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1. INTRODUCTION

Let K be either the field R of real numbers or the field C of complex numbers. By a topological algebra
we will always mean a topological linear space over KK, where the separately continuous multiplication has
been defined.

Recall that a topological algebra (A,74) is a left (right or two-sided) Segal topological algebra in a
topological algebra (B, Tg) via an algebra homomorphism f : A — B, if

(1) clp(f(4)) = B;

(2) f is continuous;

(3) f(A) is a left (respectively, right or two-sided) ideal of B.

In short, we will denote Segal topological algebra by a triple (A, f,B).

Let us briefly recall the definition of the category Seg of Segal topological algebras. Its objects are
all left (right or two-sided) Segal topological algebras. For any (A, f,B),(C,g,D) € Ob(Seg), the set
Mor((A, f,B),(C,g,D)) of morphisms from (A, f,B) to (C, g, D) consists of all such pairs (¢, 3) of continu-
ous algebra homomorphisms & : A — C and f : B — D, for which goa = o f, i.e. we have a commutative
diagram

A%B

e

c —=2-5>p
The composition of morphisms of Seg is defined componentwise as follows:
for any (A,f,B),(C,g,D),(E,h,F) € Ob(Seg) and any morphisms (a,p) : (A,f,B) — (C,g,D),
(y,0): (C,g,D) — (E,h,F), the composition of (7,0) and (&, ) is (y,8) o (a,B) = (yoa,d0 ).
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In [1], pp. 24, it was shown that this composition of morphisms is correctly defined and associative.
Moreover, it was demonstrated that the identity morphism for an object (A, f,B) of Seg is a pair (14, 1p) of
identity maps.

First categorical properties of the category Seg were studied in [3] and [4]. The paper [3] also provides
some historical overview of Segal topological algebras.

The aim of this research is to study whether there exists a coproduct of a family (A, f5, B, )aca of Segal
topological algebras in the category Seg.

2. TENSOR PRODUCT ALGEBRA

Let A be an index set (which can be finite or infinite) and let (A, Ty ) <A be a family of topological algebras.
Equip the direct product [] A, with the box topology 7y 4, the base of which consists of sets in the form

AeA AEA
{ITU:Up et}
AeA
Then we can consider the topological tensor product algebra ( ® Ay, T A ), where the topology © A

is the topology in which the map /: [] Ay — ® A,l, defined byl( H a,l) ® a;L foreach [] ay € H A,l,

AeA AeA AeA
is continuous. This means that T 4, = {/ ( ) Wetna,lt In thls topology on the tensor product, for
each neighbourhood O of zero inlz\o Aj,, there exist neigﬁ%ourhoods (O07) e of zero in algebras (Aj ) cn,
such that ;LQE@AO;L C 0. The topolo:}g}efA’L' @ A is called the tensor product topology on ® Ay,T AL
Notice that the general form of an element a of ® Ap is a = Z ® a(,, where k € 7', ie. every
element of the tensor product is a finite sum of snnplelti:[r\lsors )EAa ,11 Hen

We start this paper with a result about the density of images of maps between tensor products.

Lemma 1. Let A be an index set, (Ay,T))ren, (BasOx)aca two families of topological algebras and
(fa : Ay = By)yen a family of maps. Let ( ® A;L,T®Al) ( ® B,l,17® Bz) be the respective topological

tensor product algebras and f: ® Ay — ® B;L be a map, whlch is gzven by
AeA

(Z ®a,1,> Z®fl foreachZ@a )61®AA,1.
S

i—1 AEA i—1 AEA 1A€A

If f2(A,) is dense in By, for each A € A, then the set f( ® Ay ) is dense in @ B).
AeA AeA

Proof. Take any b € ® B;L. Then there exist k € Z", and for each A € A, elements b(a1)s---sbe k) such

that b = Z ®b;“) Set K ={(A,i): A € A,ie{l,...,k}} and let U be any neighbourhood of bin ® Bj.
i=114 AEA
Then there ex1sts a neighbourhood O of zero in ® Bj such that b4+ O C U. As the addition is continuous

in ® Bj, then there exists a neighbourhood V of Zero in ® By suchthatV+..-4+V CO.
A,_z

AEA AEA
k times

Now, for each A € A, there exists a neighbourhood V), of zero in B, such that ® V, C V, and for every
AEA

