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Abstract
The ion temperature gradient (ITG) modes in transport barriers (TBs) of tokamak plasmas are 
numerically studied with a code solving gyrokinetic integral eigenvalue equations in toroidal 
configurations. It is found that multiple ITG modes with conventional and unconventional 
ballooning mode structures can be excited simultaneously in TBs with steep gradients of 
ion temperature and density. The characteristics of the modes, including the dependence of 
the mode frequencies, growth rate and structure on plasma parameters, are systematically 
investigated. Unconventional modes with large mode-number l (where l denotes a certain parity 
and peak number in ballooning space) dominate in the large ρθk s region ( ρθk 1.2s ⩾ ), while 
the conventional mode with =l 0 dominates in the medium ρθk s region ( ρ <θk0.4 1.2s⩽ ), and 
unconventional modes with small mode-number l dominate in the small ρθk s region ( ρ <θk 0.4s ). 
Thus, the ρθk s spectra of these conventional and unconventional modes at steep gradients 
are qualitatively different from those of the conventional ITG modes at small or medium 
gradients, in which the growth rate of the only ITG mode with =l 0 reaches maximum at the 
medium value ρ =θk 0.6s . Through scanning ion temperature gradient εT i and density gradient 
εn separately, it is proven that the synergetic effect of εT i and εn, rather than εT i alone, drives 
the unconventional ITG modes in TBs. Moreover, it is found that the critical value of εn for 
driving the unconventional ITG modes with large l number increases with increasing ρθk s. In 
addition, the effects of magnetic shear on conventional and unconventional ITG modes in the 
high confinement regime (H-mode) are analyzed in detail, and compared with equivalent effects 
on conventional modes in the low and intermediate gradient regimes (L- and I- modes). Finally, 
the effects of the poloidal wave number and gradients of ion temperature and density on radial 
transport are analyzed based on quasi-linear mixing length estimations.
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1.  Introduction

Transport barriers (TBs) with steep density and/or temperature 
gradients are desirable for magnetic fusion plasmas, since con-
finement is significantly improved in such barriers. Great efforts 
have been made, and significant progress has been achieved, in 
understanding the formation mechanisms and advancing trans-
port barrier performance. On the other hand, despite growing 
efforts in the study of transport in TBs, there is no consensus to 
date on quite a few issues, such as the mechanism for residual 
electron heat transport in TBs. It is well accepted that anoma-
lous cross-field particle, momentum, and energy transport 
is associated with the presence of small scale turbulence in 
tokamaks [1–5]. In addition, ion temperature gradient (ITG) 
instabilities have been widely considered as a major candidate 
to explain ion-scale turbulent transports and, therefore, inten-
sively studied experimentally and theoretically. However, most 
previous studies have focused on modes in core plasmas of low 
or medium temperature and density gradients. For example, 
Dong et  al derived an integral equation  including magnetic 
curvature and gradient drift motions of ions, and linear mode 
coupling caused by spatial inhomogeneity in toroidal magnetic 
configurations [5]. Possible correlations between ITG modes 
and some experimental results were discussed at medium gra-
dients. Moreover, Li et al observed ITG modes of ballooning 
structures with even or odd parity at medium gradients [6]. It 
was found that the behaviors of modes with even and odd sym-
metries are quite different, when wave–particle interactions are 
considered.

In experiment, high confinement (H-mode) plasmas are 
characterized by steep gradients of both temperature and den-
sity, and edge transport barriers (ETBs) are observed in so 
called pedestals at plasma edge. In addition, regions of steep 
temperature and density gradients also exist, and so called 
internal transport barriers (ITBs) are observed in core plasmas 
[7–10]. Furthermore, a new improved energy confinement 
mode (I-mode) in a stationary edge pedestal has been observed 
recently on some tokamak devices, including Alcator C-Mod 
[11, 12] and DIII-D [13]. An I-mode discharge is character-
ized by a steep temperature gradient, comparable to those in 
H-mode, while the density gradient remains identical to those 
in low confinement mode (L-mode). It is worth pointing out 
that decoupling between particle and energy transports, as 
observed in the I-mode discharges, are common even in ITB 
experiments.

The steep gradients in TBs can drive a variety of instabili-
ties, including, of course, the ITG instability [3, 13]. Therefore, 
a crucial problem encountered in tokamak research is better 
understanding of the properties of instabilities and mech
anisms for favorable confinement in TBs [14–16]. Recently, 
Fulton et al found that in the pedestal region of the DIII-D 
tokamak the electrostatic instability exhibited an unusual 
mode structure, which peaked at the poloidal angle /θ π=± 2. 
They also demonstrated that such unconventional mode struc-
ture was due to the steep pressure gradients in pedestals instead 
of the specific magnetic geometry of DIII-D [13]. Through a 
pressure scan in the pedestal region of DIII-D, E. Wang et al 
found that even though micro-tearing mode might be excited 

[15], the electrostatic ITG mode could still be dominant in 
some parameter regimes at the top of the pedestal. Xu et al 
found that in comparison with ELMy H-mode in pedestals, 
I-mode had a lower pedestal pressure and current due to lack 
of a particle barrier, exhibiting ELM-free operating proper-
ties [16], and the particle and energy transport channels were 
clearly decoupled. For this reason, I-mode is a valuable opera-
tion regime for exploring the underlying physical mechanisms 
of transport as well as for the transition to H-modes [12].

