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Abstract

CrossMark

We compare results from the fully toroidal TORIC-SSFPQL package (Brambilla and Bilato

2006 Nucl. Fusion 46 s387) and from the plane-stratified geometry solver FELICE (Brambilla
1989 Plasma Phys. Control. Fusion 31 723) to illustrate the advantages and the limitations of
the two approaches for the simulations of Ion Cyclotron Radio Frequency heating of tokamak
plasmas. We point out that some of the predictions of the plane-stratified models do not
straightforwardly apply to the true toroidal configuration. This is the case, in particular, for the

excitation of guided modes between the plasma surface and the vessel.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A considerable number of codes are by now available for the
numerical simulation of radio frequency (RF) heating of toka-
mak plasmas in the ion cyclotron (IC) range of frequencies,
important both for the understanding of present day experi-
ments, and for the planning of the auxiliary heating system in
ITER and DEMO. In addition, several codes have been devel-
oped for the investigation of the interactions of the RF waves
with the plasma in the scrape-off layer (SOL) and with metal-
lic obstacles (Faraday screen, antenna, vessel). Our considera-
tions will concern mainly ‘global’ codes aiming at predicting
the interactions with the plasma core: power deposition pro-
files, heating rates, distribution functions of the heated species,
etc; because of their importance for the success of RF auxil-
iary heating, however, a few comments will be devoted also to
the other group of codes. Global codes can be neatly divided
into two categories, namely very fast codes which achieve their
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performances by assuming that only the ‘horizontal’ variations
of the plasma parameters (density, temperature, magnetic field
intensity) along the equatorial plane are of importance, and
much slower codes taking into account toroidicity in full. For
simplicity, we will refer somewhat loosely to the former as slab
geometry codes, and to the latter as toroidal codes. From the
literature, one gets the impression that it is not always clear
what each kind of code can do, and what their limitations are.
We think it therefore appropriate to offer a few comments on
the situation. It is not possible for this limited purpose to dis-
cuss all the work which has been done in this field, and we will
limit our considerations to a few but significant examples.

Among the available toroidal codes, at least three, namely
AORSA [1-3], EVE [4, 5], and TORIC [6, 7], solve the wave
equations in full toroidal geometry using models which cover
most of the physics involved:

e In these codes, the dielectric response is evaluated for a
hot plasma, so that they describe IC absorption at the fun-
damental and its first harmonic, absorption by electrons
including electron landau damping (ELD), transit time
damping (TTMP) and the mixed term [8], as well as mode
conversion (MC) to ion Bernstein waves (IBW) or to the
IC wave (ICW) (cf section 2).

© EURATOM 2021  Printed in the UK
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e Two of these codes, namely AORSA and TORIC actu-
ally solve wave equations valid to all order in the ratio
of the thermal ion Larmor radius to the local wave-
length, although not in the integro-differential form which
follows from the integration of the linearized Vlasov
equation [9, 10]. For this purpose AORSA [1] represents
the fields of each independent toroidal Fourier compo-
nent as a two dimensional superposition of plane waves,
assuming that each partial wave locally satisfies the uni-
form hot plasma dispersion relation corresponding to its
wavevector, with correction of first-order for the non-
uniformity of the toroidal configuration. TORIC repre-
sents the fields as a Fourier superposition of toroidal
and poloidal modes, writing the wave equations in the
plasma in the partial differential form which is obtained
from Vlasov equation expanding to second order in the
Larmor radius [11-13], but the coefficients of the wave
equations are corrected for large Larmor radius effects
whenever required to evaluate ELD of IBWs excited by
mode conversion, damping of the fast wave (FW) at IC
harmonics higher than the first, and the contributions to
the plasma response of thermonuclear alpha particles in
slowing-down [14—16]. In this context it is worth men-
tioning that although large Larmor radius effects require
the evaluation of a large number of modified Bessel func-
tions, the algorithms available for this purpose are so effi-
cient that this takes a negligible fraction of the execution
time.

e These codes are coupled to a solver of the bounce-
averaged quasilinear (QL) kinetic equation (valid when
for most ions it is possible to neglect the radial excursions
of their orbits): AORSA with CQL3D [3], EVE with AQL
[5], and TORIC with SSFPQL [17]; TORIC has also been
coupled to a reduced version of CQL3D [18].

e AORSA [2, 3] and TORIC [19-21] evaluate the coeffi-
cients of the wave equations taking into account the devi-
ations of the ion distribution functions from local thermal
equilibrium, as calculated by the kinetic solver in a self-
consistent way (cf section 4).

e The TORIC-SSFPQL package includes the code SIN-
BAD [22]; this makes it possible to describe the synergy
between ICRF heating with neutral beam injection (NBI)
[21].

