameters, tur-
bulence can be expected to be in the regime of the
RBM. Here, the turbulent transport is already quite high.
An additional strong enhancement of turbulent trans-
port can be induced if the electrostatic RBM transits
to an electromagnetic RBM. This is described by con-
dition 3. The model developed here (equation (3)) is
basically in line with the picture developed by RDZ
[10]. The L-mode density limit occurs at high density
and low temperatures; hence the high collisionality. At
this parameter, turbulence is in the resistive balloon-
ing regime, not stabilized by drift waves (low αd). By
increasing the density, αMHD increases, which leads to
enhanced electromagnetic contributions to the turbulent
transport. A boundary relation αMHD ∼ α2

d, as proposed
by RDZ [10], is reproduced (F.2). All disruptive dis-
charges are captured by condition 3 within experimental
error bars.

(b) High confinement operation: the transition from low to
high confinement occurs in the regime of drift-wave tur-
bulence. Thus, turbulent transport is rather moderate in
L-mode preceding an L–H transition. A transition to H-
mode can be triggered, when the energy transfer rate into
the shear flow exceeds the energy input rate into tur-
bulence [49]. Similar to the Kim–Diamond model [50],
where the interaction between turbulence and zonal flow
is most important, here the interaction between turbu-
lence and the mean flow is assumed to be dominant, as
proposed from ASDEX Upgrade experiments [27]. How-
ever, this interaction is treated in a similar way to that
described by zonal flow physics. Additional stabilization
effects by cross-phase modifications (diamagnetic stabi-
lization), and due to electromagnetic effects, are taken into
account, as proposed by RDZ [10]. The corresponding
condition is derived in equation (8), which is valid within
the error bars in the ASDEX Upgrade data set. At this
condition (equation (8)), the remaining electron heat flux
shows typical non-monotonic density dependence includ-
ing the typical minimum. The remaining neoclassical ion
heat flux shows a linear dependency on the density, as
can be seen in the experiment. Based on this finding, we
conjecture that the ion heat flux is responsible for the
major radius dependence of the heat flux threshold. This
supports interpretation of the critical role of the ion heat
flux for the L–H transition [31].

(c) High-density operation for H-mode discharges and
appearance of ideal ballooning-modes: a fundamentally
important property found in the separatrix operational
space when comparing L-mode and H-mode operation,
irrespective of the explanation, is the finding that much
higher ne,sep values are achieved in high-confinement
operation. At very high densities in H-mode and at still
comparably high values for Te,sep, ideal ballooning sets a
boundary well visible in the (ne,sep − Te,sep) space. Due
to the separatrix high temperature, H-mode is still at low
collisionalities and turbulence is expected to still be in the
drift-wave dominated regime.

A second boundary is the back transition to L-mode. When
the density is above the L-mode density limit density value
given by the red line, the back transition to L-mode conditions
necessarily exposes the same termination as L-mode opera-
tion. A back transition below the L-mode density limit value
does lead to a stable L-mode. These discharges are included in
the database.

Between the ideal ballooning limit and the H–L back tran-
sition line there is a gap allowing for higher densities. How-
ever, these discharges are not observed. Whether the absence
of discharges with ne,sep � 5.5 × 1019 m−3 whilst being in H-
mode condition is due to restricted fueling efficiency [51],
due to an unrevealed further constrain from separatrix physics
[52] or of an entirely different nature, is currently under
investigation.
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Appendix A. Drift-Alfvén (DALF) model

The DALF model [53–55] describes DALF turbulence in
toroidal geometry and, therefore, also includes interchange
and MHD instabilities. A variety of mechanisms of plasma tur-
bulence in toroidal geometry relevant to the plasma edge can
be understood by the DALF model. It consists of evolution
equations for the vorticity Ω̃(

∂

∂t
+ ũE ×∇

)
Ω̃ = B∇‖

J̃‖
B

− (1 + τi)K( p̃e), (A.1)

the electron pressure p̃e(
∂

∂t
+ ũE ×∇

)
p̃e + ũE∇pe = B∇‖

J̃‖ − ũ‖
B

+K(φ̃− p̃e),

(A.2)
the parallel current J̃‖

β̂
∂

∂t
Ã‖ + μ̂

(
∂

∂t
+ ũE ×∇

)
J̃‖ = ∇‖(pe + p̃e − φ̃) − CJ̃‖,

(A.3)
and the ion velocity

ε̂

(
∂

∂t
+ ũE ×∇

)
ũ‖ = −(1 + τi)∇‖(pe + p̃e) + μ‖∇2

‖ũ‖.