Actually, a number of ITG modes with unconventional 
ballooning mode structures, characterized by peaking at arbi-
trary poloidal positions, have been observed in simulations 
[1, 2, 13, 17, 18]. These were considered as possible candi-
dates to explain the transport in TBs. Singh et al studied the 
unconventional eigenmodes with nonzero ballooning angle, 
which have an important influence on the parity of the asso-
ciated heat flux [19]. More recently, Xie et al found that at 
steep gradients the most unstable mode might not be the usual 
so called ground eigenstate [17, 21], since the most unstable 
mode has unconventional ballooning structure. Such results 
may account for the better confinement in H-mode. Rafiq 
et al found that the unconventional modes can be affected by 
geometrical effects in 3D stellarator geometry [18]. Although 
these ITG modes of unconventional ballooning structures 
were numerically discovered recently, their physical prop-
erties are far from well investigated. For instance, the basic 
characteristics and exciting conditions of the modes have 
not been obtained and described completely. In addition, 
individual roles played by the ITG and density gradient in 
exciting such ITG modes have not been discussed in detail. 
In particular, the dominant plasma parameter regimes, where 
multiple unstable ITG eigenmodes of both conventional and 
unconventional ballooning structures intrinsically appear 
simultaneously, have not been identified.

In the present work, we investigate the characteristics of 
the ITG modes in TBs of tokamaks, by using the updated 
toroidal gyrokinetic code HD7. It is found that multiple 
unstable ITG modes with conventional and unconventional 
ballooning mode structures coexist in TBs. Here, the uncon-
ventional ballooning mode structures mean that there are one 
or multiple peaks located off from the mid-plane at the lower 
field side, while the conventional one has one peak in the 
mid-plane at the lower field side. The spectra of these con-
ventional and unconventional ITG modes at steep gradients, 
which are qualitatively different from those of conventional 
ITG modes, are investigated systematically. The effects of 
ITGs on both conventional and unconventional ITG modes are 
studied in detail. Moreover, the key role of density gradient in 
exciting unconventional ITG modes is explored. The effects 
of magnetic shear on both conventional and unconventional 
ITG modes at steep gradients are discussed in detail and com-
pared with those on conventional ITG modes at small/medium 
gradients. Finally, rough estimations on turbulent transport 
induced by both conventional and unconventional ITG insta-
bilities are presented, based on the quasi-linear radial mixing 
length approximation. Results reported in this work provide a 
new perspective and may help in understanding the compli-
cated transport in TBs.
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The remainder of this paper is organized as follows. 
Section 2 details the integral eigenmode equation and phys-
ical model. The numerical results are analyzed in section 3. 
Finally, the summary and discussion of the results are given 
in section 4.

2.  Integral eigenmode equation and physical model

The gyrokinetic integral equation, widely applied in studies of 
low-frequency electrostatic micro-instabilities in inhomoge-
neous axisymmetric toroidal plasmas, is derived briefly in this 
section. In this equation, the ion toroidal drifts induced by the 
magnetic curvature and magnetic gradient ω θ⊥v v, ,D

2 2( )// , the 
ion transit motion k v// //, and full finite Larmor radius (FLR) 
effects are all retained, while ion magnetic trapping is 
neglected. In addition, the electrons are assumed to be adia-
batic, and trapped electrons are neglected. The ballooning rep-
resentation is employed so that the linear mode coupling due 
to the toroidal magnetic configuration is taken into account. 
The α−s  equilibrium model with circular flux surfaces is 
adopted.

The adiabatic electron response is expressed as

φ=� �n
n e

T
.e

0e

e
� (1)

The ion response is given by

∫φ α= − +� �n
n e

T
vJ hd ,i

0i

i

3
0 i( )� (2)

where Ti and Te are the temperature of the ions and elec-
trons respectively, /� =⊥ ⊥v v vTi, � =v v vTi/// // , =v T m2Ti i i

1 2( / ) / , 
α = Ω⊥k vi Ti i/ . Ω = B m cei i/  is the ion gyro-frequency, αJ0 i( ) 
is the zeroth-order Bessel function. The non-adiabatic 
response h has to be determined by solving the gyro-kinetic 
equation [22],
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where φ φ= �� Te i/ , and the subscripts ‘i’ and ‘e’ stand for ions 

and electrons respectively. π= − −−
⊥� �F v v vexpTM i

2 3 2 2 2( ) ( )/
//  

is the Maxwellian distribution function, ωD represents ∇B 
and curvature drift frequency in a circular flux surface equi-
librium, and ω = θ∗ ck T BLe ne e/  is the electron diamagnetic 
drift frequency. = − −L T rdln dT i i

1( / )  and = − −L n rdln dn
1( / )  

are the scale lengths of the ITG and density gradient respec-
tively. ε = L Rn n/  and ε = L RT Ti i/ , where R is the major radius 
of the torus, are used as dimensionless primary variables, 

representing the density and ITGs respectively. η = L Ln Ti i/  is 
the ratio of the density gradient to the ITG and considered as 
a secondary variable. We investigate the effects of ion den-
sity and temperature gradients separately, by scanning εn and 
εT i. The following ballooning representation has been used in 
deriving equation (3),
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where θ and ζ are the extended poloidal and the toroidal angles 
respectively. The solution of equation (3) with the boundary 
condition =h 0 as θ ±∞→  [20, 23] can be written as
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From the quasineutrality condition =� �n ne i, we obtain,
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Through some mathematical manipulations, equation  (6) is 
reduced to the following integral eigenvalue equation
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After the integration over ⊥v  in equation  (8), we change the 
integration over v// to integration over τ, by introducing