Solvers of the wave equations in plane-stratified geometry
[13, 23-25] execute orders of magnitude faster than toroidal
ones, and allow for a more detailed modeling of the SOL and
the antenna. They are therefore useful, in the first place, for
the evaluation of the performance of IC antennas, and as tools
in the investigation of the interactions between RF fields and
the SOL and with the metallic vessel. A version of the slab
finite element solver FELICE [13] is used in the antenna code
TOPICA [26, 27], but FELICE itself has only a rather simple
antenna model, which differs from that of TORIC only because
FELICE takes into account the presence of the radial conduc-
tors from feeders and shorts to the active straps parallel to
the plasma surface. Actually, as elements of an antenna code,
solvers simpler than FELICE can be even more appropriate:

by taking into account only the FW, and by imposing outward
radiation conditions at some surface closer to the antenna than
any singular surface (IC or ion-ion resonances) in the plasma,
slab geometry codes can be made less prone to predict the exci-
tation of spurious cavity modes, which falsify the estimates
of the antenna load and of the amplitude of the fields in the
near field region. An excellent example of this approach is the
ANTITER code [23].

Slab solvers can be useful also for a first orientation when
interpreting or planning ICRF heating experiments; their value
for this purpose, however, is somewhat limited by the fact that
so far no significant effort has been made to prove that their
predictions do not differ much from those of fully toroidal
codes. On the contrary, in the presentation of some of these
codes the possibility of simulations in toroidal geometry is not
even mentioned. It is important, however, to be aware of sev-
eral reasons to regard some of the results obtained from slab
geometry codes as only qualitative.

e In plane-stratified geometry waves reflected from the
plasma surface, or internally, e.g. at ion-ion cutoffs, are
fully coherent with the incident wave launched by the
antenna. This tends to overestimate the importance of
weakly damped eigenmodes both in the vacuum region
around the plasma, and inside the plasma itself. In scenar-
ios with low ‘absorption per transit’ strong excitation of
such modes can make the slab geometry solution almost
meaningless. In toroidal geometry the different topol-
ogy, the curvature of magnetic surfaces, and the poloidal
inhomogeneity of the confining magnetic field drastically
reduce the quality factor of any residual cavity mode.

e An other example of toroidal effect which is lost in slab
simulations is ‘focussing’ of the launched waves by the
convexity of the magnetic surfaces. This effect becomes
important in large plasmas with more or less total absorp-
tion in a single transit.

e [t is impossible to map unambiguously the power depo-
sition profiles obtained by integrating the wave equations
in a plane-stratified plasma model onto the magnetic sur-
faces of the real tokamak configuration, despite a few
attempts in the past [28, 29]. Slab geometry codes, there-
fore, cannot make available to the solver of the QL kinetic
equation the minimal information required, namely the
power absorbed per ion on each magnetic surface, in order
to allow a truly self-consistent evaluation of the devia-
tions of the ion distribution functions from Maxwellian
due to IC heating, and of the influence of these deviations
on wave absorption.

e When coupled to a solver of the Fokker—Plank (FP) QL
kinetic equations, slab geometry codes can maintain their
speed of execution only if the FP equation is also made
one-dimensional (1D) by integrating over the perpendic-
ular degrees of freedom, as pioneered by Stix [8]. The
comparison of the results obtained with a solver of the
reduced 1D FP equation, and those from a full velocity-
space solver or from experimental measurements easily
shows, however, that the 1D kinetic equation gives good
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results only at very low RF power density, and in very col-
lisional plasmas, for example in the Princeton large torus
[30]. At higher power, and/or for less collisional plasmas,
the anisotropy of the suprathermal populations produced
by ICRF heating is such a dominant feature that it cannot
be just integrated over.

In the following sections we illustrate these considerations
with a few examples. In the next section we compare a series of
simulations performed with TORIC-SSFPQL with the same
simulations performed with the slab geometry solver FELICE.
Section 3 is devoted to a somewhat more detailed discussion
of the role of surface, waveguide, and cavity modes in slab
and toroidal geometry. In section 4 the SSFPQL kinetic solver
is used to show the importance of iterating this code with the
solver of the wave equations taking into account the anisotropy
of the QL distribution functions to achieve a self-consistent
picture of ICRF heating of tokamak plasmas.