(A.4)
The equations are completed by Ampere’s law:

J̃‖ = −∇2
⊥Ã‖, (A.5)

and polarization,

Ω̃ =
1

B2
∇2

⊥(φ̃+ p̃i). (A.6)

The times are normalized to λ⊥/cs, perpendicular spatial
scales to the hybrid Larmor radius ρs =

√
Temi/eB and par-

allel scales to qsR with electron temperature Te, ion mass mi,
magnetic field strength B, elementary charge e, safety factor
qs and major radius R. It should be noted that the ion sound
speed cs =

√
Te/mi used for normalization does not include

the contribution of the ions. Their contribution is accounted
for by τi = Ti/Z̄Te, the ratio between ion and electron temper-
ature. The average charge is Z̄ = ne/

∑
j n j, where j denotes

the different ion species. Here, λ⊥ is the relevant gradient scale
length, where we choose the electron pressure gradient length
scale λ⊥ = −pe/∂x pe. The background pressure gradient is

given by pe = −Λpx withΛpe = λ⊥/λpe = 1. The ion gradient
length is taken into account by Λpi = λpe/λpi.

The turbulence is a result of the nonlinearity in the
advective derivative included in the total time derivative
d/dt = ∂/∂t + uE · ∇ with E × B velocity uE. The main fluc-
tuating quantities are the electrostatic potential φ̃ = eφ/Te0

normalized to the background mean electron temperature Te0

and the electron pressure fluctuations normalized to a charac-
teristic mean background pressure value pe0. In addition, the
fluctuations are normalized and given in units of ρs/λ⊥, which
is the smallness parameter. This is also the reason the times
are normalized by λ⊥/cs in DALF and not by ρs/cs as is more
commonly done.

The coordinates can be expressed by (x, y, s), where s is in
the direction of the unperturbed magnetic field line and x and
y are radial and binormal, respectively, locally perpendicular
to the unperturbed magnetic field line. The curvature operator
is given by,

K = ωB(sin s∂x + cos s∂y), (A.7)

with ωB = 2λ⊥/R and the curvature radius R, which is set to
the major radius. The first contribution to the curvature is the
geodesic curvature, the second the normal curvature.

Different regimes are set by the square of the par-
allel/perpendicular scale ratio ε̂ = (qsR/λ⊥)2, where qs is
the safety factor and R the major radius, the normalized
plasma beta given by β̂ = (4πnTe/B2)ε̂ and the normalized
mass ratio μ̂ = (me/mi)ε̂, which determine the relative tran-
sit Alfvén and electron thermal frequencies, respectively. The
parallel current is dissipated by collisions represented by
C = μ̂(0.51νeiλ⊥/cs) with electron–ion collision frequency
νei. The model includes an ion viscosity μ‖.

Appendix B. Minimum resistive ballooning mode
(RBM) model

The RBM takes its important role from the theory proposed
by RDZ, where diamagnetic stabilization of RBM turbulence
is key to the L–H transition. In addition, it is suggested that
enhanced transport with increasing electromagnetic activity
leads to the L-mode density limit. This provides motivation to
derive the RBM in DALF. Pressure fluctuations are advected
in the presence of a pressure gradient (equation (A.2)):

∂

∂t
p̃e + ũEx

∂

∂x
pe = 0. (B.1)

The perturbation is made unstable by the curvature at the bad
curvature region (cos s = 1) of the tokamak. This leads to
charge separation appearing in the vorticity equation (A.1):

∂

∂t
∇2

⊥(1 + τi)
˜

φ = −(1 + τi)K
˜
pe. (B.2)

We use the ansatz for a pure instability d/dt → γ, ∇⊥ → ik⊥,
K = ikyωB to obtain,

γ p̃e = −ikyΛpeφ̃, (B.3)

and,
− γk2

⊥φ̃ = −ikyωB p̃e. (B.4)
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We see that the phase between potential and electron pressure
fluctuations are shifted by π/2 (they are shifted by i). Inserted
into each other, this gives:

γk2
⊥ =

k2
yΛpeωB

γ
.