(A1) €K, by + Vi €bp i)+ @ Vj. As the general element of a tensor product is some finite sum of
' i AeA

simple tensors, then it is clear that, for each i € {1,...,k}, we have

® (bay+Va) € @ (bay+ @ Va) S ®buy+ ®@Vy.
AEA AEA AEA AEA i AEA
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For each (1,i) € K, set Uy, jy = by, jy +Vy.. Then, for each (1,i) € K, U(;, ;) is a neighbourhood of b, ; and

k

k k k k
QR Uy C Rbont+ @V, | = Q b+ RV, Cb+) VCb+0OCU.
;)LGA (A g(leA (A AeA l) 1:21 eA (A0 iZ1AEA A 1:21

Since f; (A, ) is dense in B, for each A € A, then there exist partially ordered sets (I ,>; )aca, and for
each (4,i) € K, the family (ag,, )¢, er, of elements of A; such that (f(ag, )¢, e, converges to by ;).
This means that, for every (4,7) € K, there exists an element 13 ;) € I such that from {; ;) =2 N ) it
follows that f; (ag(h)) S U()LJ)'

Define the multi-index set [];, and consider on it the partial order > defined by
AeA
(i) rer = (Wai))ren if and only if ¢ ;) =2 W, for each 2 € A. Then ( [] I;,>~) becomes a par-
’ AEA
tially ordered set of multi-indices.

Take any (aéw))l@\ € QL(?AA)L with (§ai))aea = (M@a,i))aea and i € {1,...,k} fixed. Then
Ciri) =2 M) for each A € A and we have that f; (agm)) € U(3)- This means that

k k k
f(z ® aC(A,i)) = Z ® fl(ag(l‘i)) € Z;?AU(M') cv
i=1

i:l)'EA i:llEA
for all  ({ai)rea € AHAIA with  (§apaea = (N@ai))aea- Hence, the family
S

k
(f (El A(?Aacwt')))(‘;(m) ser€ [0 converges to b.

As b is an arbitrary element of ® Bj, then the set f( ® Ay ) is dense in ® B} . O
AeA AeA AeA

Remark 1. Notice that Lemma 1 is also true in case we have families (A, Ty )zea and (B, 03 )pea of
topological linear spaces instead of topological algebras. Moreover, the map f, given in Lemma 1, is
continuous, and if all the maps (f),ca are algebra homomorphisms, then the map f is also an algebra
homomorphism.

3. SOME PROPERTIES OF THE FREE PRODUCT OF ALGEBRAS

Remember (see [2], p. 203) that for a collection (A ), < of algebras, their tensor algebra is an algebra
r= <@Ax> S ( D ®Au)> ® < P A, ®Av)> ®...
AEA A UEA AL, VEA
and every element ¢ € T is in the form
k Pl s Tmi
r= @ <@ <Z tq7m71 ® e ®tq7m7il>>
I=1 “m=1 \g=1

for some k, py,rp; € ZT and typm 1, .. tgmi € UpeaAa-
In [2], pp. 203-205, we defined the algebraic operations in T as follows. If p € K,

ky )i Tm,l
t = @(EB <th,m,1 ®...®tq,m7i,>) €T

I=1 “\m=1 \g=1
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and
ks Ur  sver
s = @(@(Z Sh,g,l®-~-®sh,g,jf>> eT,
f=1g=1 M=l
then
ky pi T'm,l
pt = @(@ (Z(ptq7m71)®"'®tq7mvil>>7
I=1 \m=1 \g=1
ki +ks wi Xm,l
t+S:@(@(ZZq7ml® ®quLl>>7
=1 “m=1
where

L fi <<k i if1<I<k
= w; = s
T ik itk <I<ki+k T \w, itk <1<k +k

rmgs if1 <1<k, tyma i1 <1<k
Xm, = and Zgmd = ' . .
Vin,l—k; » if k[ <I< NS k[ + Kk Sq,m,d> if k[ <l < kl +k3

The multiplication of elements had to satisfy the rule

keks DX UXp Txa X, VX, X, 7 X JX,
DD L (Dnns Qs |
e=1 6=1 u=1 d=1

y=1
where ! 1
€ €—
Xlz{ . J+1 Xo=¢e—Xik;=¢€ { Jks,
S A
§—1 5—1 61
ng{ J+1: +1, X4 =6 —-Xapx, =96 |t |+10
Pxi Plegt]+1 Plegt ]+
~1 —1
Xs= |2 —|+1= Y +1
VX4, Xa v
6[”Lzl]+l|pt Jore L
and

—1
Xe=y—Xs—1)vx,x, =y — {y J—Fl
VX4, Xo

y—1

vs_l = |Lli Lt 6_[118111 +1|p|~£leJ+l7£_|_gklekx

"Lt

3.1

(3.2)

