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1. INTRODUCTION

Let K denote either the field R of real numbers or the field C of complex numbers. By a topological algebra
we mean a topological vector space over K in which a separately continuous associative multiplication has
been defined.

Let (X ,τX) and (Y,τY ) be topological algebras over the field K. We recall that their direct product
X×Y = {(x,y) : x ∈ X ,y ∈ Y} is an algebra, if one defines the algebraic operations coordinate-wise, i.e.

(x1,y1)+(x2,y2) = (x1 + x2,y1 + y2), λ (x1,y1) = (λx1,λy1) and (x1,y1)(x2,y2) = (x1x2,y1y2)

for all λ ∈K,(x1,y1),(x2,y2) ∈ X ×Y . The topology τX×Y on X ×Y is the product topology, i.e. its base is
the collection

BX×Y = {U×V : U ∈ τX ,V ∈ τY}.

This topology makes (X ×Y,τX×Y ) a topological algebra over K. Moreover, if Z is a subalgebra of X ×Y ,
then we consider on Z the subspace topology τZ = {W ∩Z : W ∈ τX×Y}, which makes (Z,τZ) a topological
algebra. In what follows, we will define the algebraic operations on the direct product of the two topological
algebras (X ,τX) and (Y,τY ) coordinate-wise and mean by the “subspace topology of the product topology
of (X ,τX) and (Y,τY )” of the subalgebra Z of X×Y the construction which gives τZ from τX and τY .

Now, let us recall the definition of a (general) Segal topological algebra, first published in [1].
A topological algebra (A,τA) is a left (right or two-sided) Segal topological algebra in a topological

algebra (B,τB) via an algebra homomorphism f : A→ B, if
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(1) clB( f (A)) = B;
(2) τA ⊇ { f−1(U) : U ∈ τB}, i.e. f is continuous;
(3) f (A) is a left (respectively, right or two-sided) ideal of B.

In short, we will denote a Segal topological algebra by a triple (A, f ,B).
For any category C , we denote by Ob(C ) the set of all objects of C . For any K,L ∈ Ob(C ), we denote

by Mor(K,L) the set of all morphisms from K to L.
As everything works similarly for left, right or two-sided Segal topological algebras, we will not mention

the sideness in the paper. For better understanding, the reader can think about the left Segal topological
algebras, right Segal topological algebras or two-sided Segal topological algebras, depending on which
class of ideals the reader is more familiar with.

Let us continue by recalling the definition of the category Seg of all Segal topological algebras. The
definition of Seg was first published in [4] together with the definition of another category of Segal topolog-
ical algebras, called S (B), which has already been studied more thoroughly in several papers (see [2–9]).
The category S (B) had all Segal topological algebras in the form (A, f ,B) as objects, where topologi-
cal algebra B was fixed and for any (A, f ,B),(C,g,B) ∈ Ob(S (B)), the morphisms between (A, f ,B) and
(C,g,B) were all continuous algebra homomorphisms α : A→ C with the property g ◦α = f = 1B ◦ f ,
where 1B : B→ B is an identity map on B. The category Seg has all Segal topological algebras as its ob-
jects. For any (A, f ,B),(C,g,D), the set Mor((A, f ,B),(C,g,D)) of morphisms from (A, f ,B) to (C,g,D)
consists of all such pairs (α,β ) of continuous algebra homomorphisms α : A→C and β : B→D, for which
g◦α = β ◦ f . Hence, in case (A, f ,B),(C,g,D) ∈ Ob(Seg) and (α,β ) ∈Mor((A, f ,B),(C,g,D)), we have
a commutative diagram

A
f−−−−→ Byα

yβ

C
g−−−−→ D

.

The composition of morphisms of Seg is defined componentwise as follows:
For any (A, f ,B),(C,g,D),(E,h,F) ∈ Ob(Seg) and arbitrary morphisms (α,β ) : (A, f ,B)→ (C,g,D),

(γ,δ ) : (C,g,D)→ (E,h,F), the composition of (γ,δ ) and (α,β ) is (γ,δ )◦ (α,β ) = (γ ◦α,δ ◦β ).
In [4], pp. 2–4, it was shown that this composition of morphisms is well-defined and associative. More-

over, it was demonstrated that the pair (1A,1B) of identity maps is the identity morphism for an object
(A, f ,B) of Seg.