τ
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( ) θ�S r m
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0

 and θ θ= =θ
′ ′ ′� �k S r k S r m

r0 0
0

( ) ( ) , which are the Fourier 

transform of the radial variable = −x r r0 (r0 being defined 

by =q r m

n0( ) ) in the toroidal model. Through the conversion 
from θ to k, the integral equations (7) and (8) can be written 
as [5]
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The radial wave vectors k and ′k , related to the extended 
poloidal angle θ and the poloidal wave vector θk , are nor

malized to ρ−s
1 with ρ = Ω =T m c T m B2 2 es e i

1 2
i e i

1 2( / ) / ( ) // / , and 

Ij =j 0, 1( ) is the modified Bessel function of order j. In addi-
tion, all the standard symbols have their conventional mean-
ings—for instance, q is safety factor, =�s r q q rd d/  is magnetic 
shear, and τ = T Te e i/  is the ratio of electron temperature to ion 
temperature.

The above equation is similar to those used by Dong et al 
[5], Romanelli [20], and H. Sugama [23]. Since the ballooning 
representation is employed for the toroidal coupling of ITG 
modes, the θ-variation is dominant. It has to be mentioned 
that we have neglected effects of finite ballooning angle 
and assumed θ = 00  in this work. Such effects will be con-
sidered in future works with the upgraded code HD7. Thus, 
the original 2D problem is approximated with one of calcu-
lating the mode structure along the magnetic field lines [23] 
to the lowest order of n1/ , with n being the toroidal mode 
number. Moreover, the ρ∗ expansion used in the gyrokinetic  
equation derivation is validated because the ratio of the ion 
Larmor radius to the gradient scale lengths is assumed to be 
small enough (ρ∗� 1).

For the numerical results presented in this work, we 
updated the gyrokinetic code HD7 to solve the linear gyro-
kinetic integral equation  for both symmetric (even-parity or 
odd-parity) and asymmetric eigenmode structures. The reli-
ability of the unconventional ITG mode solutions of HD7 
code is attested by the GTC code [17]. HD7 code has been 
extensively applied in studies of micro-instabilities and tur-
bulence, such as impurity effects [22, 25], trapped electron 
mode [26], electron temperature gradient mode [27], velocity 
shear [28], anisotropy of ITG [29], electromagnetic perturba-
tions (Alfvén modes driven by ITG [30], kinetic ballooning 
mode [31], kinetic shear Alfvén modes [32]), elongated cross 
section  [33], and reversed field pinch configuration [34]. 
Recently, the results of HD7 code have provided appreciable 

support for experimental observations at the HL-2A tokamak 
[35]. In addition, HD7 code has been benchmarked with other 
numerical simulation codes, such as GYRO, GEM, GS2, 
GTC, GT3D, and FULL [15, 36].

3.  Numerical results

It should be noted that the ratio of density gradient to temper
ature gradient is considered as a secondary variable in this 
work. In order to identify individual roles of the ion temper
ature and density gradients separately, the dimensionless vari-
able εT i, representing ITG, is introduced into the HD7 code as 
a primary parameter for the first time. The parameter εn in this 
work may be considered as representing the density gradient 
in internal/edge transport barriers, according to [12, 17]. In 
particular, if εT i and εn are both small, these parameters cor-
respond to the gradients of H-mode in pedestals. On the other 
hand, the parameters correspond to the gradients in the edge 
of I-mode if the εT i is small but εn is medium. If both εT i and 
εn are medium, the parameters correspond to the gradients in 
L-mode plasmas. Parameters used in this work are: ρ =θk 0.6s , 
=q 3, =�s 1.6, ε = 0.044n , ε = 0.007T i  and τ = 1e  unless oth-

erwise stated. It should be noted that both the growth rate and 
real frequency are usually normalized to ω∗e, while the growth 
rate and real frequency in figures  3–6 are normalized to 
ω ρθ∗

−k se
1( ) , because the electron diamagnetic drift frequency 

is proportional to ρθk s.

3.1.  Observation of multiple ITG modes

Since the ballooning representation is employed for toroidal 
mode coupling, the θ-variation is a dominant feature of the 
mode structures along the magnetic field lines [24]. Multiple 
ITG modes with conventional and unconventional ballooning 
mode structures are found unstable—in contrast to regions 
with low or medium gradients, where only one mode with 
conventional ballooning mode structure is unstable. One 
example is given in figure 1, where the eigenmodes with dis-
tinguishable structures in the ballooning space are presented. 
The parameters for the results are ρ =θk 0.6s , ε = 0.044n , 
ε = 0.007T i , =�s 1.6, =q 3 and τ = 1e . Each mode is assigned 
a mode-number l in accordance with its parity and number of 
peaks for convenience of description. For example, the mode 
with even parity (symmetric with respect to the middle plane) 
and one peak is designated =l 0, while the mode with odd 
parity (anti-symmetric with respect to the middle plane) and 
two peaks is called =l 1, and so on. It is very clear that an 
even l corresponds to a mode with even parity, while an odd 
l represents a mode with odd parity. In addition, for modes 
with the same parity, the higher l is, the more peaks the mode 
structure has. In this sense, the number l may be considered 
as a harmonic number. For instance, eigenfunctions φ θ�( ) in 
figures 1(a) and (b) represent the lower-order harmonics, and 
those in figures 1(c)–( f ) represent the higher-order harmonics.