If it is assumed that with k⊥ ≈ ky the ideal interchange growth
rate is recovered:

γI =
√
ωBΛpe. (B.5)

By renormalization, this is equivalent to the well-known
expression:

γI = cs

√
2

Rλpe
. (B.6)

The ideal interchange instability provides a equal growth rate
for all wave numbers. The resistivity in the parallel dynamics
is used to define a selection on the perpendicular scale. In the
vorticity equation (A.1), the charge separation by the curvature
is balanced by the parallel current:

∇‖J̃‖ = (1 + τi)K p̃e, (B.7)

which gives,
ik‖J̃‖ = i(1 + τi)ωBky p̃e. (B.8)

By inserting equation (B.3) into (B.8) and assuming that the
growth rate can still be approximated by the ideal interchange
instability γI (equation (B.5)),

ik‖J̃‖ = (1 + τi)ωBΛpe
k2

y

γI
φ̃. (B.9)

The resistivity determines the response of the potential to the
parallel current perturbation in equation (A.3):

∇‖φ̃ = −CJ̃‖, (B.10)

and hence,
J̃‖ = −i(k‖/C)φ̃. (B.11)

Inserted into equation (B.9) yields:

k2
‖

C
= (1 + τi)ωBΛpe

k2
y

γI
.

Inserting the ideal interchange growth rate (equation (B.5))
and solving for a characteristic perpendicular wavenumber,

kRBM = k‖/
√

(1 + τi)C
√
ωBΛpe. (B.12)

This is in close agreement with the characteristic RBM scale
previously estimated in [10, 20, 56, 57].

Appendix C. Minimum ideal ballooning mode
model

The MHD reduced vorticity equation (A.1) is given by,

d
dt
∇2

⊥(1 + τi)φ̃ = ∇‖J̃‖ − (1 + τi)K p̃e. (C.1)

This includes the divergence of polarization and parallel
currents important for fundamental MHD as well as the
interchange effect important for the ballooning mode. With
> <?xmltex d/dt → γ, ∇‖ → ik‖, ∇⊥ → ik⊥, K = iωBky this
can be written as,

−γk2
⊥(1 + τi)φ̃ = ik‖J̃‖ − i(1 + τi)ωBky p̃e. (C.2)

For ideal MHD modes the induction determines the parallel
dynamics (equation (A.3)):

J‖ = − ik‖k2
⊥

β̂γ
φ̃. (C.3)

The evolution of the electron pressure is approximated as
before (see equation (B.3)). Inserting equations (B.3) and (C.3)
into (C.2) gives,

−γ(1 + τi)k
2
⊥ =

k2
‖k2

⊥

β̂γ
−

(1 + τi)ωBΛpek2
y

γ
.

Approximating k⊥ ≈ ky and multiplying by γ, the growth rate
is given by [28],

γ2 = ωBΛpe −
k2
‖

(1 + τi)β̂
, (C.4)

which yields growth when positive, which is the case for the
pressure gradient Λpe exceeding a certain critical gradient:

αMHD = (1 + τi)ωBΛpeβ̂ > k2
‖ ≡ αc. (C.5)

This is the ideal MHD ballooning limit with αMHD = q2
s Rβ
λpe

and β = (1 + τ i)βe. Since the ideal ballooning mode does not
depend on a perpendicular wavenumber, it will evolve on the
largest scale possible in the domain. We identify the critical
normalized gradient αc with the square of the characteristic
parallel wavenumber. In circular geometry the critical normal-
ized gradient is just the magnetic shear αc = 0.6ŝ. To take into
account effects from geometry in this work we approximate
k2
‖ by the critical pressure gradient αc. In this way, we take

geometric variations into account even though in a very rough
approach.

Appendix D. Electromagnetic regime

Electromagnetic fluctuations are a central element of the expla-
nation of the L–H transition in the work by RDZ [10]. Electro-
magnetic fluctuations are induced by the first term in equation
(A.3). To be efficient the induction has to be larger than other
terms leading to dissipation. These are the second term (elec-
tron inertia) and last term (collisional dissipation). Considering
an ideal plasma (collisionless), it is the electron inertia which
has to be overcome:

β̂
∂

∂t
Ã‖ > μ̂

∂

∂t
J̃‖, (D.1)

due to Ampere’s law (A.5) Ã‖ = J̃‖/k2
⊥

β̂
J̃‖
k2
⊥
> μ̂J̃‖, (D.2)
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which corresponds to a selection rule on the perpendicular
scale [28, 29]:

k2
⊥ <

̂

β
̂

μ
<

2βe

μ
≡ (kEM)2. (D.3)

All wavenumbers below βe/μ (these are large modes) are
electromagnetically active. Thus, tokamak edge turbulence is
almost always in the electromagnetic regime. Condition (D.3)
is here of central importance in the derivation of the L-mode
density limit (section 3) as well as for the L–H transition (Sec.
appendix H).

