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1.  Introduction

Calculation of plasma equilibria is a crucial component in the 
design and operation of the magnetic confinement devices 
employed in nuclear fusion research. The equilibrium poloidal 
flux in axisymmetric toroidal magnetic confinement devices 
is determined by solving the Grad–Shafranov equation [1–3], 
which is a nonlinear, elliptic, partial differential equation. The 

solution of the Grad–Shafranov equation  is usually effected 
via an iterative numerical scheme.

In 1968, Solov’ev [4] obtained a family of exact analytic 
solutions of the Grad–Shafranov equation. Solov’ev’s solu-
tions are useful for benchmarking plasma equilibrium codes 
[5, 6], as well as for magnetohydrodynamical stability analy-
sis of tokamak plasmas [7]. Solov’ev’s solutions have been 
employed to construct model up–down-symmetric tokamak 
equilibria [8], as well as equilibria with magnetic divertors. 
Recently, more advanced analytic solutions of the Grad–
Shafranov equation have been obtained that allow for a wide 
variety of different plasma configurations [9–11].
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Abstract
In this work, we construct a tokamak plasma equilibrium generated by a combination of 
currents flowing within the plasma and in distant external magnetic field coils. The plasma 
toroidal current density takes the simple form jϕ(r, z) = −a r − b R 2/r inside the plasma 
(where r and z are cylindrical coordinates, and a, b, and R are constants), and is zero in the 
surrounding vacuum. The Grad–Shafranov equation possesses a well-known exact analytic 
solution within the plasma due to Solov’ev. We use a Green’s function method to compute 
the poloidal magnetic flux generated by plasma currents, together with a parameterized 
homogeneous solution to the Grad–Shafranov equation (that is well-behaved at small r 
and z), to construct the vacuum solution. The vacuum solution is matched to the analytic 
solution on the last closed magnetic flux surface (LCFS) to determine the parameters in the 
homogeneous solution. This procedure is performed for both up–down-symmetric double-null 
and up–down-asymmetric single-null equilibria. We find that any magnetic X-points on the 
LCFS are distorted due to the fact that one quadrant is filled by a current-carrying plasma, 
whereas the other three are filled by a vacuum in which no current flows. In particular, the 
vacuum quadrant opposite the plasma-filled quadrant expands at the expense of the other three 
quadrants.
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Solov’ev’s analytic solutions of the Grad–Shafranov equa-
tion (as well as the other aforementioned analytic solutions) 
are derived on the assumption that there is distributed toroidal 
current filling all space. In reality, the plasma current density 
is zero in the vacuum region that lies beyond the last closed 
(magnetic) flux surface (LCFS). Now, the solution of the 
Grad–Shafranov equation  in the vacuum region consists of 
two components. The first component is the contribution from 
the toroidal currents flowing within the plasma. The second 
component is the contribution from currents flowing in exter-
nal magnetic field coils. In this study, for the sake of simplic-
ity, the external field coils are assumed to be very distant from 
the plasma. In order to construct the correct solution in the 
vacuum region, we use a Green’s function method to com-
pute the contribution from the plasma currents, and then com-
bine this with a parameterized homogeneous solution of the 
Grad–Shafranov equation that is well behaved on the toroidal 
symmetry axis. The parameters that characterize the homoge-
neous solution are determined by demanding that, when the 
homogeneous solution is added to the plasma solution, the net 
solution is constant on the LCFS. In this manner, we obtain 
a realistic vacuum solution that is consistent with Solov’ev’s 
analytic solution within the plasma.

This paper is organized as follows. The Grad–Shafranov 
equation is introduced in section 2. Solov’ev’s analytic solu-
tion, and its problem, is discussed in section 3. Our method 
for obtaining the vacuum field for up–down-symmetric dou-
ble-null equilibria is presented in section  4. Our method is 
extended to deal with up–down-asymmetric single-null equi-
libria in section 5. The paper is summarized in section 6.