Before turning to the examples, it is fair to say a few words
also on a technical limitation of toroidal solvers, and on the
specialized codes which are used to overcome this limita-
tion in view of improving our understanding of the interac-
tions of RF waves in the IC range of frequency with the SOL
and the antenna. In the conclusions we will also mention a
few unsolved problems concerning the physics of RF heat-
ing which still limit the predictive value of toroidal codes, and
which deserve, in our opinion, more attention than is currently
devoted to their solution.

In the first place, we may note that there is no obstacle to
take into account a realistic SOL in slab codes: both FELICE
and ANTITER (and other codes as well) have this facility,
and the latter code has been used for interesting investiga-
tions of parasitic losses in this region, in particular at the
transit through the lower hybrid (LH) resonance [31]. Also
TORIC can optionally take into account an SOL plasma out-
side the last closed surface; but in toroidal geometry the flex-
ibility of SOL modelling is limited by the increasingly high
demands on the discretization mesh to maintain sufficient
accuracy as the density and temperature decrease to very low
values.

This is one of the reason why the antenna model is almost
inevitably more idealized in toroidal than in slab codes. But
there is an even simpler practical reason. Exploiting axisym-
metry, the normal procedure to perform a complete simulation
is to begin by solving separately the wave equations for N
toroidal Fourier modes: this step requires information only on
the poloidal distribution of the currents in the antenna, and can
be easily parallelized. Then one superposes the results taking
into account the geometry of the antenna in the toroidal direc-
tion. This implies, however, that the dependence on the toroidal
and poloidal angle of the distribution of the antenna currents
must be ‘factorized’, say J(9, ) = G(p)H (V) (all straps iden-
tical and in the same magnetic surface, the excitations differing
only in the phase configuration of the straps). It is fortunate that
the sensitivity of the results important for auxiliary heating and
current drive (power repartition among species, power deposi-
tion profiles) to the details of the current distribution in the

poloidal direction is weak enough to justify this approach; but
a detailed study of the SOL and antenna regions is excluded.

Investigations of RF interactions with the wall and metallic
obstacles require a different approach also because they must
account for details (localized Faraday screen, image currents in
septa and lateral protections of the antenna, etc) which break
axisymmetry. This makes it necessary to discretize the wave
equations in all three dimensions, abandoning the convenient
Fourier decomposition in the ignorable coordinates used in
global solvers. In turn, however, this restricts the plasma model
to the strictly cold limit, and wave absorption to collisional
damping.

A way to overcome this limitation is to use the surface
impedance matrix (SIM) of the core plasma, as suggested by
Shiraiwa et al [32] to connect the solution in hot core region,
obtained with TORIC, to the solution in the SOL, where the
wave equations can be solved on a three-dimensional mesh.
The introduction of the SIM is natural in plane stratified geom-
etry, and is the technique used in FELICE to connect the
numerical solution in the plasma to the solution in vacuum,
which is obtained analytically [33, 34]. In toroidal geome-
try, however, it is an extremely computationally demanding
approach: if a converged simulation of the core region requires
N toroidal Fourier modes and for each of them M poloidal
Fourier modes, the SIM is a symmetric complex matrix of
2 x N x M rows and columns; the number of independent
runs of TORIC required to evaluate all its elements is simply
prohibitive (Shiraiwa et al have evaluated the SIM for a sin-
gle representative toroidal mode, which is already a feat). An
additional problem is the already mentioned relative insensi-
tivity of the core solution to the details of the poloidal cur-
rent distribution, and the very different launching efficiency
of a driving electric field oriented toroidally or poloidally:
evaluating and using the SIM to solve the concrete global
problem is likely to be a very ‘stiff’ task, greatly amplify-
ing the unavoidable numerical errors of the individual runs of
TORIC.

For this reasons, investigations of the SOL and antenna
region, in particular to obtain detailed information of the fields
in the antenna region, which can be responsible for sputtering
and impurity generation, are currently made with specialized
codes of a different type, which discretize the cold plasma
wave equations only in an appropriate rectangular region rep-
resenting the layer between the wall and the surface of the
hot plasma. These codes are outside the scope of the present
note, but one consideration might be added. The boundary con-
ditions imposed at the far end of the integration domain are
necessarily of the ‘outward radiation’ (OR) type (no power
coming toward this surface from the core plasma). This is the
case, for example, in the case of RAPLICASOL [35], based
on the commercial software COMSOL [36]. This condition
is equivalent to the OR condition which can be imposed in
FELICE at some distance from the plasma edge, before any
singular layer (cutoffs, wave or IC resonances) in the plasma.
The Fourier spectra of the fields predicted both by FELICE
when integrating over the full plasma cross-section, and by
TORIC, however, are often quite different, as will be shown in
section 4. As a consequence, there is no simple way of using
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the output of one of these codes as input for a global toroidal
solver, in order to produce simultaneously realistic simulations
of the SOL and the antenna on the one hand, and of the core
plasma on the other hand: this would require the knowledge of
the SIM, as attempted by Shiraiwa et al. This is probably not
a serious drawback; the question remains open, however, how
much the different fields expected when power reflected back
from singularities in the core plasma is taken into account do
influence the fields near the antenna, whose knowledge is the
goal of the simulations with COMSOL.