In H-mode conditions well above the L–H power thresh-
old βe � μ, electromagnetic effects are important for all scales
above the ion Larmor radius. Below this critical beta, the
electromagnetic effects on transport are rather indirect [29]
and the electrons become more non-adiabatic by magnetic
induction. Non-adiabaticity leads to higher turbulent trans-
port. However, it also introduces magnetic flutter stabiliz-
ing the dynamics [29]. If electromagnetic fluctuations lead
to overall increased or decreased turbulent transport, this is
not trivial and a result of a complex interplay of differ-
ent fields and at different scales. Previous studies found the
turbulent transport strongly increases with plasma beta [28,
58]. Only slightly below the critical beta βe � μ have sta-
bilizing effects been found [59]. Close to the L–H transi-
tion, the plasma beta at the separatrix in ASDEX Upgrade
is slightly below the critical beta (kEM ≈ 0.4 � 1, as can be
seen in figure 2).

Appendix E. Interchange-drift-wave competition

The strength of the turbulent transport is controlled by the
cross-phase. This is because the interchange instability pres-
sure and radial velocity fluctuations are in phase. In addition,
the drift wave electron pressure and plasma potential fluctua-
tions are in phase. The competition between the drift wave and
interchange mechanism is determined mainly by the parallel
dynamics as explained in the following. The actual compe-
tition between both mechanisms is balanced in the vorticity
equation (A.1):

∂

∂t
(1 + τi)∇2

⊥φ̃ = ∇‖J̃‖ − (1 + τi)K p̃e. (E.1)

The curvature (1 + τi)K p̃e leads to the interchange instability.
The parallel response ∇‖J̃‖ stabilizes the interchange mode
growth. As can be seen in the following, it is the resistivity that
controls the efficiency of the stabilizing effect due to the paral-
lel response. The electrostatic response of the parallel current
is given by equation (A.3):

J̃‖ =
ik‖
C

( p̃e − φ̃). (E.2)

At low collisionality (C → 0) the parallel response is very
efficient, at high collisionality (C →∞) it is strongly ham-
pered. By inserting the parallel current (equation (E.2)), a

linear analysis of equation (E.1) yields:

−iωk2
⊥(1 + τi)φ̃ = −

k2
‖

C
( p̃e − φ̃) − i(1 + τi)ωBky p̃e.

From this it can be seen how electron pressure and plasma
potential fluctuations are related:(

k2
‖

C
+ i(1 + τi)ωB

)
p̃e =

(
k2
‖

C
+ iCωk2

⊥(1 + τi)

)
φ̃,

or

φ̃ =
k2
‖ + i(1 + τi)CωBky

k2
‖ + i(1 + τi)Cωk2

⊥
p̃e. (E.3)

For large modes (low k⊥) this can be simplified by neglecting
the polarization current:

φ̃ =

(
1 + i(1 + τi)CωB

ky

k2
‖

)
p̃e. (E.4)

In an iδ-model, where,

φ̃ = (1 + iδe) p̃e, (E.5)

the phase difference is given by,

δe = (1 + τi)CωB
ky

k2
‖
. (E.6)

The transition from a drift-wave dominated regime to a resis-
tive interchange dominated regime occurs for typical scales
(ky ∼ 1, k‖ ∼ 1) at (1 + τ i)CωB = 1. In addition, the turbulent
transport is mainly controlled by (1 + τ i)CωB. The turbulent
transport is:

ũEx p̃e = −ikyφ̃ p̃e = (1 + τi)CωB
k2

y

k2
‖

p̃2
e . (E.7)

For (1 + τ i)CωB 	 1, φ̃ ≈ p̃e the turbulence is drift-wave
dominated and the turbulent transport is low. For (1 +
τ i)CωB � 1, φ̃ > p̃e the turbulence is interchange dominated
and the turbulent transport is high. This makes CωB an impor-
tant control parameter for electrostatic plasma edge turbu-
lence. One can equally well consider the effect of (1 + τ i)CωB

as a destabilizing mechanism with respect to drift waves or as a
stabilizing mechanism with respect to interchange modes. We
define:

αt = (1 + τi)CωB, (E.8)

as the turbulence control parameter.
RDZ [10] also recognized the competition between drift

waves and RBMs. They introduced the so-called diamagnetic
parameter:

αd =
1

2πqsR

√
mi

me

csR
0.51νei

(
R
λp

)1/4

, (E.9)

describing the stabilizing effect of driftwaves on the RBM. We
can relate the turbulence control parameter to the diamagnetic
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parameter αd, which is defined by the ratio of characteristic
scales of the drift wave and RBM:

αd =
Ldw

tdw

tRBM

LRBM
. (E.10)

Equation (E.10) describes the ratio of the characteristic veloc-
ity of the drift wave (the electron diamagnetic velocity) to
the characteristic velocity LRBM/tRBM of the RBM. If αd > 1
the structure disperses faster by diamagnetic propagation than
it can grow. Therefore, it is called diamagnetic stabilization.
The DALF equations are already normalized to the character-
istic scales of the drift wave, spatial scales to ρs and times
to λpe/cs. Therefore, in DALF units Ldw = 1 and tdw = 1.
The characteristic scales of the RBM are tRBM = 1/γI and
LRBM = 1/kRBM, where γI and kRBM can be found in (B.5) and
(B.12), respectively. Thus,

αd,DALF = k‖α
−1/2
t ω

−1/4
B . (E.11)

This is equal to:

αd,DALF =
1

qsR

√
1

1 + τi

mi

me

csR
0.51νei

(
R

2λ⊥

)1/4

. (E.12)

The diamagnetic stabilization can also be understood in terms
of the cross-phase (E.6). At the RBM scale ky = kRBM the
cross-phase becomes stabilized for:

δe =

√
αt
√
ωB

k2
‖

< 1. (E.13)

In terms of αd,DALF (E.11) this provides the condition:

αd,DALF > 1, (E.14)

where both parameters αd and αt describe the transition
between the drift wave and the RBM regime, they are dif-
ferent depending on the considered scale. The parameter
αt describes when the characteristic scale of the drift wave
(k⊥ ∼ 1) becomes interchange unstable, the parameter αd

describes when the RBM becomes stabilized at its characteris-
tic scale k⊥ ∼ kRBM. In L-mode, it is a very common situation
that the RBM is not stabilized at its scale and the turbulence
close to k⊥ ∼ 1 is drift-wave dominated. This regime of turbu-
lence (αt < 1, αd < 1) is called drift-interchange turbulence.
Pure drift-wave turbulence can be expected for αt 	 1 and
αd � 1, pure RBM turbulence for αt � 1 and αd 	 1.

Appendix F. Comparison to the density limit in
Rogers, Drake and Zeiler

To see how the criterion kRBM = kEM is related to the original
work in[10], we rewrite equation (3) in terms of αMHD = (1 +
τi)β̂ωB

αMHD

αc
>

(1 + τi)μ̂ω
3/2
B

αt
. (F.1)

As the L-mode density limit occurs in the RBM regime, the
diamagnetic parameter αd is the more natural parameter. We

replace αt by αd using αt = αcω
−1/2
B α−2

d,DALF (equation (E.11))
to obtain:

αMHD > (1 + τi)μ̂ω
2
Bα

2
d,DALF = (1 + τi)4q2

s (me/mi)α
2
d,DALF.

(F.2)
This is in full agreement with αMHD ∼ α2

d being the boundary
of the L-mode density limit as found in RDZ [10] at fixed gra-
dient length scale, safety factor and ion to electron mass ratio.
This relation is also in good agreement with the experimental
observation previously reported in [12].

Appendix G. Ideal-ballooning-mode limit

The maximum density in H-mode discharges is correlated
with the ideal MHD ballooning stability limit at the separatrix
[39]. In H-mode, the RBM can be expected to be suppressed
by diamagnetic stabilization (see appendix E). However, if
the plasma beta becomes sufficiently high to overcome the
collisional dissipation, the overall system transits from resis-
tive into ideal MHD conditions. This condition is considered
here. We compare induction against collisional dissipation in
equation (A.3):

β̂
∂

∂t
J̃‖
k2
⊥
> CJ̃‖. (G.1)

We approximate the time derivative by the interchange growth
rate d/dt → γ =

√
ωB

β̂
γ

k2
⊥
> C, (G.2)

and thus provide a selection rule for the wavenumber,

k2
⊥ <

β̂
√
ωB

C
≡ k2

ideal, (G.3)

which in terms of the turbulence control parameterαt is written
as,

k2
⊥ <

(1 + τi)βe

αt

ω
3/2
B

λ2
⊥

q2
s R2

. (G.4)

By inserting the RBM scale (equation (B.12)) into (G.4),

kideal = kRBM (G.5)

the ideal ballooning limit (equation (C.5)) is recovered. Not
only does the system transit into the MHD regime, but it is
ideal MHD unstable. In this way, condition (G.4) allows us
to observe the ideal ballooning stability limit in terms of βe

and αt.