Suppose that we have two collections of algebras, (A ) ca and (By)jca, indexed by the same set A.
We can consider the algebras (Aj );ca disjoint by setting a = (a,A) for every a € Aj. Similarily, we can
consider the algebras (B} );cx disjoint. We need the disjointness of these families of algebras in order to be
able to choose for every a € AUAA 2 and every b € AUAB 2 unique indices A, € A and A, € Asuchthata € A,

€ €

and b € B),. Thus, in what follows, for A, u € A with 4 # p we have A} NA, = 0 = B; N B,. Morever, for
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any a € AUAA 2 and every b € lUAB 2 we will denote by A, the unique index from A such that a € A, and by
S S

Ay the unique index from A such that b € B),. Notice that in some places we need to write , instead of 4,
and L, instead of A,.

Let T be the tensor algebra of algebras (A ), ca and S the tensor algebra of algebras (B )jca-

Suppose that there are also algebra homomorphisms f; : Ay — B; for all A € A. Define a map

hr: U A — U B;L by hT( ) = fa,(a). Now, define a map hy : T — S by setting
AEA

kPt ormi

=PpPp Z hr(tgm1) @ - @ hr (tgmi;)

=1 m=1q9=

for every element
k pi L
r= @ <® <Z tqvmvl ® ctt ®tq,m,il>>
=1 “m=1 \g=1

of T. Modifying the ideas of [2], pp. 208-209, we can show that A7 is an algebra homomorphism. Indeed,
using the symbols given in (3.1)—(3.2), we obtain that for p € K,

ki Pi Ym,l
t= EB(EB <th,m,1 ®...®tq,m7,',>> eT
m=1 \g=1

and

ks AN
s = <@(2sh7g71®...®sh7g7jf)) eT,

f=1 N\g=1 ‘=1
and we have
ke piormg i ks ur ver Jr
h —|—hT @@Z@h}“ tqmu +®@Z®hT Shgv
=1 m=19=1u=1 f=lg=1h=1y=1

kitks wi x,,0 Ly

=D DL Rhrzma)

I=1 m=19=1d=1
kt+ks wi Xm,l
:hT<® <@<2247m71®®Z4~m7L1>)> :hT(t+s)’
=1 “m=1 \g=1
Pr Tmi
@@Zhr Plym1) © .- O hr (tgm,y)
=1 m=19=

k  prormg | Tl 1
=PD Y ( Phr(tgm1)) @ ... @ hr(tgmi) = (@@Z@M tqmu>:PhT(t)

I=1 m=1g=1 =1 m=1q=1y=1

:hT<

bb(EET $i01.) G 1)

Vo f

and
k

K

ks <P1 ug Fm,iVg f ll
1

DD D111 B5, 12)s))

Ve.f

~

=1 f=1 ‘\m=1g=1 y=1 u=I



226 Proceedings of the Estonian Academy of Sciences, 2021, 70, 3, 221-234

(Eéé Y @rlyn)) (@éféhr Suga) ) = ) b 5,

I=1 m=19=1lu=1 f=1g=1h=1d=1

Hence, A7 is indeed an algebra homomorphism.

Suppose that, for every A € A, f3(A;) is a left (right or two-sided) ideal of B,. It is natural to ask
whether it is then true that h7(7') is a left (right or two-sided) ideal of S. Actually, we will show that the
answer to the question “Whether A7 (T) is a left (right or two-sided) ideal of S”” does not depend on the fact
whether f; (A ) is or is not a left (right or two-sided) ideal of B, for every A € A.

As h is an algebra homomorphism, then ph(r) = h(pt) € h(T) and h(t) + h(s) = h(t +s) € h(T) for
every t,s € T and every p € K. What concerns the multiplication of elements of 47 (T') with elements of S,
then it is not always true that v- hr(t),hr(t)-v € hy(T) for arbitrary r € T and v € S.

Indeed, suppose that there exist A9, A; € A such that Ay, is a proper subalgebra' of B A0+ f2, 18 the identity
map on Ay, (i.e. fy, is an inclusion), A = B, =K, where B, is an algebra over the field K and f}, is the
identity map on K.

As A,, is a proper subalgebra of B, , then there exists b € B, such that b ¢ A;,. Now, take the unit
element e of the field K. Then ex € Ay, C T. Hence, f), (ex) = ex € hr(T) and b € By, C S. Therefore,
we can consider the product b-ex = b®eg € Shy(T) C S. As the algebras (Bj ) cx are considered pairwise
disjoint, then we obtain b ® ex € By, ® By, .