2. Solving the wave equations in plane-stratified
and toroidal geometry

To compare TORIC and FELICE we have chosen a typ-
ical minority scenario (hydrogen minority in deuterium)
in a medium size tokamak (major and minor radius
R =1.65 m and a = 0.48 m, values on axis By =2.5 T,
ne =6 x 10 m=3, T, = T; = 4.2 keV; the applied frequency
has been assumed to be 35 MHz, putting the IC resonances
about 10 cm to the low field side of the magnetic axis), and
we have varied the minority concentration between zero and
25%, thereby covering both the minority and the mode con-
version regimes (in this case the transition occurs roughly at
nu/ne ~ 0.10). Since for the reasons which will be clear below
we do not regard it meaningful to couple the 1D code FELICE
to a QL kinetic solver, in this section we have limited ourselves
to the case of Maxwellian distribution functions also in the runs
of TORIC.

In a device of this size the typical toroidal power spec-
trum of a two-strap antenna excited in the antisymmetric
configuration extends roughly to —35 < n, S +35, and a
well-converged run of TORIC requires 31 poloidal modes,
—15 < my < +15for each toroidal mode; the runs of FELICE
have been made with the same number of Fourier components.
It might be of some interest that on a laptop for these simu-
lations each run of FELICE executes in about 10s, while the
same run of TORIC lasts somewhat less than half an hour;
the CPU time of TORIC, however, is drastically reduced on
a mainframe thanks to the parallelization in the toroidal mode
numbers.

Figures 1 and 2 show the global power repartition predicted
by the two codes as a function of the minority concentration.
The most conspicuous difference is the m uch larger electron
absorption predicted by FELICE, at the expense of ion heating.
Since in the case of a Maxwellian plasma the two codes solve
exactly the same wave equations, the reason is to be found in
the different geometry. Discretizing the poloidal wavenumber
in FELICE in the same way as in TORIC means that in the
former code the plasma cross-section is implicitly assumed
to be rectangular, instead of roughly elliptical, as it really is.
As a consequence, in FELICE the FW appears to traverse a
much larger plasma volume than in TORIC before reaching
the IC resonances, in which it is exposed only to damping by
the electrons.

100

0.10 0.15 0.20

n_H/n_e

0.05 0.25

Figure 1. Fraction of power absorbed by the ions versus hydrogen
concentration. Dashed lines with crosses: FELICE code; full lines
with dots TORIC.
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Figure 2. Fraction of power absorbed by electrons, including the
power mode converted to IBW versus hydrogen concentration.
Dashed lines with crosses: FELICE code; full lines with dots
TORIC.

FELICE also predicts an appreciably higher efficiency of
mode conversion to IBWs, particularly in the mode conver-
sion regime in which, according to TORIC, the mode con-
verted power decreases below 1% as the optical thickness
of the evanescence layer associated with the ion—ion cutoff
increases, and screening of E, by minority ions begins to
play an increasing role. In toroidal geometry mode conversion
to IBWs can occur only in a relatively narrow layer around
the equatorial plane; above and below mode conversion is
instead to the ICW [37, 38], a form of the shear wave close
to the transition to a parallel propagating whistler. This kind
of mode conversion requires a gradient of the static magnetic
field intensity along magnetic field lines, and, therefore, is not
possible in plane stratified geometry. Thus FELICE predicts
a uniform excitation of IBW across the whole height of the
plasma. In the mode conversion regime, moreover, absorption
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Figure 3. Radial component of the RF electric field along the equatorial plane, n, = 12, ny/n. = 0.03. Left: E;, (TORIC); right: E,

(FELICE).
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Figure 4. Toroidal power spectrum (normalized to unit), ny/ne = 0.03. Left TORIC; right: FELICE.