2.  Grad–Shafranov equation

Let r, ϕ, z be conventional cylindrical coordinates. In the fol-
lowing, all lengths are normalized to some convenient scale 
length, R0, all magnetic field strengths to some convenient 
scale field, B0, all poloidal magnetic fluxes to R 2

0 B0, all toroi-
dal current densities to B0/(µ0 R0), and all plasma pressures 
to B 2

0 /µ0. (In fact, B0 is the vacuum toroidal magnetic field 
strength at r  =  R0.) Consider an axisymmetric toroidal plasma 
equilibrium whose magnetic field is written

B =
IA

r
eϕ +

∇ψ × eϕ
r

.� (1)

Here, ψ(r, z) is the poloidal magnetic flux, and IA(ψ) is an 
arbitrary flux function that takes the value unity in the vacuum 
region surrounding the plasma. As is well known, the poloidal 
flux satisfies the Grad–Shafranov equation [1–3],

∂ 2ψ

∂z 2 + r
∂

∂r

(
1
r
∂ψ

∂r

)
= −r jϕ,� (2)

where

jϕ(r, z) = r p′ +
IA I′A

r
� (3)

is the toroidal current density. Here p(ψ) is the plasma pres
sure, which is an arbitrary flux function that takes the value 

zero in the vacuum region surrounding the plasma. Moreover, ′  
denotes a derivative with respect to argument.

3.  Solov’ev’s solution and its problem

Following Solov’ev [4], let us assume that

p′ = −a,� (4)

IA I′A = −b R 2,� (5)

where a, b, and R are constants. This implies that

jϕ(r, z) = −a r − b R 2

r
.� (6)

In this case, equation (2) possesses the exact analytic solution 
[4]

ψ(r, z) =
1
2
(b + c0)R 2 z 2 + c0 R ζ z 2 +

1
2
(a − c0)R 2 ζ 2,

� (7)
where c0 is a constant, and

ζ =
r 2 − R 2

2 R
.� (8)

As illustrated in figure  1, for a  >  c0  >  −b, the contours of 
ψ(r, z) map out a family of up–down-symmetric plasma equi-
libria with positive triangularity. The magnetic axis is located 
at r  =  R, z  =  0. Note that ψ = 0 on the axis. The magnetic 
flux surfaces in the immediate vicinity of the magnetic axis 
are nested ellipses whose major radii are aligned with the 
r and z axes. The constant ratio of the major radii of these 
ellipses is lz/lr = [(a − c0)/(b + c0)]

1/2. The magnetic con-
figuration possesses two magnetic X-points, located at ζ = ζX  
and z = ±zX , where

Figure 1.  Contours of ψ(r, z) calculated by Solov’ev’s method for a 
double-null magnetic equilibrium with R  =  1.0, a  =  1.2, b  =  −1.0, 
and c0  =  1.1.

Nucl. Fusion 59 (2019) 064002
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ζX = −
(

b + c0

2 c0

)
R,� (9)

zX =

[
(b + c0) (a − c0)

2 c 2
0

] 1/2

R.� (10)

Both X-points lie on the LCFS, ψ = ψX , where

ψX =
(a − c0) (b + c0)

2 R 4

8 c 2
0

> 0.� (11)

Generally speaking, we expect the region beyond the LCFS 
to be a vacuum (or near vacuum) in which the plasma current 
density is zero. However, according to equation (6), Solov’ev’s 
analytic solution of the Grad–Shafranov equation assumes a 
toroidal current density distribution that extends to infinity, 
and is, therefore, not zero in the vacuum region. It is precisely 
this deficiency of the Solvov’ev solution that we aim to rem-
edy in our paper.

4.  Our method for double-null equilibria

Suppose that the toroidal current density within the plasma is 
the same as that assumed in the Solov’ev calculation, but that 
there is zero current density in the vacuum region outside the 
LCFS. Now, the poloidal magnetic flux in the vacuum region 
consists of two components. The first component, ψp(r, z), is 
the flux generated by the known toroidal current distribution 
within the LCFS. We will use a Green’s function method to 
compute this component. The second component, ψh(r, z), 
is the contribution from currents flowing in remote external 
magnetic field coils. This component is a homogeneous solu-
tion to the Grad–Shafranov equation that is well behaved at 
small r and z.