Suppose that b ® ex € hr(T). Then b® ek € fi,(Az,) ® f,(Az,). Hence, there exist m € Z* and
elements by,...,by, €Ay, ki,... . km €Ay, =Ksuchthat b ex = Y bi®k;. Thus, for every bilinear map
g:B;,®By, — By,, we must have g(b®ex) = g(Li~ bi ®k;).

Let g : By, ® By, — By, be a map, for which g(X_,c; ®[;) = Y} ljc; for every
Yiicj®lj € By, (X)B;L1 Then it is easy to see that g is well defined and is a bilinear map. Moreover,

g(b®ex) =band g(Y/L b ®k;) = YL kib;. As Ay, is a subalgebra of By, then Y | kib; € Ay, while
b ¢ A),. Hence, g(b® eK) #g(xXr b ®k) This is a contradiction, which shows that b ® ex & h(T).
Therefore, S-hy(T) ¢ hr(T).

Similarly, we can show that iy (T)-S ¢ hy(T) in general. Thus, we have shown that 47 (7T') is not always
a left (right or two-sided) ideal of S.

With that we have given a proof (in case of left ideals, the other cases are similar) of the following
Lemma.

Lemma 2. Let (Ay)ycn and (By)jca be two collections of disjoint algebras indexed by the same set A.
Let (fy : Ay — By)yea be a collection of algebra homomorphisms, T be the tensor algebra of algebras

(Ap)aen and S the tensor algebra of algebras (B) )cn- Let hr AU A) — AU B, be the map, defined by
€A €A

;l;(a) = fa,(a), where A, € A is the unique index such that a € A, . Let hy : T — S be the map, defined by

Pt Tmi

@@ZhT [qml ®-- ®hT(tqmll)

=1 m=19=

for every element
k Pl Tmd
t= @<@ <Z lym1 ® ... ®tq,m7,-,>>
I=1 “\m=1 \g=1

of T. Then hy(T) is a left (right or two-sided) ideal of S if and only if S-hy(T) C hy(T) (respectively,
hr(T)-S Chr(T) or S-hr(T)-S C hr(T)).

' This situation is possible, for example, when B 2 18 @ topological algebra, which has a maximal ideal A, that is not closed in
the topology of By, .
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Consider the two-sided ideals / of T and J of S, generated by the sets
{x@y—xy:x,y€A3,A €A} and {z@w—zw:z,w € By,A € A},

respectively. As hr is an algebra homomorphism, then, for every fixed A € A and x,y € A,, we have
hr(x@y —xy) = hr (x©y) = hr (xy) = hr (x) © hr (v) = hr (xy)

=HX)@L0) =) =) [L0) - 1)) €S,

which means that A7 (1) C J.
Consider the free product 7' /I of algebras (A; ), ca and the free product S/J of algebras (B))jca-
Let
ki:T—=TJ/I, x,:S—S/J

be the respective quotient maps. Define amap h: T /I — S/J by h(k;(t)) = ky(hr(t)) for every t € T. This
map is well defined because iy (I) C J. Moreover, A is an algebra homomorphism because the maps A7, k;
and k; are algebra homomorphisms.

Lemma 3. Let (Ay)ycpn and (By)jen be two collections of disjoint algebras indexed by the same set,
(fa : Ay — By)aea a collection of algebra homomorphisms, T the tensor algebra of algebras (Aj )en and
S the tensor algebra of algebras (B) ), ca. Consider the two-sided ideals I of T and J of S, generated by the
sets

{x®@y—xy:x,y€Ay,A €A} and {z@w—zw:z,w € B),A € A},

respectively, the free product T /I of algebras (A), ) .ca and the free product S/J of algebras (B))) ) ca. Define
amap h:T/1 — S/J by h(x;(t)) = K7(hr(t)) for every t € T, where hr is defined as in Lemma 2. If
S-hy(T) Chp(T) (hy(T)-SC hy(T) or S-hy(T)-S C hy(T)), then h(T /1) is a left (respectively, right or
two-sided) ideal of S/J.

Proof. We will prove the claim for left ideals. The other cases are similar.

As h is an algebra homomorphism and 7/I is an algebra, then h(T/I) + h(T/I) € h(T/I) and
AR(T /I) C h(T/I) for every A € K.