per transit is appreciably weaker than in the minority regime:
as a consequence, in FELICE multi-transit partly compensates
for the increased opacity of the evanescence layer and the
increased |E | screening, maintaining a higher level of mode
conversion efficiency, with oscillations depending on whether
a maximum or a node of the FW field amplitude occurs at
the mode conversion layer. In toroidal geometry the coher-
ence between incoming and reflected wave required for this
effect is largely lost. Once the IBW is excited, moreover, its
propagation is very different in the two geometries: in real-
ity and in TORIC, but not in FELICE, this short wavelength
mode is subject to strong refraction, which tends to rapidly
increase the local value of k|, and thus to accelerate the onset
of electron Landau damping [37]. This is illustrated in figure 3
for the toroidal mode n, = 12, ny/n. = 0.03 (for this partic-
ular case the two codes agree in predicting a mode conversion
efficiency of somewhat less than 5% in power): according to

TORIC the IBW is fully absorbed well before reaching the
inner plasma edge, while according to FELICE it has a much
larger amplitude, and propagates essentially undamped in the
whole high-field half of the plasma.

The tendency of plane-stratified geometry to overestimate
the effects of coherent interference between incoming and
reflected waves is clearly illustrated in figure 4. One of its
consequences is that the toroidal power spectrum predicted by
FELICE is much more irregular and spiky than the spectrum
predicted by TORIC. The spikes correspond to weakly damped
internal eigenmodes between the outer plasma boundary and
the ion—ion cutoff (not to be confused with the surface eigen-
modes discussed in the next section); they are more marked
in the domain of larger toroidal wavenumbers, for which IC
absorption is somewhat weaker and (in FELICE but not in
TORIC) electron damping dominates. Internal eigenmodes of
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this kind are present also in the TORIC solution, but with a
substantially lower quality factor.

3. Surface, waveguide, and cavity modes between
plasma and vessel

Particularly annoying for slab solvers are modes guided
between the plasma surface and the metallic vessel, that form
a virtual plane waveguide infinite in both the toroidal and
poloidal direction. Spurious excitation of these modes can neg-
atively affect the estimate of the antenna load, and of the inten-
sity of the near RF fields. In the limit in which the vessel is
very far from the plasma edge these modes are surface modes
guided by the plasma surface; Tierens and Colas [39] have
pointed out that the dispersion relation of these modes is

det(z,-M) =0 ()
where
L (A =nD) —nmynz \ p? =1 -2 +nd)
M=— . (2
x —nyn; (1—n2) n=(w/ok

is the vacuum impedance matrix (n, — 4i(—n?)'/? for par-
tial waves evanescent in vacuum, depending on the direction
of evanescence), and Z is the surface impedance matrix of
the plasma, evaluated by FELICE (for the definitions of these
matrices cf [34]). In reality, the vessel is always at a distance
from the plasma much shorter than one vacuum wavelength,
and its presence cannot be ignored; the spurious modes are
therefore waveguide modes. To take this into account it is
sufficient to replace the vacuum impedance matrix with the
impedance matrix of a metallic wall as seen from the plasma
surface

Z, =itankdM, 3)

where d is the distance between the plasma surface and the
wall. In contrast to surface modes, waveguide modes can have
also n7 > 0. In the limit Z , — 0 they become the TE eigen-

modes of an infinite plane metallic guide, which transport
power to infinity in the direction defined by the wavenumbers
ny and n;; the plasma side of this guide, however, is leaky, so
that this power finally enters the plasma.

Since even in slab solvers n, and n, are discretized to simu-
late the double periodicity of the torus ((in FELICE k, = my/b
and k; = n, /(R + a), with a and R the minor and major radius,
and b/a the elongation of the plasma surface), the probabil-
ity of a couple (n,, n;) exactly coinciding with those of a
waveguide eigenmode is practically zero. Some of the par-
tial waves with (n,, n;) close to those of such an eigenmode,
however, are ‘resonantly’ driven to a large amplitude, and
their presence manifests itself in the large spikes visible in the
power spectra predicted by FELICE and similar slab solvers.
This is illustrated in figure 5, left. In this case the run of
FELICE used an ITER high performance scenario [40] with
ne(0) = 1.210%* m=3, T.(0) = T;(0) = 9.9 keV, 46% deu-

terium, 50% tritium, 2% helium3; the frequency was assumed
53 MHz, with the four straps excited in the (0, 7, 0, 7) config-
uration. Outward radiation conditions (ORCs) were imposed
30 cm inside the plasma.

A peculiar feature of this figure is the absence of spikes
in the immediate vicinity of n, = 0O (this is true independent
of the phase configuration of the straps). Thus there is an
important difference between an infinite guide with two metal-
lic walls and the virtual guide of the simulated tokamak, in
which one metallic wall is replaced by the plasma surface. In
the former the poloidal and toroidal directions would be com-
pletely equivalent; in the second, by contrast, only modes with
0.6 < modn, < 1.2 are excited, and for each n, the poloidal
number with largest amplitude is the one which corresponds
to the smaller value of n2. Eigenmodes propagating in the
toroidal direction are completely suppressed. This is confirmed
by running FELICE for the same scenario, but with only the
partial wave n, = 0: (figure 5, right): the spectrum obtained is
perfectly smooth.