The width of the eigenfunction in the ballooning space is 
an important parameter for physics analysis and mixing length 
estimation of quasi-linear turbulent transport coefficients. The 
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following formula is applied to estimate the average width of 
the eigenfunction in ballooning space:

∫
∫

θ
θ φ θ θ

φ θ θ
=

�

�

d

d
.2 1 2

2
2

2

( )

( )

/� (17)

It is found in figure 1 that the widths of the eigenfunctions in bal-
looning space gradually broaden with increasing mode-number 
l. For instance, the width changes from   θ = 0.252482 1 2/  for 
=l 0 to θ = 0.92822 1 2/  for =l 5. It is worth pointing out 

that, as shown in figure 2, the eigenfunctions given in figure 1 
gain more fine structure at the boundary for increasing ρθk s, 
although the outlines are almost unchanged. This observation 
suggests that higher resolution is required in order to obtain 
these modes. In addition, it is interesting to note that, for the 
modes with mode-number =l 0 and =l 2, figure  2 depicts 
that the increase of ρθk s tends to enlarge the peak-number of 
the eigenfunctions of both conventional and unconventional 
ITG modes in ballooning space, and broaden the eigenfunc-
tions. For example, the width of the eigenfunction for the mode 
with =l 0 increases from θ = 0.183 242 1 2/  for ρ =θk 1.09s  to 
θ = 0.28612 1 2/  for ρ =θk 1.48s , and for the mode with =l 2 

the width increases from θ = 0.445 492 1 2/  for ρ =θk 0.81s  to 
θ = 0.656 782 1 2/  for ρ =θk 1.39s . From the results above, we 

can see that to understand the properties of the modes at steep 
ion temperature and density gradients better, more mode char-
acteristics should be explored.

3.2.  Wave vector spectra

The normalized growth rate γ ρ ωθ ∗k s e/  and real frequency 
ω ρ ωθ ∗k sr e/  versus ρθk s for ITG modes with different ballooning 
structures are given in figure  3 for =q 2, 3 and 4. Other 
parameters are the same as in figure 1. It is clearly shown in 
figures 3(a) and (b) that at steep gradients, the growth rates of 
modes with =l 1, 2, 3 exceed those of conventional modes in 
the region of ρ <θk 0.378s . Moreover, the modes with larger 
mode-number ( =l 4, 5) become dominant in the region of 
εn, although they are somewhat weaker than the conventional 
modes in the region of ρ< <θk0.378 1.2s . For a clear compar-
ison, figures 3(c) and (d) give γ ρ ωθ ∗k s e/  and ω ρ ωθ ∗k sr e/  versus 
ρθk s for ITG modes with conventional ballooning structures 

at medium gradients for ε = 0.6n  and ε = 0.1T i . In contra-
diction to cases at steep gradients, at the medium gradients 
modes with l from 1 to 5 are not excited and the shape of the 
ρθk s spectrum is also quite different from those at the steep 

gradients. For example, the growth rate of the =l 0 mode at 
steep gradients first increases and then slightly decreases with 
increasing ρθk s, but at medium gradients it first increases and 
then quickly decreases with increasing ρθk s after reaching the 
maximum growth rate. It may be concluded that at steep ion 
temperature and density gradients, the unconventional modes 
with large mode-number (l 4⩾ ) dominate in the large ρθk s 
region ( ρθk 1.2s ⩾ ), the conventional modes ( =l 0) dominate 
in the medium ρθk s region ( ρ <θk0.4 1.2s⩽ ), and the uncon-
ventional modes ( ≠l 0) are dominant in the small ρθk s region 
( ρ <θk 0.4s ). The results above may suggest that the excitation 
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properties of unstable modes at steep gradients (which corre-
spond to the parameters in TBs) are quite different from those 
at small/medium gradients.

Furthermore, it is found that the safety factor q also plays 
a significant role in changing the spectra of the ITG modes 
with different ballooning structures. When the q value 
increases from 2 to 3, the position of the maximum growth 
rate of the ITG modes with large mode-number ( =l 4, 5) 
shifts from ρθk ~ 1.1s  to ρθk ~ 1.21s , while the counterpart 
with small mode-number (up to l  =  3) slightly shifts from 
ρθk ~ 0.73s  to ρθk ~ 0.76s . Meanwhile, the dominant region 

of the modes with large mode-numbers ( =l 4, 5) becomes 
larger in the large ρθk s region for =q 3 in figure 3(e) than 
that for =q 2 in figure 3(a). For =q 3, the growth rates of 
modes with =l 1, 2, 3 exceed those of the conventional 
modes in the region of ρ <θk 0.36s . In comparison, the domi-
nant region of modes with =l 1, 2, 3 for =q 3 is smaller 
than that for =q 2. For a very large q value ( =q 4), the 
growth rates of modes with =l 1, 2, 3 exceed those of 
conventional modes in the region of ρ <θk 0.348s , and their 
dominant region for =q 4 in figure 3(g) is smaller than that 
for =q 2, 3 in figures  3(a) and (e). With increasing ρθk s, 
the growth rates of modes with =l 4, 5 are comparable to 
those of other unconventional modes and then become dom-
inant after exceeding them. Besides, figures  3(b), (d) and 
( f ) show that the normalized real frequencies of the modes, 
propagating in the ion diamagnetic drift direction, slightly 
decrease with the increase of q, but this tendency is oppo-
site to the cases of the medium gradients in figure 10 of [5]. 
It can also be seen that the larger the mode-number is, the 
higher the real frequency. It should be noted that for =q 2 
in figures 3(a) and (b), the parameters might correspond to 
the ITBs, while the parameters in figures  3(e)–(h) might 
correspond to the ETBs.