In [10], the study was started on the categorical properties of the category Seg. The present paper is the
second article devoted to the more thorough study of the category Seg.

2. COEQUALIZERS IN THE CATEGORY SEG

We start this section with the definition of the coequalizer1 in the category Seg. For that, we need to
generalize the definition of a coequalizer given in [4], pp. 8–9, in the case of the category S (B).

Definition 1. Let (A, f ,B) and (C,g,D) be objects of the category Seg. The coequalizer of morphisms
(α1,β1),(α2,β2) ∈Mor((A, f ,B),(C,g,D)) is a pair ((Q,k,R);(λ ,µ)) such that
(1) (Q,k,R) ∈ Ob(Seg) and (λ ,µ) ∈Mor((C,g,D),(Q,k,R)) with λ ◦α1 = λ ◦α2 and µ ◦β1 = µ ◦β2;
(2) for any pair ((S, l,T );(ν ,ρ)) with (S, l,T ) ∈ Ob(Seg) and (ν ,ρ) ∈Mor((C,g,D),(S, l,T )) with

ν ◦α1 = ν ◦α2 and ρ ◦β1 = ρ ◦β2, there exists unique (σ ,τ) ∈Mor((Q,k,R),(S, l,T )) with ν = σ ◦λ

and ρ = τ ◦µ:

1 For the general definition of a coequalizer in an arbitrary category, see, e.g. [11], p. 64.
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In what follows, we need to use the smallest two-sided ideal I of C generated by the set
M = {α1(a)−α2(a) : a ∈ A}. It is known that I is equal to the set{ n

∑
k=1

(ckmkdk + fkmk +mkgk +λkmk) : n ∈ Z+,ck,dk, fk,gk ∈C,mk ∈M,λk ∈K
}
.

Similarly, we need to use the smallest two-sided ideal J of D, generated by the set
N = {β1(b)−β2(b) : b ∈ B}, which is equal to the set{ n

∑
k=1

(cknkdk + fknk +nkgk +λknk) : n ∈ Z+,ck,dk, fk,gk ∈ D,nk ∈ N,λk ∈K
}
.

On the sets I and J we will consider the subspace topologies τI and τJ , generated by the topologies τA
of A and τB of B, respectively, i.e. τI = {U ∩ I : U ∈ τA} and τJ = {V ∩ J : V ∈ τB}. In the theory of
topological algebras, it is known that a quotient space of a topological algebra by its two-sided ideal is also
a topological algebra when equipped with the quotient topology. Hence, C/I and D/J, equipped with the
quotient topologies, are topological algebras.

Theorem 1. Let (A, f ,B),(C,g,B) ∈ Ob(Seg) and (α1,β1),(α2,β2) ∈ Mor((A, f ,B),(C,g,D)). Denote
by I the smallest two-sided ideal of C, generated by the set M = {α1(a)−α2(a) : a ∈ A}, and by J the
smallest two-sided ideal of D, generated by the set N = {β1(b)−β2(b) : b ∈ B}. Then the coequalizer of
the morphisms (α1,β1),(α2,β2) always exists and is the pair ((C/I, g̃,D/J);(p,q)), where p : C→ C/I,
q : D→ D/J are the canonical projections, C/I, D/J are equipped with the quotient topologies
τC/I = {V ⊆ C/I : p−1(V ) ∈ τC}, τD/J = {W ⊆ D/J : q−1(W ) ∈ τD}, respectively, and g̃ : C/I → D/J is
defined by g̃([c]) = [g(c)] = q(g(c)) for each [c] ∈C/I.

Proof. Since (α1,β1),(α2,β2) ∈Mor((A, f ,B),(C,g,B)), then

g(α1(a)−α2(a))=g(α1(a))−g(α2(a))=β1( f (a))−β2( f (a))

for every a ∈ A. Hence, g(M)⊆ N.
Take any i ∈ I. Then there exist ni ∈ Z+,m1, . . . ,mni ∈M,λ1, . . . ,λni ∈K and

c1, . . . ,cni ,d1, . . . ,dni , f1, . . . , fni ,g1, . . . ,gni ∈C

such that

i =
ni

∑
k=1

(ckmkdk + fkmk +mkgk +λkmk).