Of course, the real configuration is finite both in the poloidal
and the toroidal directions; hence in the tokamak neither sur-
face nor waveguide modes are possible, but only cavity modes.
These modes are much more constrained than waveguide
modes; in addition, the cavity between plasma and vessel in
a torus has an unusual topology, and, because of the poloidal
inhomogeneity of the equilibrium, the boundary conditions
on the plasma side are much more complicated than in slab
geometry. Except in scenarios with very weak absorption (e.g.
current drive experiments with absorption only by electrons),
therefore, the quality factor of the eigenmodes of this cavity
is likely to be rather poor. Hence one can anticipate that the
occurrence of a strongly driven resonance between one of these
eigenmodes and a Fourier component of the fields excited by
the IC antenna is very unlikely. This is consistently confirmed
by simulations in toroidal geometry: in the solutions obtained
from TORIC the fields in vacuum are practically never much
larger than in the plasma.

Exploiting the characteristics of guided modes mentioned
above, we have implemented in FELICE a heuristic method
to recognize spurious eigenmodes and subtract their contribu-
tion from the launched spectrum and from the antenna load. In
the case of the ITER scenario considered here, this reduces
the load from 0.745 to 0.546 ) per strap; and the toroidal
power spectrum ‘filtered’ for spurious surface guided mode
(figure 6 left) is indeed very similar to the one of figure 5,
right, and also to the spectrum obtained from TORIC (figure 6,
right; note, however, that the spectrum of FELICE is obtained
imposing ORCs 30 cm inside the plasma, while the solution
of TORIC is always global; for the reasons explained in the
previous section, it is impossible to make FELICE agree with
TORIC while integrating over the entire plasma). In principle,
one could subtract the contribution of spurious guided modes
also from the power deposition profiles from FELICE; this,
however, is very cumbersome, and hardly worthwhile, in view
of the heuristic nature of the approach, and the availability of
simulations in toroidal geometry.
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Figure 5. Toroidal power spectrum predicted by FELICE for the ITER antenna in the (0, 7, 0, ) configuration. Left: poloidal modes in the
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Figure 6. Left: same as figure 5, left, with suppression of the spurious guided modes. Right: the toroidal power spectrum calculated by

TORIC for the same ITER scenario.

4. 1D and two-dimensional quasilinear kinetic
equations

A further limitation of solvers of Maxwell’s equations in
plane-stratified geometry is the difficulty of taking into account
in a self-consistent way the effects of heating on the distribu-
tion functions. As a consequence, these codes usually assume
Maxwellian distributions, or use QL distributions chosen with
qualitative criteria, for example anisotropic Maxwellians. As
mentioned in the introduction, there are two reasons for this
limitation:

e A consistent simultaneous determination of the power
absorption profiles and of the QL distribution functions
requires mapping the profiles obtained in slab geome-
try onto the magnetic surfaces of the real configuration.
Before the advent of computers sufficiently powerful to

allow routine simulations in toroidal geometry, this has
been attempted, e.g. [28, 29]; it is clear, however, that
there is no rigorous quantitative solution of this problem.

e Evenifareasonable way of performing this mapping were
found, coupling of slab codes with a solver of the QL
kinetic equation is compatible with the speed of execu-
tion which is their main advantage only if the latter is
also made 1D by integrating the equation over the par-
allel degree of freedom, a simplification very difficult to
justify (in this section one and two dimensions will refer
to velocity space).

Figure 7 illustrates the first of the point just raised. In
TORIC the power deposited in each species on each magnetic
surface is evaluated in W cm™3 per MW coupled. The corre-
sponding plot from FELICE is in arbitrary units, since a slab
geometry code has no information about the specific volume of
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Figure 7 Power deposition profiles, ny;/n. = 0.03. Left TORIC (W cm™ per MW coupled); right: FELICE, arbitrary units.
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Figure 8. Power deposition profiles: dashed lines in a Maxwellian
plasma; full lines at convergence. The abscissa is in
W cm ™3 per MW coupled.

magnetic surfaces. Without precise information on the power
absorbed per ion at each magnetic surface there is no reliable
way of evaluating the QL ion distribution functions, and the
task of imposing consistency between the power absorption
profiles calculated by the wave solver and the profiles of QL
heating rate cannot be formulated properly.