Take any a € h(T/I) and any b € S/J. Then a € h(x(T)) = xy(hr(T)) and b € K;(S). As
S-hy(T) C hy(T) and k; is an algebra homomorphism, then

b-acxi(S) x;(hr(T)) Cxs(S-hr(T)) Cxy(hr(T)) =h(x(T)) = h(T/I).
With that we have proved that S/J-h(T /I) C h(T/I), i.e. that h(T /I) is a left ideal of S/J. O

Open question 1. Is the condition S-hy(T) C hy(T) (hy(T)-S C hy(T) or S-hyp(T)-S C hy(T))
necessary for (T /1) to be a left (respectively, right or two-sided) ideal of S/J?

4. SOME PROPERTIES OF TENSOR ALGEBRA OF TOPOLOGICAL ALGEBRAS

Let (iy : Ay — T)uea be a family of inclusion maps sending elements of A, into the direct summand A, of
T, respectively, i.e. iy(a) =a € Ay C T for every a € A, and every u € A. Then the map iy is an algebra
homomorphism for every u € A. Moreover, the quotient map k; is an algebra homomorphism. Hence, all
maps of the family (oy, = xj0iy : Ay — T /I)yen are algebra homomorphisms.

Similarly, let (j, : By — S)yuea be a family of inclusion maps, which are also algebra homomorphisms,
and (Bu = K70 ju : By — S/J)uen be respective algebra homomorphisms. Notice that ho o = B o fj for
each A € A. Indeed, fix any A € A and take a € A, . Then
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(hooy)(a) = h(xi(ix(a))) = h(ki(a)) = ki (hr(a)) = K;(f2(a))
= Kk1(ja(fa(a))) = (k70 ja) o fa)(a) = (Bro f1)(a)-

If all algebras (A ), ca are topological algebras, set

F= {v :T/I — C:C is atopological algebra, v is an algebra

homomorphism such that vo @, is continuous for each u € A}.

On the tensor algebra 7', consider the direct sum topology

7 ={0C @ X;: f7(0) e, foreachi € Z"},
i€zt
where
A

and 7; is the tensor product topology on X;. It is known that the topology 7r is the final topology defined by
the inclusion maps f; : X; — T. Hence, all inclusion maps are continuous in the topology 7r. The topology
Tr on tensor algebra T is also called the fensor algebra topology.

Equip 7' /I with the topology TU A in which all maps v € F are continuous. Then (7'/I, TAIElAAl) is a

topological algebra (see [2], pp. 210-212).
If all algebras (Bj ), ca are topological algebras, we consider on S the tensor algebra topology Ts and
take the quotient topology
Tgy ={U CS/J: {s€ S,Kk;(s) €U} € 15}

on §/J. Then the quotient algebra (S/J,Ts/,) is a topological algebra and &y : § — S/J is a continuous
map. Since the inclusion map j, is continuous with respect to the topology 7s, then B, = xj o fy is also
continuous for each u € A.

Suppose now that the maps (f3),ca are also continuous. With respect to topologies 7., _,4, and s,
the map s becomes continuous, because from the fact that 1o ) = Kj o fj is a continuous map for each
A € A, itfollows thath € F.

Using the symbols defined above, we obtain another result.

Proposition 1. Let T and S be tensor algebras of two collections of topological algebras, (Ay)yca and
(By)aen, indexed by the same set A, respectively, and let I and J be the two-sided ideals of T and S,
generated by the sets

{x@y—xy:x,y€A,,A €A} and {z@w—zw:z,w € By,A € A},

respectively. Suppose that there are also maps f), : Ay — By, for all A € A such that f) (A,) is dense in B),
forall A € A. Then h(T/I) is also dense in S/J.

Proof. Take any w € S/J and any neighbourhood W of w in S/J. Then there exist some element

ky Pl /Tl
V= @(@ (Z Vg,m,1 ®-.-®Vq7m,il>> cS

I=1 “m=1 \q=1

and a neighbourhood V of v in § such that w = x;(v) and k;(V) C W. Let

K={u=(x,v,p):le{l,... .k}, ve{l,....pi},xe{l,ry;},p €{l,....01}}.
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Notice that the set K is a finite set. Now, for every u € K, there exists unique 4, = A4,, € A such that
Vy 1= Vkv,p € By,. Similarly to the proof of Lemma 1, we can find for each u € K a neighbourhood V;, of
vy in By, such that

ky pi T'm,l
@(@(Z‘/Aqml)(g ®V}'qmt]>> gV

=1 “\m=1 \g=1

Since f) (A, ) is dense in B), for every A € A, then there exist partially ordered sets (/) , >, ); 4 and for each
p € K a family (ag,) = of elements of A, such that (f3, (a¢,)) = converges to v,. This means that,

for every p € K, there exists an element 1 € I, such that from §, >, 7y it follows that f3 (ag,) € V.