In order to calculate ψp(r, z), it is helpful to define the flux 
coordinates ψ and θ, where

tan θ =
z
ζ

.� (12)

At given values of ψ and θ, we can determine ζ by combining 
equations (7) and (12) to give the cubic equation

(c0 R tan2 θ) ζ 3 +

[
1
2
(b + c0) tan

2 θ R 2 +
1
2
(a − c0)R 2

]
ζ 2 − ψ = 0.

� (13)
For 0 < ψ < ψX  (i.e. within the LCFS), this equation  pos-
sesses three real roots. For cos θ > 0 the largest root is 
appropriate, whereas the intermediate root is appropriate 
when cos θ < 0. Once ζ has been determined, z follows from 
equation (12).

Now,

∂(ψ, θ)
∂(ζ, z)

=

∣∣∣∣
∂ψ/∂ζ, ∂ψ/∂z
∂θ/∂ζ, ∂θ/∂z

∣∣∣∣ ,� (14)

where

∂ψ

∂ζ
= c0 R z 2 + (a − c0)R 2 ζ,� (15)

∂ψ

∂z
= (b + c0)R 2 z + 2 c0 R ζ z,� (16)

∂θ

∂ζ
= − z

ζ 2 + z 2 ,� (17)

∂θ

∂z
=

ζ

ζ 2 + z 2 ,� (18)

which implies that

∂(ψ, θ)
∂(ζ, z)

=
3 c0 R ζ z 2 + (a − c0)R 2 ζ 2 + (b + c0)R 2 z 2

ζ 2 + z 2 .

�
(19)

Furthermore,

∂(ζ, z)
∂(r, z)

=

∣∣∣∣
∂ζ/∂r, ∂ζ/∂z
∂z/∂r, ∂z/∂z

∣∣∣∣ =
∂ζ

∂r
=

r
R

,� (20)

which yields

∂(ψ, θ)
∂(r, z)

=
∂(ψ, θ)
∂(ζ, z)

∂(ζ, z)
∂(r, z)

= r
[

3 c0 ζ z 2 + (a − c0)R ζ 2 + (b + c0)R z 2

ζ 2 + z 2

]
.

� (21)
The poloidal magnetic flux, ψp(r, z), generated by the 

toroidal currents flowing within the plasma is written

ψp(r, z) =
∫ ∫

G(r, z; r′, z′) jϕ(r′, z′) dr′ dz′,� (22)

where the integral is over the plasma poloidal cross-section, 
and jϕ(r, z) is given by equation  (6). The Green’s function 
takes the form [12]

G(r, z; r′, z′) =

√
r r′

2π
[(2 − k 2)K(k)− 2 E(k)]

k
,� (23)

where

k =

√
4 r r′

[(r + r′) 2 + (z − z′) 2 + ε] 1/2 ,� (24)

and

K(k) =
∫ π/2

0

dθ
(1 − k 2 sin2 θ) 1/2

,� (25)

E(k) =
∫ π/2

0
(1 − k 2 sin2 θ) 1/2 dθ.� (26)

Nucl. Fusion 59 (2019) 064002
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It follows that

ψp(r, z) = −
∫ (1−η)ψX

0

∮ √
r r′

2π
[(2 − k 2)K(k)− 2 E(k)]

k

(
a r′ +

b R 2

r′

)

×
[
∂(ψ, θ)
∂(r′, z′)

]−1

dψ dθ,

�

(27)

or

ψp(r, z) = −
∫ (1−η)ψX

0

∮ √
r r′

2π
[(2 − k 2)K(k)− 2 E(k)]

k

(
a +

b R 2

r′ 2

)