The 1D kinetic equation, moreover, has very serious lim-
itations itself. To illustrate this we have taken advantage of
the fact that SSFPQL has a module which integrates the 1D
kinetic equation using the isotropic part of the complete QL
diffusion coefficient, for comparison with the results of the full
2D simulation. To make this comparison understandable, it is
necessary to briefly recall how consistency between TORIC
and SSFPQL is achieved by iterating between the two codes
[19, 20]. Initially, TORIC is run (either for a single representa-
tive toroidal mode or for the entire toroidal spectrum) assum-
ing Maxwellian distribution functions for all ion species. The

resulting power deposition profiles are then used by SSFPQL
for a first evaluation of the QL distribution functions on a suffi-
cient number of magnetic surfaces (100 in the example used for
this note). For this purpose, the theoretical factor proportional
to |E4|* of the QL diffusion coefficient Dy is ‘adjusted’ so
that the heating rates predicted by SSFPQL will coincide with
the power deposition predicted by TORIC on each magnetic
surface of the radial mesh of SSFPQL. These QL distribution
functions are used to recalculate the coefficients of the wave
equations on these surfaces; a simple and fast algorithm has
been developed to evaluate the singular integrals of the Hilbert
transforms required for this purpose [41] (cf also the com-
ments on the generalized plasma dispersion function (GPDF)
and figure 11 at the end of this section). These coefficients are
then interpolated with cubic splines on the much finer radial
mesh of TORIC at the next run of this code. This scheme,
which requires two runs of SSFPQL for each run of TORIC,
is repeated until the power profiles predicted by the two codes
agree within an accuracy decided by the user; convergence is
accelerated using a variant of the Anderson method [42, 43],
specifically adapted to this problem [21]. Note that at con-
vergence the coefficient of Dy calculated as described above
would be exactly equal to its theoretical value if no approxi-
mations where made in solving both the wave equations and
the kinetic equations; since this is of course never possible, this
equality is only approximate. It can also be of interest to men-
tion that for the scenario considered here consistency between
TORIC and SSFPQL is achieved in five iterations; the two runs
of SSFPQL at each iteration execute in about 1 min, while
the integration of the 1D linear equation takes much less than
1 ms.

The importance of iterating between TORIC and SSFPQL
to reach consistency is clear from figure 8 (in this section
the figures are made for the scenario of section 2, but with
f =36.5 MHz, which brings the IC resonances very close to
the magnetic axis, ng/n. = 3%, and a total power of 4 MW).
Since first harmonic heating of deuterium is a finite Larmor
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Figure 9. Logarithmic plots of the distribution function at convergence, at the point of highest power absorption. Left: deuterium, right:
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Figure 10. Power deposition profiles at convergence, left: deuterium, right: hydrogen (these plots are for 4 MW total RF coupled power).

radius effect, it is boosted by the development of the suprather-
mal tail. In this case the effect is so large that much less power
reaches the axis, nearly suppressing the central peak of fun-
damental IC heating of the minority. The broadening of the
Doppler width of the resonances due to fast ions is also clearly
visible for both species. Simulations without iteration would
be clearly misleading (although somewhat less so in ITER or
DEMO, where much less RF power per ion will be available;
this, however, will be partly compensated by the much lower
collisionality).

Since the module of SSFPQL that integrates the 1D kinetic
equation uses Dy renormalized by SSFPQL at each iteration,
the comparison of the results of the 1D kinetic model with
those of SSFPQL makes sense only once convergence between
SSFPQL and TORIC is reached, so that the amplitude of the
QL diffusion coefficient is as close as possible to its theoreti-
cal value (note that these distributions are mapped to the IC

resonance; the mapping transforms away the well-known
‘rabbit ears’ which are present at the outer equatorial point
where the distributions are actually calculated). The 1D QL
distribution functions are quite similar to the 2D ones for
vﬁ /v =0 (figure 9). This is not surprising, but one should
not overlook that if the usual formulas for the QL heating rates
are naively applied to the 1D distributions, the radial power
absorption profile predicted for the minority is only moder-
ately distorted, but the profile of the majority is higher by a
factor two compared to that predicted by TORIC and SSFPQL
(which at convergence coincide, figure 10).