Different from initial gyrokinetic codes, HD7 is an eigen-
value code that could find not only the most unstable mode 

but also other multiple unstable modes. Figure  3 can help 
to account for the ‘frequency jump’ [13] and ‘eigenstate 
jump’ [17], which are shown in some simulations using 
the initial-value codes. For example, figure 3(g) shows that 
the most unstable mode in the small and large ρθk s regions 
( ρθk 0.348s ⩽  and ρθk1.218 1.5s⩽ ⩽ ) is the mode with =l 4, 
but the =l 0 mode exceeds others and becomes the domi-
nant mode at steep gradients in the medium ρθk s region 
( ρ <θk0.348 1.218s⩽ ). Accordingly, such phenomena as ‘fre-
quency jump’ or ‘eigenstate jump’ take place at ρ =θk 0.348s  
or ρ =θk 1.218s , because one of these modes is the most 
unstable alternative mode. Consequently, the dominant 
growth rate, frequency and eigenstate in the system transit 
from one branch to another at certain critical parameter 
values when scanning ρθk s.

Figures 4(a) and (b) depict the variation of the widths of 
the eigenfunctions in θ and k spaces respectively, as functions 
of ρθk s at the steep (the solid lines) and medium (the dashed 
lines) gradients of the ion temperature and density. It is 
shown in figure 4(a) that the widths of the modes with l from 
0 to 3 first decrease and then increase with increasing ρθk s. 
For the modes with =l 4, 5, the widths of the eigenfunctions 
decrease with the increase of ρθk s in the whole ρθk s region, 
though in the region of ρθk 1.0s ⩽  the widths are much broader 
than those of the modes with =l 0 ~ 3. It can be seen that 
although the widths of the conventional modes at medium 
gradients decrease monotonically with ρθk s increasing in 
the whole ρθk s region, they are comparable with that of the 
mode with =l 2 in the small/medium ρθk s region ( ρθk 0.8s ⩽ ). 
Meanwhile, figure  4(a) can also reflect the parallel wave-
number (can be roughly estimated with the ratio of the mode-
number to the width of the eigenfunction) which is directly 
related to the Landau resonance/damping and determines the 
variation of the linear growth rate. In addition, figure  4(b) 
shows that at steep ion temperature and density gradients, 
the eigenfunctions of the unconventional modes in k space 
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Figure 4.  Variation of the width of eigenfunction in the ballooning (a) and k (b) spaces with ρθk s for the conventional ITG mode at medium 
gradients of ε = 0.6n  and ε = 0.1T i  and steep gradients of ε = 0.044n  and ε = 0.007T i . The other parameters are the same as those in 
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with large numbers =l 4, 5 first broaden rapidly in small 
ρθk s region, and then broaden slowly in large ρθk s region with 

the increase of the poloidal wave vector. However, it is quite 
different for the modes with small mode-numbers (l  =  0–3), 
since their eigenfunctions slowly broaden in the small ρθk s 
region and then swiftly broaden in the large ρθk s region with 
increasing ρθk s, and are even broader than those of the modes 
with =l 4, 5 for ρθk 1.0s ⩾ . These results may help to under-
stand the behaviors of the spectra given in figure 3. That is, 
the phenomenon that the unconventional modes with large 
mode-number are dominant in the large ρθk s region can be 
explained through the FLR effect, since FLR has a stabi-
lizing effect on the modes. The FLR effect is induced through 
the FLR term J0 in equation (3). For conventional modes at 
medium ion temperature and density gradients, figure  4(b) 
illustrates that in the small/medium ρθk s region ( ρθk 0.8s ⩽ ), 
the width of the eigenfunction is comparable to those of the 
unconventional modes with =l 2 in k-space. In addition, it is 
shown that in comparison with the unconventional modes, the 
width of the eigenfunction of conventional modes increases 
smoothly in k-space. The results presented above imply that 
at steep gradients of ion temperature and density, on one 
hand, the characteristics of the conventional and unconven-
tional ITG modes with different mode-number are different, 
and that, on the other hand, they are also different from the 
conventional ITG modes at small or medium gradients. Thus, 
we see that conventional and unconventional modes obvi-
ously make different contributions to turbulent transport in 
TBs at steep gradients.

More discussions will be dedicated in section  3.6, since 
the width of the eigenfunction in the ballooning space is an 
important parameter for physics analysis and mixing length 
estimation.

3.3.  εTi variation

Since it is known that both ion temperature and density gra-
dients can provide sufficient free energy to drive instabilities 
in TBs, it is necessary to distinguish the individual roles of 
εT i and εn. In this section, we focus on the role of ITG εT i; we 
go on to study the role of the ion density gradient εn in the 
next section. As analyzed in the previous section, at steep gra-
dients conventional and unconventional ITG modes with dif-
ferent mode-numbers have different spectra in the ρθk s space. 
To compare their physical properties, typical conventional 
and unconventional ITG modes of ρ =θk 0.5, 0.65, 0.9s  are 
discussed in this section. A comparison between these modes 
at medium and steep gradients is also performed.