×

[
ζ

′ 2 + z′ 2

3 c0 ζ ′ z′ 2 + (a − c0)R ζ ′ 2 + (b + c0)R z′ 2

]
dψ dθ,

� (28)
where

0 =
(
c0 R tan2 θ

)
ζ ′ 3 +

[
1
2
(b + c0) tan

2 θ R 2 + (a − c0)R 2
]
ζ ′ 2 − ψ,

� (29)

r′ =
√

2 R ζ ′ + R 2,� (30)

z′ = tan θ ζ ′.� (31)

Here, ε and η are small regularization parameters.
The poloidal magnetic flux, ψh(r, z), generated by currents 

flowing in distant magnetic field coils is written [13]

ψh(r, z) =
∑

N=0,Nh−1

cN ψ2N(r, z),� (32)

where the cN are arbitrary coefficients,

ψN(r, z) =
∑

n=0,N/2−1

An
N r N−2 n z 2 n,

� (33)

and

An
N = − (N/2 + 1 − n) (N/2 − n)

n (n − 1/2)
An−1

N� (34)

for 1 � n � N/2 − 1, with A0
N = 1. Note that the sum (32) is 

truncated at N  =  Nh  −  1.
The coefficients, cN, that characterize the homogenous 

solution, (32), are determined by demanding that

ψp(r, z) + ψh(r, z) = (1 − η)ψX� (35)

on the control surface ψ = (1 − η)ψX . Given that there are 
Nh independent cN values, the matching must be performed at 
Nh different values of θ. These values are evenly distributed in 
the range 0 to π, with a small common offset that is chosen 
so as to ensure that one of the matching points corresponds 
to the upper X-point on the LCFS. Note that, because of the 
up–down symmetry of the problem, any matching point in the 
upper half-plane (z  >  0) is automatically accompanied by an 
equivalent matching point in the lower half-plane (z  <  0). In 
other words, there are effectively 2 Nh matching points on the 
LCFS.

Our first example is an up–down-symmetric double-null 
plasma equilibrium calculated with the following parameters: 
R  =  1.0, a  =  1.2, b  =  −1.0, and c0  =  1.1. The corresponding 
Solov’ev solution is shown in figure 1.

In order to realize our method, the ψ − θ integral in 
expression (28) is implemented using a two-dimensional (2D) 

trapezium rule on a 1000 × 1000 uniform rectangular grid. 
The regularization parameters ε and η take the values 10−12 
and 10−6, respectively. We find that λ ≡ |ψ(R, 0)|/ψX  is a 
good measure of the accuracy of both the integration scheme 
and the matching procedure. Of course, λ, which is the rela-
tive magnitude of the normalized poloidal magnetic flux on 
the magnetic axis, should be equal to zero. Obviously, if Nh is 
too small then the matching procedure is inaccurate because 
the truncated series (32) cannot adequately represent the true 
homogeneous solution of the Grad–Shafranov equation. On 
the other hand, if Nh is too large then the matching procedure 
becomes inaccurate due to rounding errors. We find that λ is 
minimized, taking the value 5 × 10−6, when Nh  =  10.

Let ψs(r, z) denote the Solov’ev solution, (7), and let ψ(r, z) 
represent our solution. We find that the value of |ψ − ψs|/ψX , 
averaged over the plasma volume, is 6.6 × 10−4, whereas the 
maximum value is 5.6 × 10−3. Figure 2 shows the difference 
between our solution and the Solov’ev solution on the LCFS. 
Of course, these two solutions should be identical on this flux-
surface. It can be seen that the relative deviation between the 
two solutions peaks at the X-points, taking the value 6 × 10−3.

Figures 3 and 4 show ψ(r, z)/ψX profiles calculated by our 
method along horizontal and vertical lines in the r, z plane that 
pass through the magnetic axis. These profiles are compared 
to the equivalent Solov’ev profiles. It can be seen that our 
method accurately reconstructs the Solov’ev analytic solution 
within the plasma, but deviates strongly from this solution in 
the surrounding vacuum region. Moreover, both ψ and its spa-
tial derivatives are clearly continuous across the LCFS.