As g(mk) ∈ N for every mk ∈M, then g(i) ∈ J. Hence, g(I)⊆ J.
First, we will show that (C/I, g̃,D/J) ∈ Ob(Seg).
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We know that C/I,D/J, equipped with the quotient topologies, are topological algebras.
Let c1,c2 ∈ C such that [c1] = [c2]. Then c1 − c2 ∈ I and g(c1 − c2) ∈ J. Thus,

g̃([c1])− g̃([c2]) = [g(c1)]− [g(c2)] = [g(c1−c2)] = [θD], which means that g̃([c1]) = g̃([c2]) and the map g̃
is well-defined. Moreover, g̃ is an algebra homomorphism because g is an algebra homomorphism. Notice
that g̃◦ p = q◦g because (g̃◦ p)(c) = (q◦g)(c) for each c ∈C.

As g(C) is a dense ideal in D, then for every d ∈ D and every neighbourhood O of d there exists
c ∈C such that g(c) ∈ O. Take any [d] ∈ D/J and any neighbourhood U of [d] in D/J. Then there exists
W ∈ τD/J such that [d] ∈W ⊆ U . By the definition of the quotient topology τD/J we see that q−1(W ) is
an open neighbourhood of d because d ∈ q−1(W ) and q−1(W ) ∈ τD. Hence, there exists c ∈ C such that
g(c) ∈ q−1(W ). Now, p(c) = [c] ∈C/I is such an element of C/I, for which

g̃([c]) = q(g(c)) ∈ q(q−1(W ))⊆W ⊆U.

Thus, for every [d] ∈ D/J and every neighbourhood U of [d] in D/J there exists [c] ∈ C/I such that
g̃([c]) ∈U . This means that g̃(C/I) is a dense subset of D/J.

Take any W ∈ τD/J . Then q−1(W )∈ τD, which means that there exists UW ∈ τD such that q−1(W ) =UW .
As (C,g,D) ∈ Ob(Seg), it follows by the condition (2) of the definition of a Segal topological algebra that
g−1(UW ) ∈ τC.
Now,

g̃−1(W ) = {[c] : g̃([c]) ∈W}= {p(c) : q(g(c)) ∈W}

= {p(c) : c ∈ g−1(q−1(W ))}= p({c : c ∈ g−1(UW )}) = p(g−1(UW )) ∈ τC/I

because the projection p is open and g−1(UW ) ∈ τC. Therefore, τC/I ⊇ {g̃−1(W ) : W ∈ τD/J}.
Take any x,y ∈ C/I, λ ∈ K and z ∈ D/J. Then there exist cx,cy ∈ C and dz ∈ D such that

x = [cx] = p(cx),y = [cy] = p(cy) and z = [dz] = q(dz). Then g(cx),g(cy) ∈ g(C). As g(C) is a left
(right or two-sided) ideal of D, then g(cx)+g(cy),λg(cx),dzg(cx) ∈ g(C) (similarly, g(cx)dz ∈ g(C)). Thus,
g̃(x)+ g̃(y) = [g(cx)]+ [g(cy)] = [g(cx)+g(cy)],λ g̃(x) = [λg(cx)],zg̃(x) = [dz][g(cx)] = [dzg(cx)] ∈ g̃(C/I)
(similarly, g̃(x)z ∈ g̃(C/I)). Hence, g̃(C/I) is an ideal of D/J and (C/I, g̃,D/J) ∈ Ob(Seg).

It is known that p and q, as canonical projections, are continuous algebra homomorphisms. Moreover,
as α1(a)− α2(a) ∈ M ⊂ I and β1(b)− β2(b) ∈ N ⊂ J, then p(α1(a)) = p(α2(a)) for every a ∈ A and
q(β1(b)) = q(β2(b)) for every b ∈ B. Hence, p ◦α1 = p ◦α2,q ◦β1 = q ◦β2 and the first condition of the
coequalizer is fulfilled.

Suppose that there is ((S, l,T );(ν ,ρ)) with (S, l,T ) ∈ Ob(Seg) and (ν ,ρ) ∈ Mor((C,g,D),(S, l,T ))
with ν ◦α1 = ν ◦α2 and ρ ◦β1 = ρ ◦β2:

A B

C D

C/I D/J

S T

f

α1 α2 β1 β2

g

p

ν

q

ρg̃

ν̃ ρ̃
l

.