The normalized growth rate and real frequency as func-
tions of εT i are given in figure  5 for ρ =θk 0.5, 0.65, 0.9s , 
=�s 1.6, ε = 0.044n , τ = 1e  and =q 3. The eigenfunctions φ θ�( ) 

are similar to the structures in figure  1. It is found that at 
steep gradients, γ ρ ωθk / *s e and ω ρ ωθk / *sr e decrease with 
increasing εT i, indicating that the increase of ITG destabi-
lizes the ITG modes. With increasing εT i for ρ =θk 0.55s , as 
shown in figure 5(a), the dominant mode changes from =l 0 
to =l 1 at ε = 0.0175T i , and then to =l 2 at ε = 0.0261T i . For 
ρ =θk 0.65s , both critical values for the transition of the domi-

nant modes slightly increase, to ε = 0.0213T i  and ε = 0.03T i , 
as shown in figure 5(c). In short, both cases in figures 5(a) 
and (c) show that the conventional and unconventional ITG 
modes with l  =  0–4 have comparable growth rates across the 
whole εT i regime. Moreover, the mode with =l 5 can always 
be excited in the small εT i regime, and also has the same level 
growth rate as other modes there. Therefore, it is recognized 
that at a high density gradient (small εn value), the roles of 
unconventional modes with >l 0 have to be taken into account 
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across the whole εT i regime, and that, in the small εT i regime in 
particular, the =l 5 mode can be excited so that the summed 
role of such unconventional modes significantly exceeds that 
of the conventional mode.

In experiments, the I-mode is characterized by a large 
temperature gradient which is comparable to the counterpart of 
the H-mode and an ordinary density gradient which is compa-
rable to that of the L-mode. Thus, it should be noted that for a 
steep temperature gradient (here ε = 0.0175T i ), the parameters 
of the small and medium/large εn regimes in figure 5 correspond 
to the H-mode and I-mode, respectively. The above results sug-
gest that unconventional modes are significantly important parts 
in the study of the long wave-length ITG modes, and that taking 
them into account may help in understanding the physical pro-
cess of transport events in TBs, which will be analyzed based 
on the quasi-linear mixing length estimation in section 3.6.

For comparison, figure 6 gives the results for small/medium 
density gradient. Clearly, the conventional ITG modes with 
=l 0 are excited across the whole εT i region, but the unconven-

tional ITG modes with ≠l 0 are not excited. Besides, figure 6 
shows that the growth rates of conventional modes increase 
with increasing εn. Furthermore, since ηi is usually used for 
measuring ITG, two cases with the same ηi value are com-
pared, in which one is for steep gradients in figure 5(a) with 
ε = 0.044n  and ε = 0.022T i , and the other is for medium gradi-
ents in figure 6(a) for ε = 0.3n  and ε = 0.15T i . Obviously, the 
spectra of unstable modes are completely different and these 
two cases, indicating that the ηi value alone is not enough to 
determine the accurate physical process. In other words, the 
density gradient εn is also a key parameter for the excitation of 
unconventional ITG modes with large mode-numbers, which 
will be systematically studied in the next section.

3.4.  εn effect

Here we focus on the dependence of excitation of uncon-
ventional ITG modes on density gradient εn. Assuming the 
inverse aspect ratio (ε = r R/ ) ε = 3, both the growth rate and 

real frequency are normalized to ε ω ρθ∗ k3 n se/ , to remove the 
influence of normalization in the comparison. The effects of εn 
on the unconventional ITG modes are shown in figure 7. It is 
observed in figures 7(a) and (c) that with increasing εn, in gen-
eral, the growth rates of the modes with l  =  0–3 first increase 
and then decrease in the small/medium ρθk s region. This 
observation recalls the effect shown in [37], where the growth 
rates first increase and then decrease. For a very steep density 
gradient in the cases of ρ =θk 0.6, 0.8s  the modes with =l 4, 5 
can also be excited and have comparable growth rates to the 
modes with l  =  0–3. With increasing εn, the growth rates of 
the =l 4, 5 modes gradually become smaller than those of the 
l  =  0–3 modes. Then the =l 4, 5 modes disappear at a critical 
value of εn. It is observed that this critical value of εn increases 
with increasing ρθk s, for example, 0.0581 for ρ =θk 0.6s  and 
0.0589 for ρ =θk 0.8s . For a large ρθk s value ( ρ =θk 1.2s ), as 
shown in figure 7(e), the =l 4, 5 modes are dominant over 
a large part of the εn regime, whereas the =l 0 mode is sig-
nificantly stabilized by increasing εn. It is concluded that for a 
small/medium ρθk s value, a very strong density gradient (small 
εn value) is needed to excite the =l 4, 5 modes, whereas for 
a large ρθk s value the =l 4, 5 modes are easily excited and 
dominant over a wide εn regime. Besides, the parameters used 
and the results found here are similar to the stability diagram 
depicted in figure 1 of [37], which is found using fluid theory. 
It should be pointed out that this picture will change drasti-
cally if trapped electrons or electromagnetic effects are taken 
into account.

The discussions in figures 6–8 reveal that it is the syner-
gistic effects of ion temperature and density gradients that 
drive the unconventional ITG modes. In TBs with steep gra-
dients of ion temperature and density, the turbulent transport 
induced by such unconventional ITG modes should be paid 
more attention, especially in the large ρθk s regime where the 
modes with higher l numbers are dominantly unstable. The 
role of such unconventional ITG modes in the transition of 
different confinement states should be taken into account as 
well. It is necessary to note that trapped electron modes can 
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be driven by the steep density gradients in TBs, but this is not 
included in this work due to limitations of space. Currently we 
are investigating the conventional and unconventional TEMs 
in TBs, and will report the result in the near future.