More important in the present context is that the output
of a 1D solver of the kinetic equation does not allow to
take into account that absorption by ions at IC harmonics
depends critically mainly on the perpendicular energy content
of the distribution functions, while the Doppler broadening of
the IC absorption layers, particularly important for minority
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Figure 11. The GPDF passed by SSFPQL to TORIC at the last iteration of the consistency loop, for deuterium (left), and hydrogen (right), at
the radial position near the maximum power absorption. This simulation differs from that of figure 9 because we have take into account also
4.86 MW of NBI injection in Deuterium (largest energy channel 60 keV), whose effects are visible in the slight asymmetry of the Deuterium
GPDF. The GPDF of Hydrogen is symmetric, because the thermal bath model of collisions does not allow to estimate the indirect effect of

the skewness of the deuterium distribution on the Hydrogen.

heating, depends only on the parallel energy content. The
importance of this distinction is illustrated by figure 11, which
compares the GPDF at the point of maximum power absorp-
tion for the two ion species to the Maxwellian plasma dis-
persion functions of the non RF-heated plasma at the same
point.

Figure 11 also indicates that using the so-called ‘equivalent
Maxwellian’ to simulate the effects of a suprathermal popu-
lation on the coefficients of the wave equations, as is occa-
sionally done when only a code solving the wave equations
in Maxwellian plasmas is available, is unlikely to give always
satisfactory results. We have proved this quantitatively in [14]
for the case of thermonuclear alpha particles in slowing-down.

5. Conclusions

In conclusion, codes solving the wave equations in plane-
stratified geometry are important as constituents of antenna
codes, and, if used with care, can be useful for a first rapid
but qualitative orientation about unfamiliar scenarios. Seri-
ous simulations of present day IC heating experiments or of
proposed IC heating scenarios for ITER or DEMO, on the
other hand, should always be performed with modern wave
solvers in full toroidal geometry, which contain (almost) all the
required physics, and are coupled to solvers of the QL kinetic
equations, so that they can evaluate self-consistently the devi-
ations of the distribution functions from Maxwellian due to
resonant interactions with the waves, and the influence of these
deviations on the profiles of the power deposition by the waves.

As anticipated in the introduction, we are of course aware
that also the models solved by the best toroidal packages are
not really ‘complete’. Leaving aside the investigation of the
fate of the few (but important) most energetic ions whose orbits
cannot be regarded as lying on a single magnetic surface and

their interactions with the rest of the plasma [44], which is out-
side the scope of the bounce-averaged QL kinetic equation, in
our opinion two problems remain open.

e The first concerns the effects of a (nearly) steady-state
ambipolar potential. In toroidal geometry the anisotropy
of the energetic tails of the QL ion distribution functions
implies that the ion density (and the average energy) will
be functions of the poloidal angle. To allow the electrons
to maintain charge neutrality an electrostatic potential also
depending on ) must therefore develop [45]. Heuristic
estimates suggest that the amplitude of its variations on
each magnetic surface can be a sizeable fraction of the
electron temperature, probably sufficient to appreciably
modify the unperturbed ion orbits which are used to eval-
uate the response of the plasma to the waves, and the QL
diffusion coefficient in the QL operator.

The second problem is our more or less complete igno-
rance of the loss term to be inserted in the kinetic equation
in order to guarantee the existence of a steady state solu-
tion in the presence of the RF heating source, as observed
in the experiments if the heating pulse is sufficiently
long. In SSFPQL fast ion losses are simulated by a ther-
mal bath: the exact collisional operator, which conserves
energy, is replaced by collisions with a Maxwellian back-
ground, which has an infinite heat capacity. The thermal
bath model is acceptable when heating rate and colli-
sional relaxation are sufficiently faster than radial diffu-
sion losses; since the latter are poorly known and much
dependent on the scenario (collisionality, level of turbu-
lence), however, it is difficult to assess precisely its range
of validity. An additional difficulty is that during the heat-
ing pulse the bath temperature is not always unambigu-
ously defined. For obvious reasons, on the other hand, it is
extremely difficult to devise a loss term reliably describing
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losses due to radial diffusion in a wide range of situa-
tions. Indeed, by playing with a phenomenological energy
loss time one can almost always make the prediction of a
kinetic solver agree with the results of a particular experi-
ment; but, lacking a theoretical basis, whether the same
loss term will be the correct one for the simulation of
future experiments remains completely open. Coupling
the solvers of Maxwell’s equations and of the QL kinetic
equation with a transport code might help, but would not
entirely solve the problem, because in the latter radial
losses are assumed to depend only on position, while in
the kinetic solver it is essential to know in some details
their dependence on the energy and velocity pitch angle
of the ions (energetic ions on trapped orbits are likely to
diffuse away faster than thermal ions).

These two open problems have received very little attention,
probably because they are much more difficult than all those
which have already been solved. It goes without saying that
neither of them can be attacked in plane stratified geometry.
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