Define the multi-index set []1;, and consider on it the partial order -, defined by
pek

(@u)uex = (Wu)pex if and only if ¢y =3 yy foreach u € K. Then ( [] I, ) becomes a partially ordered
uek
set of multi-indices.

Take any (ag, Juek € ®KA)L” with (§u)uek = (Mu)uek. Then §y =5, My for each u € K and we have
e
T ag,) € Vu. As h(ki(t)) = x;(hr(t)) for each ¢ € T, then this means that

(@ (E )

ky pPi Tm,l

BB (E o)

=1 “m=1

ky pi rm/
=1

q_
for every

ky pi T'm,
t:@(@<z Cqml ® ® Cqmt[>)€T

I=1 q=1
with () uek > (Nu)uek. Hence, the family

kv y4i Yl
(t(gﬂ)uex)(gﬂ)#elfe HI?Lp = <h<KI (@ <@ <Za€(q,m,l) ®®a§(qmll))>)>)
uek =1 “\m=1 \g=1 (Cy)ueKeul;[KI)L#

of elements of h(T /I) converges to w.
As w is an arbitrary element of S/J, then the set £(T/I) is dense in S/J. O

Corollary 1. Let (Aj)jca and (By)yen be two sets of disjoint topological algebras, indexed by the same set
A. Forevery A € A, let f) : Ay — By, be a continuous algebra homomorphism such that fj (A, ) is dense in
Bj. Defineamap h:T /I — S/J by h(x;(t)) = x;(hr(t)) for everyt € T, where hr is defined as in Lemma 2.
IfS-hp(T) Chy(T) (hp(T)-S Chr(T) or S-hy(T)-S C hy(T)), then h(T /1) is a dense left (respectively,
right or two-sided) ideal of S/J.

Proof. The claim follows from Lemma 3 and Proposition 1. O

Corollary 2. Let (Ay, f3,B)) e be afamily of Segal topological algebras, T the tensor algebra of algebras
(A))aen S the tensor algebra of algebras (By)jca, I and J two-sided ideals of T and S, generated by the
sets

{x®@y—xy:x,y€Ay,A €A} and {z@w—zw:z,w € B),A € A},
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respectively, and h : T /I — S/I a map, defined in Lemma 3. If S-hy(T) C hy(T) (hr(T)-S C hy(T)
or S-hr(T)-S C hy(T)), then (T /I,h,S/I) is a left (respectively, right or two-sided) Segal topological
algebra.

Remark 2. Notice that the result in Corollary 2 does not depend on whether some particular Segal topo-
logical algebra (A, fi,,B,) from the family (A, f3,Bx)aea is left, right or two-sided Segal topological
algebra.

5. COPRODUCTS IN THE CATEGORY SEG

Definition 1. The coproduct of the family (A;, f),B))aca of Segal topological algebras in the cate-

gory Seg is an ordered pair ((;LI_I A;L,h,/ll_JAB,l), ((0tu, Bu))uen). consisting of a Segal topological algebra
EA S

U Ay h, U By) and afamily (0, Bu) : (Ags fu,Bu) — (U Ay h, U B hisms in Seg such

(U Ak 0 By andafamily (0, Bu)  (Aus fusBu) = (U As U B3 of morphisms in Seg suc

that for any object (C,g,D) of Seg and every family ((Yu,0u) : (Ay, fu,Bu) = (C,8,D))uen of morphisms
in Seg, there exists a unique morphism (6, ®) : (AI_IAA 1, h, ALIAB;L) — (C,g,D) in Seg such that the diagram
S S

By

commutes.

Thus, to have a coproduct ((ll_l Al’h’/lu Bj), (04, Bu))uen) in Seg, it is equivalent to having the
€A €A

following conditions fulfilled:
(1) there exists ( U Ay ,h, U B;) € Ob(Seg);
AeA AeA

(2) there exist two families (oy, : Ay — /ll_l Aj )uea and (By : By — ALI Bj,)uen of continuous algebra
€A SN

homomorphisms such that 1o o, = B, o f,, for each u € A;

(3) for any (C, g,D) € Ob(Seg) and families (Y, : Ay — C)yen, (8 : By — D) yen of continuous algebra
homomorphisms such that g oy, = 8, o f,, for each u € A, there exist continuous algebra homomorphisms
0: AI_IAA;L —Cand ©: AI_IAB,I — D such that

S S

(3a) ooy, =y, foreach u € A;