Consequently, we have ν(α1(a)−α2(a)) = θS for every a ∈ A and ρ(β1(b)−β2(b)) = θT for every b ∈ B.
Hence, ν(I) = {θS} and ρ(J) = {θT}. Define the maps ν̃ : C/I→ S by ν̃([c]) := ν(c) for every [c]∈C/I and
ρ̃ : D/J→ T by ρ̃([d]) := ρ(d) for every [d] ∈ D/J. The maps ν̃ and ρ̃ are well-defined since ν(c) = ν(d)
for all c1,c2 ∈ C, with p(c1) = p(c2), and ρ(d1) = ρ(d2) for all d1,d2 ∈ D, with q(d1) = q(d2). Notice
that ν̃ , ρ̃ are continuous algebra homomorphisms because ν and ρ are continuous algebra homomorphisms.
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Moreover, (ν̃ ◦ p)(c) = ν̃([c]) = ν(c) for every c ∈ C and (ρ̃ ◦ q)(d) = ρ̃([d]) = ρ(d) for every d ∈ D.
Hence, ν̃ ◦ p = ν and ρ̃ ◦q = ρ . It is also clear that ν̃ is the unique map with the property ν̃ ◦ p = ν and ρ̃ is
the unique map with the property ρ̃ ◦q = ρ . Hence, the second condition of the coequalizer is also fulfilled
and the pair ((C/I, g̃,D/J);(p,q)) is the coequalizer of the morphisms (α1,β1) and (α2,β2).

3. PULLBACKS IN THE CATEGORY SEG

Similarly to the definition of the pullback2 in the category S (B) (see [4], pp. 10–11), we define also the
pullback in the category Seg.

Definition 2. Let (A, f ,B),(C,g,D),(E,h,F) ∈ Ob(Seg), (α,β ) ∈ Mor((A, f ,B),(E,h,F)) and
(γ,δ ) ∈ Mor((C,g,D),(E,h,F)). An object (P, j,Q) of the category Seg, together with morphisms
(ε,ζ ) ∈ Mor((P, j,Q),(A, f ,B)) and (η ,ξ ) ∈ Mor((P, j,Q),(C,g,D)), is called a pullback of morphisms
(α,β ) and (γ,δ ), if
(1) (α,β )◦ (ε,ζ ) = (γ,δ )◦ (η ,ξ );
(2) for every (R,k,S) ∈ Ob(Seg) and (κ,λ ) ∈ Mor((R,k,S),(A, f ,B)), (µ,ν) ∈ Mor((R,k,S),(C,g,D))

such that (α,β )◦(κ,λ ) = (γ,δ )◦(µ,ν), there exists unique morphism (π,ρ)∈Mor((R,k,S),(P, j,Q))
with (ε,ζ )◦ (π,ρ) = (κ,λ ) and (η ,ξ )◦ (π,ρ) = (µ,ν)

P Q

A B

E F

C D

R S

j

ε

η

ζ

ξ

f

α β

h

g

γ δ

k

κ

µ

π

λ

ν

ρ .

Using this definition of a pullback in Seg, we obtain the following result.

Proposition 1. Let (A, f ,B),(C,g,D),(E,h,F) ∈ Ob(Seg), (α,β ) ∈ Mor((A, f ,B),(E,h,F)) and
(γ,δ ) ∈ Mor((C,g,D),(E,h,F)). Suppose that the subset F0 = (β ◦ f )(A)∩ (δ ◦ g)(C) of F is a dense
ideal of F. Then the following claims hold:
(1) If P = {(a,c) ∈ A×C : α(a) = γ(c),h(α(a)) ∈ F0},

Q = {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}∩ clB×D{( f (a),g(c)) : (a,c) ∈ P},

j((a,c)) = ( f (a),g(c)), the topology on P is the subspace topology of the product topology of (A,τA)
and (C,τC), and the topology on Q is the subspace topology of the product topology of (B,τB) and
(D,τD), then the triple (P, j,Q) is also an object of the category Seg.

(2) The canonical projections pA : P → A, pC : P → C, qB : Q → B and qD : Q → D satisfy
(pA,qB) ∈Mor((P, j,Q),(A, f ,B)), (pC,qD) ∈Mor((P, j,Q),(C,g,D)) and

(α,β )◦ (pA,qB) = (γ,δ )◦ (pC,qD).

2 For the general definition of a pullback in an arbitrary category, see, e.g. [11], p. 71.
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(3) If clB×D{( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}= {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}, then
(P, j,Q), together with the maps (pA,qB) and (pC,qD), is the pullback of the morphisms (α,β ) and
(γ,δ ).