3.5.  Magnetic shear ŝ effects

In this section, we study the effect of magnetic shear on the 
ITG modes with different mode-numbers at steep gradients 
and compare with the results of conventional ITG modes in 
the L-regime of medium gradients. It is noted that the growth 
rate and real frequency in the cases of steep and medium 
gradients are normalized to electron diamagnetic drift fre-
quencies ω∗e1 and ω∗e2 respectively, because ω∗e1 and ω∗e2 
depend on the value of Ln. The conventional ITG mode in 

the L-regime has the maximum growth rate at ρ =θk 0.6s , as 
shown in figure 3(c); thus, the case of ρ =θk 0.6s  is taken. It is 
shown in figure 8(a) that with increasing �s  at steep gradients, 
the ITG modes with l  =  0–5 are strongly destabilized in the 
weak positive magnetic shear region and then slightly stabi-
lized—which is different from the case at medium gradients, 
where the conventional mode is always stabilized (shown 
by the purple dashed line with solid circles). It is notice-
able in figure  8(b) that with increasing �s , the normalized 
real frequency of the ITG modes with l  =  0–5 at steep gra-
dients decreases faster than that of the conventional mode at 
medium gradients.

From the gyrokinetic equation (3), we get the local ( =k//  

constant) electrostatic response of ions φ θ= − +�f eF
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Figure 7.  Normalized growth rate and real frequency of the modes with l  =  0–5 versus εn for ρ =θk 0.6, 0.8, 1.2s . The other parameters are 
the same as those in figures 3(e) and ( f ).
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 [30]. Thus, the ion Landau reso-

nance/damping mechanism works at ω ω + k v~ D // //. Figure 8 
shows that the real frequencies of the modes at steep or 
medium gradients increase with increasing magnetic shear. 
It is also shown in figure 8 that the conventional ITG mode 
(the dashed purple line with solid circle) is evidently stabi-
lized with the increase of the magnetic shear. This is due to 
the real frequencies ω ω + k v~ D // // ( ω ω− < <−∗2.2 1.8e2/ ). 
Hence, it is the ion Landau damping that mainly takes place, 
since ω∗e2 is low. As shown in figure  8, the modes at steep 
gradients are first destabilized and then slightly stabilized, 
because their real frequencies are very high // //ω ω +� k vD  
( ω ω− < <−∗0.1 0.8e1/ ) and ω∗e1 is very high. Therefore, the 
Landau damping is weak.

Interestingly, the unstable eigenmodes with higher mode-
number l 6⩾  are also excited. The value of the magnetic shear, 
which induces a peak in the mode growth rate, increases with 
increasing mode-number l. These results are not listed in 
this work. In addition, it is noted that the effects of magn
etic shear on unconventional ITG modes at steep gradients 
are similar to those on the short wavelength ion temperature 
gradient (SWITG) modes ( ρθ �k 1s ) [33, 38, 39]. Hirose et al 
observed that the increase of magnetic shear always destabi-
lizes the SWITG modes in the positive magnetic shear region, 
when the medium density gradient (ε = 0.1n ) and steep ITG 
(ε = 0.04T i ) are considered [39].

3.6.  Radial mixing length estimation

Under conditions in which anomalous transport driven by 
drift instabilities dominates, it is found that a model for par-
ticle transport can describe the density profiles measured in 
L-mode and H-mode, observed on some devices [40–43].

To examine the radial turbulent transport driven by ITG 
instabilities in tokamaks roughly, the quasi-linear mixing length 
estimation of the diffusion coefficient of unconventional modes,

χ
γ ρ
ε

ρ= θ
⎜ ⎟
⎛
⎝

⎞
⎠�

�

k

k c

R
,s

n

s
si

r
2
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�
(18)

with

ρ θ= θ ��k k s ,sr
2 2 2 2 2

�
(19)

is obtained, based on the gyrokinetic treatment. Here, �kr 
represents the average of normalized radial wave number, 
employing the α−s  geometry with α = 0 which was first 
used by Kadomtsev [44]. It must be stressed that growth rate 
γ� in equation (18) is normalized to ω∗e and transport coeffi-

cients χi in figures 9–11 are normalized to ρc

R s
2s .

The radial transport coefficients estimated with mixing 
length approximation for ITG modes with l  =  0–5 versus 
ρθk s are given in figures 9(a)–(c) for =q 2.0, 3.0, 4.0, respec-

tively. The other parameters are the same as those in figure 1. 
It is easy to observe that at steep gradients, the transport coef-
ficients induced by the modes with l  =  0–5 decrease with 
increasing normalized poloidal wave number ρθk s. Evidently, 
the sum of the transport coefficients induced by the modes with 
≠l 0 is larger than that of mode =l 0 in small and medium 
ρθk s regions. This observation demonstrates that the contrib

ution of modes with ≠l 0 to transport indeed deserves more 
attention. Figures 9(a)–(c) also illustrate that for a monotonic 
q profile, the increase of q value leads to an increase of mixing 
length estimated transport.