(3b) wo By =, foreach u € A;

(3c)go O =woh;

(3d)if 6 : AEAA 2 —~Cand : AlélAB 2 — D are continuous algebra homomorphisms such that

go0=woh,y, =000y, and §, =®o B, foreach u € A, then 6 = 6 and @ = ®.
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Theorem 1. Let (Aj, f3,Ba)rea be a family of left (right or two-sided) Segal topological algebras, T the
tensor algebra of algebras (Ay )ycn, S the tensor algebra of algebras (B),))ca, I and J two-sided ideals of
T and S, generated by the sets

{x®@y—xy:x,y€Ay,A €A} and {z@w—zw:z,w € B),A € A},

respectively, and h : T/I — S/I a map, defined in Lemma 3. If S-hr(T) C hy(T) (respectively,

hr(T)-S C hy(T) or S-hy(T)-S C hy(T)), then the coproduct of the family (Ay, fy.,B))ren exists and

is in the form (((U Az, h, U By),((0,Bu))uen), where U Ay =T/I, U By =8/J, oy = K01y, and
AeA AeA AeA AeA

Bu = Ky 0 jiy for each u € A.
Proof. We follow the steps (1)—-(3d), as described after the definition of a coproduct in Seg, in order to prove

the present theorem.
(1) By Corollary 2, we know that (AI_I A,l,h,lu B;) € Ob(Seg).
SN €A

(2) In the beginning of Section 4 we already checked that 1o oy, = By, o f,, for every u € A.

(3) Take any (C,g,D) € Ob(Seg) and families (¥, : Ay — C)uen, (Ou : By — D)yuen of continuous
algebra homomorphisms such that goy, = &, o f;, foreach u € A.

Remember that /1|E|AA 2 =T/I and /1|E|AB 2 = S/J, which means that every element of /IISAA 2 1s of the

form x;(z) for some
ky pi T'm,l
=@ (D(Ltnr o 0t0mi) ) €7
I=1 “m=1 \g=1

and every element oflu By, is of the form x;(v) for some
eA

k, Up /Wpo
y= @(@(Z Vap,1 ®...®vn,p7,~0>> es.
o=1 \p=1 \n=1

Definemaps 6: U Ay - Cand ®w: U By — D as follows:
AeA AeA

oo~ (£ (£ f170m0))

=1 1 \g=1d
where ¥(ty ma) = Yu(tgma) for tymaq € Ay (here yu = )L,qﬁm, ,) and

0k (v)) = kz(z(znsd))

o=1 n=1d

where 8 (v p.a) = Oy (Vnpa) for v, pa € By (here p = K pa)-
Take any u € T such that k;(u) = x;(¢). Then s = u —t € I, which means that s has the form

ks ur  sves
s = @(@(Z Sh,g.1 ®”'®Sh,g,jf>>7
g=1

f=1 h=1

where, for all possible values of g,m,d, we have sgma = s,y ® Vs g — for some

XsymarYsqma €A Ky and u =t + s has the form

xsq,rmdysq‘m,d

kt‘l‘ks wy me
u= EB <®(Zz%m71 ®'-'®Zq,m,L1>),

=1 “m=1 \g=1
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where L;,w;,x,,; and z,,, 4 are defined as in (3.1)—(3.2). Notice that, for all possible values of g,m,d, we
have

9 ( KI (Sq7’n7d)> - 6 ( KI (xsq.m.d ® ysq,m,d - 'xsq?m,dysq.m,d )) = ’}7('x3q.m.d ) ’}7(ysq.m.d> - ’}7('xsq.m7dysq,m.d)
= YAA md ( Aq m, d)’yl (ysq.m.d> - ’}/lg ('xsq.m.dysq,m.d) = 9C7

Sq.m.d qm.d
because n 1s an algebra homomorphism.

This means that 0 (kr(s)) = Oc and O(x7(u)) = O(Kky(s+1)) = 0(xs(s)) + 0(xs(¢)) = O(x(¢)). Hence,
0 is correctly defined. Similarly, we can also check that @ is correctly defined, i.e. if x;(v) = xy(v2), then
also o(x;(v1)) = o(x;(v2)).

As the maps (Yy : Ay — C)uen, (8 : By — D)yea were continuous algebra homomorphisms, then the
maps 6 and @ are also continuous algebra homomorphisms.

(3a) Fix any p € A and any a € Ay. Then oy(a) = (k7 0iy)(a) = ki(iu(a)) = ki(a). Hence,
(6oay)(a) =0(xi(a)) = Yu(a). Thus, 6 o ay =7y, for each p € A.