Proof. (1) Let us first show that P is a subalgebra of A×C. For that, take any (a1,c1),(a2,c2)∈P and λ ∈K.
Then α(a1) = γ(c1),α(a2) = γ(c2) and h(α(a1)),h(α(a2)) ∈ F0. As α and β are algebra homomorphisms,
we have

α(a1 +a2) = α(a1)+α(a2) = γ(c1)+ γ(c2) = γ(c1 +c2), α(a1a2) = α(a1)α(a2) = γ(c1)γ(c2) = γ(c1c2)

and
α(λa1) = λα(a1) = λγ(c1) = γ(λc1).

As h is an algebra homomorphism and F0 is an ideal in F , it follows that

h(α(a1 +a2)) = h(α(a1))+h(α(a2)) ∈ F0 +F0 ⊆ F0, h(α(a1a2)) = h(α(a1))h(α(a2)) ∈ F0F0 ⊂ F0

and
h(α(λa1)) = h(λα(a1)) = λh(α(a1)) ∈ λF0 ⊆ F0.

Hence, (a1,c1)+(a2,c2) ∈ P, (a1,c1)(a2,c2) ∈ P and λ (a1,c1) ∈ P, which means that P is a subalgebra of
A×C. As P is equipped with the subspace topology τP of the product topology of (A,τA) and (C,τC), then
(P,τP) is a topological algebra.

Similarly, one can see that the sets {( f (a),g(c)) : (a,c)∈ A×C,α(a) = γ(c)},{( f (a),g(c)) : (a,c)∈ P}
are subalgebras of B×D. The closure of a subalgebra is still a subalgebra and the intersection of two
subalgebras of the same algebra is a subalgebra. Hence, Q, equipped with the subspace topology, is a
topological algebra.

As Q⊆ clB×D{( f (a),g(c)) : (a,c) ∈ P} and j(P) = {( f (a),g(c)) : (a,c) ∈ P}, it is clear that

clQ( j(P)) = Q∩ clB×D( j(P)) = Q,

i.e. j(P) is dense in Q.
As both f and g are continuous algebra homomorphisms, it is also clear that j is a continuous algebra

homomorphism.
In the same way we checked that P is a subalgebra of A×C, one can check that j(P) is an ideal of the

algebra {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}. Therefore, j(P) is also an ideal of Q.
With that we have proved that (P, j,Q) is an object of the category Seg.
(2) As projections, pA, pC,qB and qD are continuous algebra homomorphisms. Notice that

( f ◦ pA)((a,c)) = f (a) = qB( f (a), g(c)) = qB( j(a,c)) = (qB ◦ j)((a,c))

and

(g◦ pC)((a,c)) = g(c) = qD(( f (a), g(c)) = qD( j(a,c)) = (qD ◦ j)((a,c)) for every (a,c) ∈ P.

Therefore, f ◦ pA = qB ◦ j and g ◦ pC = qD ◦ j, which means that (pA,qB) ∈ Mor((P, j,Q),(A, f ,B)) and
(pC,qD) ∈Mor((P, j,Q),(C,g,D)).

Notice that, for every (a,c) ∈ {(a,c) ∈ A×C : α(a) = γ(c)}, we have

(α ◦ pA)((a,c)) = α(a) = γ(c) = (γ ◦ pC)((a,c))
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and

(β ◦qB)(( f (a),g(c))) = (β ◦qB)( j((a,c))) = β ((qB ◦ j)((a,c))) = β (( f ◦ pA)((a,c)))

= (β ◦ f )(a) = (h◦α)(a) = h((α ◦ pA)((a,c))) = h((γ ◦ pC)((a,c))) = (h◦ γ)(c)

= (δ ◦g)(c) = δ (g(c)) = δ (qD(( f (a),g(c)))) = (δ ◦qD)(( f (a),g(c))).