Appendix H. Turbulence suppression criterion for
L–H

A criterion for triggering the L–H transition has been proposed
in [49], which has been inspired by the Kim–Diamond model
[50] attributing the L–H transition to the interaction between
turbulence and flow shear, and by Scott [55] tracing the energy
through turbulence. When the energy transferred from turbu-
lence to the mean flow exceeds the drive of turbulence, the
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turbulence can be considered to be suppressed. The energy
transfer from turbulence to the mean flow is given by [60]:

P = 〈ũxũy〉
∂〈uy〉
∂x

, (H.1)

where 〈ũxũy〉 is the Reynolds stress and ∂〈uy〉
∂x the flow shear.

The energy input can be written by an effective growth rate
γeff times the turbulence energy Et. This yields a turbulence
suppression criterion; turbulence collapses if the energy trans-
fer from turbulence into the flow exceeds the energy input into
turbulence [49]:

P
γeffEt

> 1. (H.2)

The shear suppression criterion (equation (H.2)) has been
experimentally confirmed by several experiments [49, 61–65]
and reproduced by simulations as well [66–70].

In the following, the effective growth rate γeff and
energy transfer P will be related to the turbulence control
parameter αt.

The energy input into turbulence is considered first. Moti-
vated by [71], in addition to the kinetic energy Etk =

1
2 (kφ̃)2,

we also take the free energy of both the electrons Ete =
1
2 p̃2

e

and the ions Eti =
1
2 p̃2

i into account, extending the approach
reported earlier [49]. We assume p̃2

e ≈ p̃2
i ≈ φ̃2. Further-

more, kx ≈ ky ≈ k⊥ is assumed, thus k2 = k2
x + k2

y ≈ 2k2
⊥. The

total energy input into turbulence is γeffEt = γeEtk + γeEte +
γiEti = (γe

1
2 (1 + 2k2

⊥) + γi
1
2 )φ̃2.

Let us consider turbulence in the electron channel first. The
parameterαt controls the transport by the cross-phase between
electron pressure and potential fluctuations (approximated by
an iδ model, see equation (E.5)). The cross-phase also controls
the growth of the electron pressure fluctuations given by γ =
k⊥δe (see equation (A.2)). The relation of the cross-phase to
αt can be found in equation (E.6). Overall, the growth rate of
drift-interchange turbulence is approximated by:

γe = αt
k2
⊥

k2
‖
. (H.3)

Taken together, the electron contributions yield:

γe(Etk + Ete) = αt
k2
⊥

k2
‖

(
k2
⊥ +

1
2

)
φ̃2. (H.4)

The contribution of the ion heat flux is still missing. Ion
temperature fluctuation does not take part in the parallel
dynamics. The ITG is driven by the curvature similar to an
interchange mode. We assume that the growth rate follows an
ideal interchange instability:

γi =
√
ωBτiΛpi. (H.5)

No critical gradient is taken into account and the ITG turbu-
lence is assumed to be subcriticaly driven. The ion free energy
is Eti =

1
2 p̃2

i ≈ 1
2 φ̃

2. The energy input to the ion turbulence can
be estimated by equation (H.5):

γiEti =
1
2

√
τiωBΛpiφ̃

2. (H.6)

In particular, at low αt, the energy input into the ion turbulence
can be much larger than that into the electron turbulence.

Next, we estimate the energy transfer into the shear flow,
which is ultimately responsible for the suppression of turbu-
lence criterion (equation (H.2)). Weak or insufficient zonal
flow activity at the L–H transition has been found in several
experiments [27, 71–74]. This seems to be in contradiction
to the suppression criterion (equation (H.2)), which has been
explicitly formulated for zonal flows. We note that the suppres-
sion criterion (equation (H.2)) holds for any flow shear and
applies to the background flow as well [75]. The energy trans-
fer (equation (H.1)) can also be written as P = 〈uy〉 ∂

∂x (〈ũxũy〉).
The mean flow 〈uy〉 close to the L–H transition in ASDEX
Upgrade is close to the ion diamagnetic flow in the electron
diamagnetic (negative) direction [27], which in DALF units
is given by 〈uy〉 = −τ iΛpii. The complex number is added
to allow for propagation. As ũx = −ikyφ̃ and ũy = ikxφ̃, the
Reynolds stress can be approximated by ∂

∂x 〈ũxũy〉 ≈ ik2
xkyφ̃

2.
The energy transfer from turbulence to the mean flow is
estimated as:

P = k2
xkyφ̃

2τiΛpi ≈ k3
⊥φ̃

2τiΛpi. (H.7)

By tilting the turbulent structures the shear flow imposes a
functional relationship between the radial kx and binormal
wavenumber ky. However, as this relationship is not known,
we also simplify here by setting k⊥ = kx = ky. This is con-
sistent with the assumptions made previously when deriving
equation (H.4).

