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1.  Introduction

One of the major challenges magnetic confinement fusion 
devices must overcome is the issue of power and particle 
exhaust [1]. In future reactors [2–4], hundreds of MWs of 
power will stream out from the confined plasma region (core) 
and must be dissipated before reaching the plasma-facing 

components (PFCs). Otherwise, melting [5] and excessive 
erosion [6] will lead to short lifetimes of the PFCs and to 
release of impurities, with subsequent contamination of the 
confined plasma and performance degradation [7].

The most successfully investigated exhaust concept is a 
divertor, characterized by dedicated plasma-wall interaction 
zones where particles and heat stream to, moving parallel to 
the open magnetic field lines in the scrape-off layer (SOL). 
However, the fast parallel heat transport leads to very localized 
heat deposition on the targets. Empirically-determined scaling 
laws indicate that the heat flux deposition profile width, for a 
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Abstract
We report on the first experimental verification of theoretically predicted multiple bundles of 
counter-streaming plasma flows in the island-divertor scrape-off layer (SOL) of the stellarator 
Wendelstein 7-X. In the standard toroidal field direction (counter-clockwise when looking from 
the top) experiments, the overall structure of the SOL flows, such as flow directions, the number 
of flow bundles and the magnitude of the flow velocities, are consistent with numerical predictions 
obtained with EMC3-EIRENE. However, the modelling does not predict changes of the flow 
patterns with reversal of the magnetic field direction, which are experimentally observed. This 
indicates that additional relevant physics, such as particle drifts, will need to be incorporated into 
the numerical model to better describe the whole stellarator scrape-off layer behaviour.
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reactor-size device modelled on tokamaks [8], results in local 
heat loads exceeding the material limits of known PFCs [9]. 
Nonetheless, for tokamaks, the single-null divertor configu-
ration has proven effective in providing efficient power dis-
sipation in the plasma (impurity seeding) and good particle 
pumping capabilities [10–12]. In stellarators, several different 
edge topologies have been proposed and used to form a diver-
tor for particle and heat exhaust [13–18]. One such concept 
is the island divertor [19], which uses the intrinsic magnetic 
islands in the SOL to set up a divertor volume. This was suc-
cessfully tested in the Wendelstein 7-AS (W7-AS) stellarator 
[20], and is now being investigated in more detail and at a 
larger scale in Wendelstein 7-X (W7-X) [21, 22].

A particular feature predicted for the island divertor topol-
ogy is the existence of multiple, adjacent counter-streaming 
flow regions at the plasma edge. Strong counter-streaming 
flows are expected to lead to frictional dissipation of momen-
tum, causing a reduction of the flow speed parallel to the 
magnetic field lines [23]. This is likely to have played a role in 
substantial heat flux mitigation at the targets [24]. According 
to the heuristic-drift model in [25], reduced parallel flow 
velocities in the SOL due to momentum dissipation could 
potentially lead to a widening of the SOL itself, contribut-
ing to prolong the lifetime of the PFCs. The involved physics 
in the counter-streaming flows includes turbulence, trans-
verse viscosity and momentum transport. In particular, exper
imental observations often show larger momentum transport 
perpendicular to the magnetic field than expected from binary 
collisions. This additional transport, driven by anomalous 
viscosity, is also invoked in tokamaks applications, where 
rotation of the core, potentially driven by radially transported 
momentum from SOL flows [26], has profound effects on 
the macroscopic stability of the overall plasma, and thereby 
on the energy confinement [27]. Thus, the ability to meas-
ure detailed two-dimensional flow-maps, such as the ones 
presented, should help improve our understanding of such 
phenomena. The importance of 2D measurements for better 
stellarator physics insights have been already demonstrated on 
the Large Helical Device (LHD) as well [28, 29].

The counter-streaming structures discussed above have 
been predicted for multiple different stellarators, such as LHD 
[30, 31], W7-AS [32] and W7-X [23, 33, 34]. Compared to 
LHD [35], the flow pattern is expected to play a major role for 
a low-shear machine like W7-X [17]. Here, it has been exper
imentally confirmed with a view on the complete machine 
edge for the first time. The measurements were made with a 
coherence imaging spectroscopy (CIS) diagnostic, which is an 
interferometer able to measure 2D patterns of line-of-sight-
integrated Doppler velocities of particles in the plasma [36]. 
The CIS measurements are compared with EMC3-EIRENE 
simulations, a code capable of modelling the behavior of plas-
mas in 3D magnetic fields [37, 38] that already showed good 
results for recent stellarator experiments [23, 33, 39–45]. CIS 
measurements for experiments with the same magnetic topol-
ogy but with the field direction reversed are presented. The 
preliminary results of the field reversal experiments clearly 
demonstrate that transport physics processes in the edge are 

complex and not entirely described by the simplified model in 
the next section or the numerical tool EMC3-EIRENE.