Hence, α ◦ pA = γ ◦ pC and β ◦qB = δ ◦qD, which means that (α,β )◦ (pA,qB) = (γ,δ )◦ (pC,qD).
(3) Based on the part (2) of the proof, we already know that the first condition of a pullback is satisfied.
Suppose that (R,k,S)∈ Ob(Seg), (κ,λ )∈Mor((R,k,S),(A, f ,B)) and (µ,ν)∈Mor((R,k,S),(C,g,D))

are such that (α,β )◦ (κ,λ ) = (γ,δ )◦ (µ,ν).
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E F

C D

R S

j
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Notice that then α(κ(r)) = γ(µ(r)) for every r ∈ R and β (λ (s)) = δ (ν(s)) for every s ∈ S. Moreover, from

(β ◦ f )(κ(r)) = (h◦α)(κ(r)) = h(α(κ(r))) = h(γ(µ(r))) = (h◦ γ)(µ(r)) = (δ ◦g)(µ(r)),

it follows that h(α(κ(r)))∈ (β ◦ f )(A)∩(δ ◦g)(C) = F0, which means that (κ(r),µ(r))∈ P for every r ∈ R.
Take any s ∈ S. As k(R) is dense in S, then there exists a net (ri)i∈I of elements of R, such that the

net (k(ri))i∈I converges to s. As λ ,ν are continuous maps, then the net (λ (k(ri)))i∈I converges to λ (s)
and the net (ν(k(ri)))i∈I converges to ν(s). Hence, the net (λ (k(ri)),ν(k(ri)))i∈I converges to (λ (s),ν(s)).
As (κ,λ ) ∈Mor((R,k,S),(A, f ,B)), (µ,ν) ∈Mor((R,k,S),(C,g,D)), then λ ◦ k = f ◦κ and ν ◦ k = g◦µ .
Hence, the net ( f (κ(ri)),g(µ(ri)))i∈I converges also to (λ (s),ν(s)). By denoting ai = κ(ri),ci = µ(ri) for
every i ∈ I, we see that (ai,ci) = (κ(ri),µ(ri)) ∈ P for every i ∈ I (as shown above). Hence,

( f (κ(ri)),g(µ(ri))) ∈ {( f (a),g(c)) : (a,c) ∈ P} ⊆ {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}

and

(λ (s),ν(s)) ∈ clB×D{( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}∩ clB×D{( f (a),g(c)) : (a,c) ∈ P}.

As clB×D{( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)} = {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)}, then
(λ (s),ν(s)) ∈ Q for every s ∈ S.

Define the maps π : R→ P and ρ : S→Q by π(r) = (κ(r),µ(r)) for every r ∈ R and ρ(s) = (λ (s),ν(s))
for every s ∈ S. Then π and ρ are continuous algebra homomorphisms, since κ,µ,λ and ν were continuous
algebra homomorphisms.

Notice that

( j ◦π)(r) = j(κ(r),µ(r)) = ( f (κ(r)),g(µ(r))) = (λ (k(r)),ν(k(r))) = ρ(κ(r)) = (ρ ◦ k)(r)

for every r ∈ R. Hence, j ◦π = ρ ◦ k and (π,ρ) ∈Mor((R,k,S),(P, j,Q)).
From the definitions of pA, pC,qB,qD it is clear that (π,ρ) is the unique morphism with

(pA,qB) ◦ (π,ρ) = (κ,λ ) and (pC,qD) ◦ (π,ρ) = (µ,ν). Hence, (P, j,Q) is a pullback of the morphisms
(α,β ) and (γ,δ ).
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Open questions. (1) Let (A, f ,B),(C,g,D),(E,h,F) ∈ Ob(Seg), (α,β ) ∈Mor((A, f ,B),(E,h,F)) and
(γ,δ ) ∈ Mor((C,g,D),(E,h,F)). Is any of the following two conditions necessary for the existence of a
pullback of morphisms (α,β ) and (γ,δ )?
(a) F0 = (β ◦ f )(A)∩ (δ ◦g)(C) is a dense ideal of F ;
(b) {( f (a),g(c)) : (a,c) ∈ A×C,α(a) = γ(c)} is a dense subset of B×D.

(2) In case at least one of the conditions of the open question (1) is not necessary, find the necessary and
sufficient conditions for the existence of a pullback in the category Seg.

4. CONCLUSION

In the present paper we have shown that the coequalizers in the category Seg of Segal Topological Algebras
always exist and found some sufficient conditions for the existence of pullbacks in the category Seg.
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Kovõrdsustajad ja tagasitõmbajad Segali topoloogiliste algebrate kategoorias Seg

Mart Abel

On näidatud, et Segali topoloogiliste algebrate kategoorias Seg leiduvad alati kovõrdsustajad. Samuti on
leitud piisavad tingimused tagasitõmbajate leidumiseks kategoorias Seg.
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