To reiterate, inside the plasma, our solution for ψ(r, z) coin-
cides with a known analytic solution of the Grad–Shafranov 

Figure 2.  Difference between our solution, ψ(r, z), and the 
Solov’ev solution, ψs(r, z), on the LCFS, ψ = ψX , for a double-null 
magnetic equilibrium with R  =  1.0, a  =  1.2, b  =  −1.0, c0  =  1.1, 
and Nh  =  10. The vertical lines indicate the matching points. The 
X-points lie at θ/π = ±0.696.

Nucl. Fusion 59 (2019) 064002
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equation. Moreover, outside the plasma, our solution is a 
homogeneous solution of the Grad–Shafranov equation  that 
is generated by a combination of the known plasma currents 
and currents at infinity. Finally, our solution and its spatial 
derivatives are continuous across the LCFS. These facts con-
clusively demonstrate the validity of our method.

Figure 5 shows contours of ψ(r, z) calculated by our 
method for the case in hand. It can be seen, by comparison 
with figure  1, that the contours coincide with those of the 
Solov’ev solution inside the plasma, but are very different 
in the vacuum region surrounding the plasma. Note, in par
ticular, the distorted magnetic X-points on the LCFS. There 
is a simple explanation for this phenomenon. In the Solov’ev 
solution, it is easily demonstrated that the two ψ = ψX  con-
tours that cross at either the upper or the lower X-point sub-
tend an acute angle

Θp = tan−1
[

8
(

c0

−b

)(
b + c0

a − c0

)]1/2

� (36)

with one another. For the case in hand, Θp = 71.4◦. In our 
solution, we expect the ψ = ψX  contours bordering the 
plasma-filled quadrant of the X-point to subtend the same 
angle. On the other hand, in accordance with a well-known 
general principle, we expect the ψ = ψX  contours bordering 
the three vacuum-filled quadrants to cross at right angles. 
There is an obvious inconsistency here, which is due to the 
fact that there is a significant toroidal current density pres-
ent in the plasma-filled quadrant, all the way to the magnetic 
separatrix, whereas there is zero current density in the vac-
uum-filled quadrants. The net result is that the vacuum-filled 
quadrant directly opposite the plasma-filled quadrant becomes 
distended.

5.  Our method for single-null equilibria

Conventional tokamak equilibria are generally up–down-
asymmetric, with a single magnetic null on the LCFS that lies 
below the magnetic axis. We can easily extend our analysis to 
take such equilibria into account by writing

Figure 3.  The solid curve shows ψ(r, 0)/ψX calculated by our 
method for a double-null magnetic equilibrium with R  =  1.0, 
a  =  1.2, b  =  −1.0, c0  =  1.1, and Nh  =  10. The dashed curve shows 
the corresponding Solov’ev solution. The horizontal and vertical 
dotted lines indicate the locations of the magnetic axis and the 
magnetic separatrix.

Figure 4.  The solid curve shows ψ(R, z)/ψX calculated by our 
method for a double-null magnetic equilibrium with R  =  1.0, 
a  =  1.2, b  =  −1.0, c0  =  1.1, and Nh  =  10. The dashed curve shows 
the corresponding Solov’ev solution. The horizontal and vertical 
dotted lines indicate the location of the magnetic separatrix.

Figure 5.  Contours of ψ(r, z) calculated by our method for double-
null magnetic equilibrium with R  =  1.0, a  =  1.2, b  =  −1.0, 
c0  =  1.1, and Nh  =  10. Note that the same contour levels are plotted 
as those that feature in figure 1.

Nucl. Fusion 59 (2019) 064002
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ψ(r, z) =
1
2
(b + c0)R 2 z 2 + c0 R ζ z 2

+ c1 R 2 ζ z +
1
2
(a − c0)R 2 ζ 2.