2.  Predictions

The simplest model explaining SOL plasma flows is based 
on pressure gradients [46]. According to the magnetohydro
dynamic momentum equation, particles will flow along magn
etic field lines from regions of high pressure toward regions 
of minimum pressure (v‖ ∝ −∇‖p). In the SOL, where field 
lines are open, the divertor targets (downstream location) act 
as sinks for ions and the plasma pressure is therefore mini-
mized, whereas the maximum pressure region (upstream 
location) is defined by the particle and heat coming from the 
core via radial transport. Ionization and heating within the 
SOL are for now neglected. In a first approximation, homo-
geneous radial transport leads to a pressure maximum at the 
geometrical center of each field line in between two targets 
(see figure 1). Once the particles have entered the SOL, the 
pressure gradient accelerates them and they stream along the 
field line towards the closest PFC, reaching the thermal ion 
sound speed cs at the targets (Bohm–Chordura sheath crite-
rion). A ‘watershed’ or ‘stagnation point’ with zero parallel 
flow velocity is formed at the maximum plasma pressure 
location along the field line. The counter-streaming flow pat-
tern arises due to the fact that the straightened line in figure 1 
winds around the plasma machine multiple times, leading 
to particle flows in opposite directions in closely adjacent 
spatial regions (figure 2(c)). Since the parallel flow is much 
faster than the perpendicular flow, the latter can be neglected 
in the analysis of the CIS measurements.

The above model shows that the structure of the flows is 
inherently linked to the magnetic field topology. In tokamaks, 
the single-null topology finds two counter-streaming flows 
that are spatially well separated by the X-point, whereas in 
stellarators the intrinsic 3D structure of the magnetic field 
should lead to a more complex flow structure.

In the particular case of W7-X, the magnetic islands con-
nect different divertor modules while winding around the 
machine [47]. Different regions of an island have the short-
est parallel connection to different divertor modules, and 
therefore two opposite flow directions are expected to be 
present within each island. This is illustrated in figures 2(a) 
and (b), where a single open field line is traced within one 
of the islands, and the two possible paths for the particles are 

Figure 1.  Sketch of a 1D SOL model. The red/blue arrows indicate 
the toroidal direction, along/opposite to the magnetic field.
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represented by blue and red. The composite flow pattern is 
a complex 3D structure of counter-streaming flows spatially 
close to each other, as shown in the poloidal cross-section in 
figure 2(c). A stagnation region is expected to be present at the 
center of, and in between, the magnetic islands.

A more complex physical model is used in EMC3-
EIRENE, a fully 3D coupled plasma-fluid and kinetic edge 
transport Monte Carlo code [22, 48]. EMC3-EIRENE solves a 
set of Braginskii and kinetic transport equations for electrons, 
ions, neutral atoms and molecules in the plasma. One output is 
the parallel velocity of the main plasma species (hydrogen for 
W7-X in the last operational campaign) that is used to com-
pare modelled and measured flows in the next section.

3.  Experimental setup

The counter-streaming flow observation was carried out at 
W7-X, a stellarator characterized by the presence of ten island 
divertor modules interconnected by magnetic islands [43]. 
The coil system of W7-X allows flexibility in shaping the 
SOL, with varying rotational transform (ι-), shear, and average 
toroidal curvature [47]. The presented measurements were 
performed in the standard and in the low iota magnetic con-
figurations, characterized respectively by ι-  =5/5 and ι-  =5/6, 
which result in the formation of five and six magnetic islands 

in the machine edge [19, 49]. In the standard configuration, 
the five islands are five independent flux tubes, therefore 
their effect on the particle flows is relatively easy to distin-
guish. The low iota configuration features only one single flux 
tube that winds toroidally six times around the confined core 
plasma, showing up as six apparent islands in any poloidal 
cross section and therefore complicating the interpretation of 
the SOL geometry effects.

The flow measurements were performed using a CIS 
system [50], a diagnostic able to measure small wavelength 
variations (∼tens of pm) [51]. Its most recent applications 
are camera-based and exclusively sensitive to visible light, 
allowing for the observation of particle behavior in relatively 
cool plasma regions (up to hundreds of eV), e.g. in the edge 
region of fusion experiments. Examples of CIS implemen-
tations can be found for MAST [52], DIII-D [53–56], and 
ASDEX Upgrade [57]. We report observations from one of 
two systems installed on W7-X to measure impurity ion flow 
[58, 59], which views one divertor module tangentially (see 
figure 3(a)).