(3b) Fix any u € A and any b € B,. Then By (b) = (k50 ju)(b) = k;(ju(b)) = k;(b). Hence,
(woPBy)(b) = w(x;(b)) = 6u(b). Thus, wo B, = &, for each u € A.

(3c) Take any x € AlElAA 2- Then there exists

ky Pi Tm,l
t= @(@ (th,m,1 ®...®tq,m,,-,)> erT

I=1 “m=1 \q=1

such that x = Ky (7).
Notice that, for any a € /IU Aj, we have
eA

(go7)(a@) = (g0 m,)(a) = (8u,© fu,)(@) = (8 f)(a),

where f UA;L—> UB;L is defined as f(a) = fy,(a

3(!))-5 (b) foreachbe UB,I Hence, goj =0 7.
Defi :UA—>|_|A d UBy = UB, by ax(a) =« d B(b) = b),
efine maps @1 U A; = U Ay and B U By~ U B by a(a) = oy, (a) and B(5) = B, 5)

) foreachae U Ay and §: U By — D is defined as
AeA AeA

respectively. Then 5= woB,y=0oaand Bof=hoa.
Notice that, for every p € A and every a € Ay, we have (hooy)(a) = (hokj)(a).
Now, because of the definitions of addition and multiplication via direct sums and tensor products in 7',

(890)(x) = g(O(xi (1)) = g(f ( 3 (Z ﬁﬂ’%”%d))))

=1 \m=1 \g=1d=1

(S Enen))-S(E E )

{'l([;(;flffll“womofﬂfqvmvﬂ)) fZ’I(ZCZJI )
L (L (BT temtna))oon (£ (L ([Tns)) )

— (woh) <1<, : (”:72_1,1 <;i(tq,m,1 ®... ®rq7m,,-,)>)>
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= (woh) (K](é (EpB (Z tom 1 ® ..@t,,,m,h)))) = (woh)(Kk(t)) = (woh)(x)

I=1 “\m=1 \g=1
for each x € ll_l A . Hence, go6 =woh.
eA

(3d) Suppose that 9 : )LI_I Ay »Cand @: ALI Bj — D are continuous algebra homomorphisms such that
€A SN

go0=woh,y, =000y, and §, = @of, foreach u € A. Take any x € /llglAA’l' Then there exists

ki Pi Tm,l
t= EB(@ (th,m ®...®tq7m,,-,>> eT

I=1 “m=1 \g=1

such that x = Ky (7).
Now, because of the definitions of addition and multiplication via direct sums and tensor products in T
and since 6, k7, 0 are algebra homomorphisms, we obtain

8(x) = (Box) (@<®<Zf®®f)>>

I=1 “\m=1 \q=1

=(6oK) (,"’](Z <;zm:]1(ﬁtqmd>>> i(i <rf ﬁ(@o K‘I)(tq’m7d)>>
<Zl, <r2i ﬁ(@(l{,oiutq7m_d))(tq7’117 d)>>

g=1d=1

ky Pi Tml
(£ (8 fi e
=1 \m=1 \g=1d=1

)-
BB Ef1n ) B E 1000 )
- y ( ) <r”” : (6 oK) (i, ., (tq,m,d))>> lktl<z <% ﬁ 0 o k1) (tyma ))

g=1ld=1

0o (5 (8 (5 FTns))) =000 (B (E om0 000 ) ) -0

I= g=1ld= I=1 “\m=1 \g=1
for each x € xl_l A, . Using similar arguments for @, @, k; and the definitions of addition and multiplication
€A

in S, we can show that @(y) = w(y) foreachy € U B;. Asitholds foreachx € U A, andeachy € U By,
AeA AeA AeA

then we have & = 6 and @ = w.
With this we have proved our claim that (AI_IAA,I,h,AI_I B;) is the coproduct of the family
S (ST

(A, fa,By)aen of Segal topological algebras. Hence, the coproduct exists in the category Seg. U

Open question 2. Is the condition S-hy(T) C hy(T) (hy(T)-S C hy(T) or S-hy(T)-S C hy(T))
necessary for the existence of a coproduct?

6. CONCLUSIONS

In the present research we have found a sufficient condition for the existence of coproducts in the category
Seg and stated some open problems.
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Kokorrutised Segali topoloogiliste algebrate kategoorias Seg
Mart Abel

On leitud piisav tingimus kokorrutiste leidumiseks kategoorias Seg ja sdnastatud mdned lahtised prob-
leemid.
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