�

(37)

Note that the previous expression is an exact analytic solu-
tion of the Grad–Shafranov equation  corresponding to the 
toroidal current distribution (6). The magnetic axis still lies 
at r  =  R, z  =  0, ψ = 0. The magnetic X-points lie at ζ = ζ1, 
z  =  z1, ψ = ψ1 and ζ = ζ2, z  =  z2, ψ = ψ2. Here, z1 and z2 are 
the positive and negative roots, respectively, of the quadratic 
equation

2 c 2
0 z 2 + 3 c0 c1 R z + [c 2

1 − (a − c0) (b + c0)]R 2 = 0.� (38)

Once z1 and z2 have been determined, ζ1, ζ2, ψ1, and ψ2 are 
obtained from

ζ1,2 = − (b + c0)R z1,2

2 c0 z1,2 + c1 R
,� (39)

ψ1,2 =
1
2
(b + c0)R 2 z 2

1,2 + c0 R ζ1,2 z 2
1,2 + c1 R 2 ζ1,2 z1,2

+
1
2
(a − c0)R 2 ζ 2

1,2.
� (40)

If c1  <  0 then 0 < ψ2 < ψ1. Hence, we can take ψ = ψ2 as the 
LCFS. In this case, the LCFS only intersects a single magnetic 
X-point, which lies in the lower half plane (z  <  0). From now 
on, we shall write ψ2 = ψX, for the sake of consistency with 
our previous analysis.

Slightly generalizing our previous analysis, the poloidal 
magnetic flux generated by the toroidal plasma currents flow-
ing within the plasma is

ψp(r, z) = −
∫ (1−η)ψX

0

∮ √
r r′

2π
[(2 − k 2)K(k)− 2 E(k)]

k

(
a +

b R 2

r′ 2

)

×

[
ζ

′ 2 + z
′ 2

3 c0 ζ ′ z′ 2 + 2 c1 R ζ ′ z′ + (a − c0)R ζ ′ 2 + (b + c0)R z′ 2

]

× dψ dθ,
� (41)
where

0 =
(
c0 R tan2 θ

)
ζ

′ 3

+

[
c1 R 2 tan θ +

1
2
(b + c0) tan

2 θ R 2 + (a − c0)R 2
]
ζ ′ 2 − ψ,

� (42)

r′ =
√

2 R ζ ′ + R 2,� (43)

z′ = tan θ ζ ′.� (44)

The poloidal magnetic flux generated by currents flowing 
in distant magnetic field coils takes the form [13]

ψh(r, z) =
N �=1∑

N=0,Nh

cN ψN(r, z),� (45)

where the cN are arbitrary coefficients. When N is even,

ψN(r, z) =
∑

n=0,N/2−1

An
N r N−2 n z 2 n,

� (46)

and

An
N = − (N/2 + 1 − n) (N/2 − n)

n (n − 1/2)
An−1

N� (47)

for 1 � n � N/2 − 1, with A0
N = 1. On the other hand, when 

N is odd,

ψN(r, z) =
∑

n=0,(N−3)/2

An
N r N−2 n−1 z 2 n+1,

� (48)

and

An
N = − (N/2 + 1/2 − n) (N/2 − 1/2 − n)

n (n + 1/2)
An−1

N� (49)

for 1 � n � (N − 3)/2, with A0
N = 1. Note that the sum (45) 

is truncated at N  =  Nh. Incidentally, N  =  1 is excluded from 
the sum because ψ1 = 0. The sum (45) differs from the sum 
(32) because it incorporates up–down-asymmetric (i.e. odd 
N) homogeneous solutions of the Grad–Shafranov equation. 
These solutions were previously excluded because double-
null equilibria are up–down symmetric.

The coefficients, cN, that characterize the homogenous 
solution, (45), are determined by demanding that

ψp(r, z) + ψh(r, z) = (1 − η)ψX� (50)

on the control surface ψ = (1 − η)ψX . Given that there are 
Nh independent cN values, the matching must be performed at 
Nh different values of θ. These values are evenly distributed in 
the range 0 to 2π, with a small common offset that is chosen 
so as to ensure that one of the matching points corresponds to 
the magnetic X-point on the LCFS.