The Reynolds stress drive is not efficient at low adiabaticity
[47]. The eddies are tilted by the shear flow in the density. This
tilt has to be transferred by the adiabatic response to the poten-
tial. In this model, this can be done by p̃e = (1 − iδe)/(1 +
δ2

e )φ̃ (see equation (E.5)). This effect can be taken into account
in the energy transfer rate (equation (H.7)):

P =
1

(1 + δ2
e )

k3
⊥φ̃

2τiΛpi. (H.8)

For parameters close to the L–H transition δ2
e 	 1 (as αt < 1,

kEM < 1 and αc > 1) this effect does not seem to have much
impact. Therefore, we have neglected it so far. However, a pos-
sible shift to a lower cross-phase as observed in [76, 77] will
make the energy transfer from turbulence to the shear flow
more efficient. Approaching the H-mode by increasing the
temperature leads to a reduced cross-phase between potential
and electron pressure fluctuations. The cross-phase scales with
δe ∼ αt (see equation (E.6)). In this way, the shear suppression
criterion (equation (H.2)) can be fulfilled by both, making the
energy transfer more efficient (increasing P) and reducing the
effective growth rate of the electron thermal part of the turbu-
lence γe. In this way, a cross-phase reduction can precede the
amplitude suppression.

Inserting equations (H.4), (H.6) and (H.8) into the turbu-
lence suppression criterion (H.2) provides:

k3
⊥τiΛpi

1 +

(
αtk⊥

k2
‖

)2 >

(
αt

k2
⊥

k2
‖

(
k2
⊥ +

1
2

)
+

1
2

√
ωBτiΛpi

)
.

(H.9)
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The term on the lhs is the stabilizing contribution by the flow
shear. The strong k⊥-dependence comes from the Reynolds
stress, the dependence on τ iΛpi from the background ion flow.
The terms on the rhs correspond to turbulence in the kinetic
(E × B drift), electron and ion channels. In the parameter
region, the L–H transition take place in ASDEX Upgrade, αt

is small and the ion channel dominates the turbulence growth.
Finally, we have to choose the characteristic wavenum-

bers k⊥ and k‖. To include geometrical effects to some degree
at least, we choose k‖ = αc according to the correspondence
found in equation (C.5). We choose the characteristic elec-
tromagnetic wavenumber as the characteristic wavenumber
k⊥ = kEM (see equation (D.3)). An extended discussion on
the choice of the characteristic wavenumber can be found in
appendix I. By using these characteristic wavenumbers in the
shear suppression criterion (H.9), the final criterion for the
L–H transition is given by:

αc

√
βe
μ
τiΛpi

1 +
(

αt
αc

)2
βe
μ

> αt

(
1
2
+

βe

μ

)
+

1
2
αc
βe
μ

√
ωBτiΛpi. (H.10)

This criterion depends on a combination of dimensionless
parameters describing plasma edge turbulence without any
free adjustable parameter. These parameters are the plasma
beta βe, collisionality C (included byαt = (1 + τ i)CωB), mag-
netic curvature (included by ωB = 2λpe/R), ion mass μ =
me/mi and ion-to-electron temperature ratio τi = Ti/Z̄Te and
electron-to-ion pressure gradient ratio Λpi.

Appendix I. Characteristic electromagnetic
wavenumber for the L–H transition

For the construction of the plasma phase space of RDZ [10] it
is argued that the electromagnetic fluctuations stabilize drift-
wave turbulence. In this way, the turbulent transport could
reduce with increasing αMHD. However, such a scaling is in
contradiction with the results reported in [28, 58], showing
that turbulent transport strongly increases with plasma beta.
As discussed in appendix D, the nature of electromagnetic
effects in plasma edge turbulence is a result of a complex inter-
play at different scales, which obviously cannot be captured
in detail in a quasi-linear approach. To define a characteristic
wavenumber, we assume drift waves in the domain k2