In previous sections, moreover, the individual effect of ion 
temperature and density gradients on the growth rate is studied 
systemically. Correspondingly, their contributions to the radial 
transport are investigated individually here. The radial trans-
port coefficients estimated with mixing length approximation 
for ITG modes with l  =  0–5 versus εT i are given in figure 10 
for ρ =θk 0.55, 0.65, 0.9s . The other parameters are the same 
as those in figure 5. It is clearly indicated that, as expected, 
increasing the ITG (reducing εT i) enlarges the value of radial 
mixing length transport. Moreover, it is notably observed that 
the sum of radial transport of modes with ≠l 0 is larger than 
that of the =l 0 mode for a very steep temperature gradient 
(ε < 0.02T i ), and comparable to that of the =l 0 mode for a 
normal temperature gradient (ε > 0.02T i ). On the other hand, 
the radial transport decreases with increasing ρθk s, similarly to 
the result shown in figure 9.
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Figure 9.  Radial transport coefficient estimated with mixing length approximation for ITG modes with l  =  0–5 versus ρθk s. (a), (b) and (c) 
are for =q 2, 3, 4 respectively. The other parameters are the same as those in figure 1.
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Finally, the radial transport coefficients estimated with 
mixing length approximation for ITG modes with l  =  0–5 
versus εn are given in figure 11 for ρ =θk 0.6, 0.8, 1.2s . The 
other parameters are the same as those in figure 7. The growth 
rates are also normalized to ε ω γ ρθ∗ k3 n se/ . It is shown that 
although the radial mixing length transport of the =l 0 mode 
is dominant for ρ =θk 0.6, 0.8s , those of the =l 4, 5 modes 
gradually become dominant with increasing εn for ρ =θk 1.2s , 
as shown in figure 11(c).

4.  Conclusion and discussion

In this paper, we have presented numerical results on multiple 
ITG modes in TBs of tokamaks, using the toroidal gyrokin
etic eigenvalue code HD7. Both symmetric (the even-parity 
and the odd-parity) and asymmetric solutions were obtained 
numerically with the upgraded HD7 code. The full ion 
kinetics, including the ion toroidal drift, transit motion, and 
full finite ion Larmor radius effects were taken into account. 
The ballooning representation was employed so that the linear 
mode coupling due to the toroidal magnetic configuration was 
taken into account.

The characteristics of conventional and unconventional 
ITG modes at steep ion temperature and density gradients 
have been investigated in detail and compared with the con-
ventional ITG modes at small or medium ion temperature and 
density gradients. The main results of this work can be sum-
marized as follows.

	(1)	Multiple ITG modes with conventional and unconven-
tional ballooning mode structures are found unstable 
simultaneously in TBs with steep density and ITGs—
which is different from the case with low or medium 
gradients, where only one mode with conventional bal-
looning mode structure is unstable.

	(2)	At steep ion temperature and density gradients in TBs, the 
unconventional modes ( ≠l 0) are dominant in the small 
ρθk s region ( ρ <θk 0.4s ), conventional mode ( =l 0) domi-

nates in the medium ρθk s region ( ρ <θk0.4 1.2s⩽ ) and the 
unconventional modes with large mode-number (l 4⩾ ) 
are dominant in the large ρθk s region ( ρθk 1.2s ⩾ ). These 
different domination regimes can help to account for the 
observations of the ‘frequency jump’ and ‘eigenstate 
jump’ in some simulations obtained using initial-value 
codes.
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	(3)	The widths of the modes with small mode-numbers in 
ballooning space first decrease and then increase with 
increasing ρθk s, while those with large mode-numbers 
decrease with increasing ρθk s across the whole ρθk s region, 
and even are lower than those of the modes with small 
mode-number in the large ρθk s region. Moreover, the 
widths of the eigenfunctions of conventional and uncon-
ventional modes broaden in k space with the increase of 
ρθk s.

	(4)	When the individual roles of ITG εT i and density gradient 
εn are studied separately, the results indicate that it is the 
synergetic effect of εT i and εn rather than εT i alone that 
drives the unconventional ITG modes with large mode-
number in TBs. The critical value of εn for driving such 
modes with large mode-number increases with increasing 
ρθk s.

	(5)	The magnetic shear �s  first strongly destabilizes the 
unconventional ITG modes in the weak positive magnetic 
shear region, and then slightly stabilizes them in the 
large positive magnetic shear region as �s  increases. The 
tendency in the large �s  region is different from the case of 
the conventional ITG modes at medium gradients, where 
the magnetic shear significantly stabilizes the mode.

	(6)	The sum of the radial turbulent transport estimated with 
mixing length approximation from the modes with ≠l 0 
is larger than that from the mode =l 0, and the radial 
mixing length transport of the =l 4, 5 modes are domi-
nant for ρ =θk 1.2s .

From the unstable spectra, eigenmode structures and 
mixing length transport presented in this work, it is demon-
strated that the multiple unstable ITG modes exist and, in 
particular, the unconventional ITG modes inevitably play sig-
nificantly important roles in the turbulent transport in TBs of 
tokamaks. Hence a complete understanding of the character-
istics of such modes is urgently needed for the further explo-
ration of the transition of confinement regimes and transport 
in TBs. It is worthwhile to mention that a finite equilibrium 
ion parallel velocity and ion parallel velocity shear, as well 
as up/down asymmetries in the flux surface geometry, can 
break mode parity and may change which mode is the most 
unstable. Nevertheless, studies of the effects of the shear flows 
and ion parallel velocity shear, as well as trapped electrons 
and electromagnetic perturbations, on the multiple ITG modes 
in TBs are in progress. Finally, it has to be pointed out that, 
although the shear flow effect [45] is not considered in this 
work, the results obtained in this work still provide the most 
fundamental insight into the excitation of such ITG modes 
when the shearing rate of the flow is smaller than the growth 
rate of the modes.
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