Figure 6.  Contours of ψ(r, z) calculated by Solov’ev’s method for a 
single-null magnetic equilibrium with R  =  1.0, a  =  1.2, b  =  −1.0, 
c0  =  1.1, and c1  =  −0.005.
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Our second example is an up–down-asymmetric single-
null plasma equilibrium calculated with the following param
eters: R  =  1.0, a  =  1.2, b  =  −1.0, c0  =  1.1, and c1  =  −0.005. 
The corresponding Solov’ev solution is shown in figure 6.

As before, the ψ − θ integral in expression (41) is imple-
mented using a 2D trapezium rule on a 1000 × 1000 uniform 
rectangular grid. The regularization parameters ε and η again 
take the values 10−12 and 10−6, respectively. We find that the 

previously defined error parameter, λ, attains its minimum 
value, 9 × 10−4, when Nh  =  18.

We find that the value of |ψ − ψs|/ψX , averaged over the 
plasma volume, is 3.4 × 10−3, whereas the maximum value is 
7.7 × 10−3. Figure 7 shows the difference between our solu-
tion and the Solov’ev solution on the LCFS. Of course, these 
two solutions should be identical on this flux-surface. It can 
be seen that the relative deviation between the two solutions 
peaks at the X-point, taking the value 3 × 10−3.

Figure 8 shows contours of ψ(r, z) calculated by our 
method for the case in hand. It can be seen, by comparison 
with figure  6, that the contours coincide with those of the 
Solov’ev solution inside the plasma, but are very different 
in the vacuum region surrounding the plasma. As before, the 
magnetic X-point on the LCFS is distorted in such a manner 
that the vacuum-filled quadrant directly opposite the plasma-
filled quadrant becomes distended. The explanation for this 
phenomenon is the same as that given in the previous section.

6.  Summary

In this paper, we calculate a tokamak equilibrium generated 
by a combination of currents flowing within the plasma and 
in distant external magnetic field coils. The poloidal magnetic 
flux surfaces inside the plasma are identical to those given by 
the well-known exact analytic solution of the Grad–Shafranov 
equation due to Solov’ev. However, the flux surfaces outside 
the plasma correspond to a properly matched vacuum solu-
tion. We use a Green’s function method to compute the poloi-
dal magnetic flux generated by the known plasma currents, 
together with a parameterized homogeneous solution to the 
Grad–Shafranov equation (that is well-behaved at small r and 
z), to construct the vacuum solution. The vacuum solution 
is matched to the analytic solution on the last closed magn
etic flux surface (LCFS) to determine the parameters in the 
homogeneous solution. This procedure is performed for both 
up–down-symmetric double-null and up–down-asymmetric 
single-null equilibria. We find that any magnetic X-points on 
the LCFS are distorted due to the fact that one quadrant is 
filled by a current-carrying plasma, whereas the other three 
are filled by a vacuum in which no current flows. In particular, 
the vacuum quadrant directly opposite the plasma-filled quad-
rant expands at the expense of the other three quadrants. We 
conjecture that this phenomenon could be a feature of any 
magnetically diverted tokamak equilibrium in which there is 
a large toroidal current density at edge of the plasma (as is 
indeed generally the case in H-mode equilibria). Finally, the 
method described in this paper could easily be modified to 
deal with the extended Solov’ev-type equilibria described in 
[9–11].
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Figure 8.  Contours of ψ(r, z) calculated by our method for a 
single-null magnetic equilibrium with R  =  1.0, a  =  1.2, b  =  −1.0, 
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levels are plotted as those that feature in figure 6.

Nucl. Fusion 59 (2019) 064002



8

T. Xu and R. Fitzpatrick﻿

necessarily subtend 90 degrees if the plasma current on the 
LCFS is non-zero, which is inconsistent with the standard 
scenario in which the field-lines that cross at a magnetic 
X-point are assumed to do so at right-angles. The authors 
also thank F.L. Waelbroeck (IFS, University of Texas at 
Austin) for helpful discussions. This work was funded by 
the US Department of Energy under Contract DE-FG02-
04ER-54742. T.X. was funded by the China Scholarship 
Council and the ITER Special Foundation of China under 
Contract 2017YFE0301202.