The CIS instrument at W7-X utilizes the spatial heterodyne 
detection technique, with birefringent crystals sandwiched 
between two polarizers, resulting in high optical through-
put. An interference pattern is imposed across the entire 
plasma image, encoding information about the line-shift 

Figure 2.  Plasma flow structure predicted for the W7-X island divertor, with focus on one magnetic island. The blue/red colour indicates 
domains along the field line being closer to a target in ± toroidal direction. (a) An open field line is traced from the upstream position to the 
closest targets (downstream location), highlighted in black (sections III and V in (b)). The upstream location (stagnation point) is the closest 
region to the confined core plasma and lies at the geometrical center of the field line. (b) Poloidal cross-sections at the locations I–V in (a), 
showing the field line counter-clockwise rotation in the machine. Note that the chosen field line interacts with the divertor targets only in 
sections III and V. (c) Poloidal cross-section of counter-streaming flows produced with EMC3-EIRENE. The flow structure is overlayed on 
a Poincaré plot showing the edge magnetic field, where the last closed flux surface is displayed in orange and the outermost surface of the 
islands is highlighted in green.

Nucl. Fusion 59 (2019) 124003
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and broadening of a selected spectral line, i.e. the flow and 
temperature of one plasma species through the Doppler effect. 
These physical parameters can be recovered by a 2D (spatial) 
Fourier analysis of the images. For the diagnostic to function 
correctly, it is important to use a bandpass filter which is nar-
row enough to transmit spectral line emission from only one 
charged state of one species. More details about this technique 
can be found elsewhere [36, 51, 60].

The most important new feature of the W7-X CIS sys-
tems with relevance to the results presented, is the calibra-
tion source: a continuous tunable laser, allowing a precise and 
stable calibration of every spectral line in the range of interest 
(450–650 nm). The laser can also provide a direct measure of 
wavelength shifts in the same range as those expected from 
the plasma discharges (±30 pm), which is critical to accu-
rately calibrate both the direction and the zero point of the 
impurity flow [61]. The use of calibration sources with even 
a few nm difference from the measured plasma emission has 
been shown to require complex corrections that cannot always 
be precisely determined [57, 62]. The measured spectral line 

presented here is the C III at 464.8811 nm, chosen because 
of its high intensity in the SOL region of W7-X. Carbon is 
intrinsically present in the W7-X SOL due to sputtering from 
graphite-based PFCs. The measurements present an uncer-
tainty in the zero-point flow of ±6 km s−1, which is signifi-
cantly smaller than the reported flows and does not affect any 
of the conclusions.

4.  Results

Counter-streaming structures are clearly visible in the mea-
sured flows, as shown in figure  3(b). One of the five inde-
pendent islands of the standard configuration is obscured by 
in-vessel components, so that the pattern seen from the diag
nostic port shows only eight flow channels, fitting with the 
prediction of two separate counter-streaming flows for each 
magnetic island. As expected from the simplified pressure 
driven model discussed above, the measured impurity flows 
are directed towards the nearest divertor modules.

Figure 3.  Comparison of C III flow velocity patterns. (a) In vessel geometry. The cyan and magenta lines indicate the position of the 
O-points of the five magnetic islands in the standard configuration. The magenta line indicates the island obscured by the experimental 
setup. (b) CIS measurement; (c) simulated flow from EMC3-EIRENE. The simulation was performed with an edge electron density of 
ne = 1 × 1019 m−3, input power of P = 4 MW (similar to measured quantities), and an anomalous cross-field diffusion coefficient of 
D⊥ = χ⊥,i,e = 1.0 m2 s−1 (empirically determined). Blue/red indicate flows toward/away from the observation port. The standard W7-X 
magnetic configuration was used. The grey mask covers regions characterized by radiation brightness below 0.5% of the maximum.

Figure 4.  CIS measured C III flow velocities during magnetic field reversal experiments. Measurements performed in the low-iota 
magnetic configuration, with the line-integrated density and input power measured being ne = 6 × 1019 m−2 and P = 5 MW 
respectively. (a) Forward and (b) reversed field configurations. Blue/red indicate flows toward/away from the observation port. The grey 
mask covers regions with radiation brightness below 0.5% of the maximum.