⊥ < βe
μ

being stabilized by electromagnetic effects. One might expect
a lower turbulent drive in contradiction to [28, 58]. How-
ever, the characteristic wavenumber (equation (D.3)) increases
with plasma beta and the turbulent transport increases with
the characteristic wavenumber Γe ∼ k⊥δe. Furthermore, the
cross-phase also increases linearly with the wavenumber
δe ∼ k⊥ at the same collisionality. Thereby, the electron trans-
port increases linearly with the plasma beta Γe ∼ βe at the
same collisionality. Without any flow shear, the electromag-
netic stabilization of large-scale structures counterintuitively
leads to enhanced transport. Besides this destabilizing effect,
the shift towards higher wavenumbers introduces an additional

stabilizing effect, if the flow shear is taken into account. The
stabilizing term representing shear suppression by energy
transfer is proportional to the wavenumber. Turbulence sup-
pression by energy transfer to the background shear flow is
in fact induced by the enstrophy transfer between turbulence
and the flow shear. The energy transfer is most efficient from
small scales at k⊥ ∼ 1 [55, 78]. The closer the character-
istic scale is to the drift-wave scale, the more efficient is
the energy transfer. Both effects together are responsible for
the occurrence of a minimum density to enter into the high-
confinement regime. The ansatz k⊥ = kEM used here is neither
in contradiction to [10], where electromagnetic effects stabi-
lize the drift-wave turbulence, nor to the results reported in
[28, 58], showing that turbulent transport strongly increases
with plasma beta.

Appendix J. Experimental error estimation on
strike line reconstruction

Experimental error estimation is performed for three system-
atic uncertainties acting on the reconstruction of the separatrix
position. First, we allow for a variation in the power crossing
the separatrix in the electron channel of 90% ± 10%. Second,
the uncertainty of the subtracted radiation inside the separatrix
is taken into account. For more details on the bolometer diag-
nostic, see [79]. In general, the reconstruction of Zeff at the
separatrix is difficult and not available for this large database.
Therefore, we exclude all seeded discharges and execute ded-
icated discharges with good wall conditioning. The value for
Zeff corresponds to a boron concentration of 1% ± 0.5% and
thus Z̄ = 1.04 ≈ 1. The error bars are constructed by comb-
ing these uncertainties and denoted as lower (l), mean (m) and
upper (u) values.

Zl,m,u
eff = 1.24 ± 0.13, (J.1)

Pl,m,u
rad =

∫ ρ=1.0±0.02

ρ=0
Prad(ρ)dρ, (J.2)

Pl,m,u
sep = 0.9 ± 0.1 · (Pheat − Pl,m,u

rad ), (J.3)

Tl,m,u
e,sep ≈

(
7 Pl,m,u

sep q̂2
cylA

16κe
0 κ̂ λq

) 2
7

with λq =
2
7
λT. (J.4)

The value for the parallel heat constant is calculated according
to [8] and is written as:

κe
0 =

2600
f κ,0(Zeff)

W

(eV)
7
2 m

with, (J.5)

f κ,0(Zeff) = 0.672 + 0.076 Z0.5
eff + 0.252 Zeff. (J.6)

A minor difference is that the reference point in [12] is
exactly the separatrix (ρpol = 1). Here, the reference point is
set to ρpol = 0.999 and thus a confinement quantity, about
1 mm shifted inside w.r.t.the separatrix position (poloidally
averaged).
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Appendix K. Estimation of plasma edge decay
lengths

The applied scaling laws for the separatrix/SOL electron pres-
sure, density and temperature decay lengths are:

λpe(m) = 1.2(1 + 3.6α1.9
t )ρs, pol, (K.1)

λne(m) = 2.9(1 + 10.4α2.5
t )ρs, pol, (K.2)

λTe(m) = 2.1(1 + 2.1α1.7
t )ρs, pol, (K.3)

ρs, pol =

√
mD Tsep

e Bpol
. (K.4)

Details on their estimation can be found in [12]. The reported
error bars are tested and found to be entirely negligible for the
conclusions drawn here.

The numerical value for the critical αMHD is calculated
according to:

αc = κ1.2
geo (1 + 1.5 δ), (K.5)

as applied in [39] and based on the work by Bernard [80].
The mean value for the database is αc = 2.37 ± 0.14. The
cylindrical safety factor is calculated according to:

q̂cyl =
Btor

Bpol
× κ̂

A
with Bpol =

μ0Ip

2πaκ̂
, (K.6)

and

κ̂ =

√
1 + κ2

geo (1 + 2δ2 − 1.2δ3)

2
. (K.7)
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