References

	 [1]	 Grad H. and Rubin H. 1958 Hydromagnetic equilibria and 
force-free fields Proc. of 2nd UN Conf. on Peaceful Uses 
of Atomic Energy (Geneva, Switzerland, 1–13 September 
1958) vol 31, p 190 (https://inis.iaea.org/search/search.
aspx?orig_q=RN:39082408) 

	 [2]	 Shafranov V.D. 1958 On magetohydrodynamical equilibrium 
configurations Sov. Phys.—JETP 6 545

	 [3]	 Lüst R. and Schlüter A. 1957 Axialsymmetrische 
magnetohydrodynamische gleichgewichtskonfigurationen 
Z. Naturforsch. A 12a 850

	 [4]	 Solov’ev L.S. 1968 The theory of hydromagnetic stability of 
toroidal plasma configurations Sov. Phys.—JETP 26 400

	 [5]	 Johnson J.L. et al 1979 Numerical determination of 
axisymmetric toroidal magnetohydrodynamic equilibria 
J. Comput. Phys. 32 212

	 [6]	 Lao L.L., Hirshman S.P. and Weiland R.M. 1981 Variational 
moment solutions to the Grad–Shafranov equation Phys. 
Fluids 24 1431

	 [7]	 Green B.J. and Zehrfeld H.P. 1977 Local, ideal and resistive 
stability in tokamaks with non-circular cross-section Nucl. 
Fusion 17 1133

	 [8]	 Weening R.H. 2000 Analytic spherical torus plasma 
equilibrium model Phys. Plasmas 7 3654

	 [9]	 Guazzotto L. and Freidberg J.P. 2007 A family of analytic 
equilibrium solutions for the Grad–Shafranov equation 
Phys. Plasmas 14 112508

	[10]	 Shi B. 2009 Exact single-null diverted tokamak equilibria 
Plasma Phys. Control. Fusion 51 105008

	[11]	 Cerfon A.J. and Freidberg J.P. 2010 ‘One size fits all’ analytic 
solutions to the Grad–Shafranov equation Phys. Plasmas 
17 032502

	[12]	 Jackson J.D. 1999 Classical Electrodynamics 3rd edn (New 
York: Wiley) p 182

	[13]	 Reusch M.F. and Neilson G.H. 1986 Toroidally symmetric 
polynomial multipole solutions of the vector Laplace 
equation J. Comput. Phys. 64 416

Nucl. Fusion 59 (2019) 064002

https://inis.iaea.org/search/search.aspx?orig_q=RN:39082408
https://inis.iaea.org/search/search.aspx?orig_q=RN:39082408
https://doi.org/10.1016/0021-9991(79)90129-3
https://doi.org/10.1016/0021-9991(79)90129-3
https://doi.org/10.1063/1.863562
https://doi.org/10.1063/1.863562
https://doi.org/10.1088/0029-5515/17/6/003
https://doi.org/10.1088/0029-5515/17/6/003
https://doi.org/10.1063/1.1287828
https://doi.org/10.1063/1.1287828
https://doi.org/10.1063/1.2803759
https://doi.org/10.1063/1.2803759
https://doi.org/10.1088/0741-3335/51/10/105008
https://doi.org/10.1088/0741-3335/51/10/105008
https://doi.org/10.1063/1.3328818
https://doi.org/10.1063/1.3328818
https://doi.org/10.1016/0021-9991(86)90041-0
https://doi.org/10.1016/0021-9991(86)90041-0

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Vacuum solution for Solov﻿’﻿ev﻿’﻿s equilibrium configuration in tokamaks﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Grad﻿–﻿Shafranov equation
	﻿﻿3. ﻿﻿﻿Solov﻿’﻿ev﻿’﻿s solution and its problem
	﻿﻿4. ﻿﻿﻿Our method for double-null equilibria
	﻿﻿5. ﻿﻿﻿Our method for single-null equilibria
	﻿﻿6. ﻿﻿﻿Summary
	﻿﻿﻿Acknowledgments
	﻿﻿﻿References﻿﻿﻿﻿