Nucl. Fusion 59 (2019) 124003



5

V. Perseo et al

For a comparison to theoretical predictions, 3D numerical 
simulations have been performed with the EMC3-EIRENE 
code, which is able to generate a synthetic CIS diagnostic for 
the above-mentioned experimental scenario [63]. The synth
etic camera model provides line-integrated hydrogen ion flow 
velocities weighted by the C III emission intensity, which is 
calculated using ADAS photon-emission coefficients [64]. 
The impurity transport is computed based on a trace impurity 
fluid approach [65]. In high collisionality regime, the impurity 
flow is expected to be a good proxy for the main ion (hydro-
gen) flow due to frictional coupling [46]. The EMC3-EIRENE 
simulations for the presented scenarios support this assump-
tion [23], making the CIS diagnostic applicable to study the 
bulk plasma flows of W7-X.

Figure 3(c) shows the C III flows from EMC3-EIRENE. 
Good qualitative agreement is found for most of the image, 
in particular in the four elongated flow structures in the top 
half, where the diagnostic lines of sight are shorter (�5 m) 
and intersect only one single island before hitting the wall. In 
the lower and right-hand sides, the interpretation is far more 
complex as the lines of sight are significantly longer (�6.5 m) 
and pass through multiple islands. In such cases, the reduced 
agreement is expected as the C III intensity distribution, on 
which the observed flow strongly depends, is more difficult 
to be precisely reproduced by EMC3-EIRENE. Additionally, 
the measured spectral integral is not necessarily a trivial func-
tion of the intensity weighted line averaged flow velocity, as 
is assumed by the simulation. Quantitatively, the direction and 
maximum of the flows measured in each island are similar to 
EMC3-EIRENE predictions.

Particles drifts, such as magnetic and E × B drifts, are 
not included in the current EMC3-EIRENE transport model. 
Nonetheless, it has been shown for tokamaks [66] and W7-AS 
[67–71] that these drifts are likely to play a role in the up-down 
asymmetries in the SOL, and could potentially affect the SOL 
flows by changing how the edge is populated. If ionization/
recombination can be neglected, the only source defining the 
pressure profile (hence the flow pattern) is the outwards radial 
particle fluxes in the SOL, but this can change taking drifts 
into account. One possible experiment to assess the impor-
tance of drifts is the reversal of the magnetic field direction, as 
the particle drifts are expected to invert direction, whereas the 
anomalous cross-field transport is not [72, 73]. For the spe-
cific case of W7-X, the best magnetic configuration to high-
light the contribution of drifts is the low iota configuration, as 
it is the least sensitive to error fields and it is characterized by 
the longest open field lines in the SOL (∼1.5 times the length 
in the standard magnetic configuration on average) [74, 75].

Figure 4 shows CIS measurements in field reversal experi-
ments for the low iota magnetic configuration. Apart from the 
field reversal, the two discharges are meant to be by design 
identical. In both forward and reversed field directions, the top 
portion of the images exhibits similar elongated structures that 
follow the magnetic island geometry, indicating the impor-
tance of the geometric considerations in the simplified pres
sure model above. The region around the divertor targets also 
shows a similar pattern. However, there are clear differences 
in the details of the structures. For example, the magnitude of 

the flow velocity is unbalanced, showing significantly higher 
values in  +/−v direction in case of forward/reversed field. 
Moreover, the elongated structures shows a partial rotation. 
Further analysis is necessary to determine the extent to which 
this can be attributed to drifts, but it is clear that CIS meas-
urements do indeed show differences with field reversal. No 
such changes are seen in EMC3-EIRENE simulations that 
do not include drifts. Given the importance of understanding 
the SOL dynamics with respect to the heat exhaust problem, 
being able to investigate the potential role of drifts is crucial, 
and the CIS diagnostic seems to be able to provide a valuable 
contribution to this research area.

5.  Conclusions

The CIS measurements presented here confirm the funda-
mental prediction of closely-spaced counter-streaming flows 
in the SOL of an island divertor. Stagnation regions are 
clearly present at the center of, and in between, the magn
etic islands. Moreover, the measurements show C III flows 
streaming towards the nearest divertor modules, supporting 
the prediction that the target-sink action is dominant in our 
experiments, consistently with the EMC3-EIRENE model-
ling. CIS is therefore a powerful diagnostic for SOL plasma 
flow studies, in conjunction with the EMC3-EIRENE predic-
tion of good collisional coupling of impurity and main ion 
flow in the plasma edge. This can lead to a better understand-
ing of how the island divertor configuration affects the overall 
edge dynamics, that is particularly important with respect to 
the power exhaust problem. The W7-X CIS system also pro-
vides the first set of two-dimensional flow patterns comparing 
forward and reversed magnetic field experiments in an island 
divertor configuration. Although the results are yet to be fully 
understood, they demonstrate that field-reversal does impact 
the SOL parameters.
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