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Abstract

We propose in this article one method of numerical resolution using the programming under Matlab of one of the fractional differential equations of Euler-Lagrange containing
a composition of the left and right fractional derivatives of order o, 0< a<1, of Riemann-Liouville and Caputo respectively.
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Introduction

Fractional differential equations are becoming more and more interesting in
recent years for scientists. Many authors have already studied different types
of problems and have formulated Euler-Lagrange equations with different
boundary conditions [1-18]. An ordinary differential equation containing a

composition of left and right fractional derivatives to order a, 0< a<1, with
boundary conditions, is considered in our work. This type of equation is known
as the fractional differential equation of Euler-Lagrange. Fractional differential
equations appear in certain fields such as physics, mechanics, electrical
engineering, etc... This type of equation can be solved with other methods such
as the Laplace transformation or a method using the principle of least action
[10,11]. An analytical method using the fixed- point theorem [6,7] also provides
a solution, but this method is complicated. This is why we propose another
numerical method to solve this type of fractional differential equation. We opted
the programming under Matlab language to find this numerical solution.

Research Methodology

This work will be presented in four sections: in section 2, we recall the
definitions which are necessary tools for the resolution of the equation that we
will presented in section 3. In section 4, we propose a numerical solution, at
first we search the numerical schemes for both fractional operators occurring
in equation and then we determine a developed form of equation in order to
establish a system of linear equations that we will transform into matrix form.
In the last section, the programming under Matlab language allowing finding
approximate numerical solutions graphically and the examples of numerical
solution are given.

Preliminaries

In this section, we give some useful definitions for this numerical solution. The
left and right fractional integrals in the sense of Riemann-Liouville of order on
an interval [0,b] are defined respectively by:
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The left and right fractional derivatives of Riemann-Liouville to order o, 0<o<1

are defined from these fractional integrals to order o. by:
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The left and right fractional derivatives to order o in the sense of Caputo are
also defined from the left and right fractional integrals of Riemann-Liouville of

order a by:
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The relationship between the left fractional derivatives of Riemann-Liouville
and the left fractional derivative of Caputo, both of order & , is the following:
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Presentation of the problem

We study in this work, one of type of the fractional differential equation of Euler-
Lagrange of order a:
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Substitute the integral by the relation (12), we get:
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Where: f is the unknown function, g is a given function, Dy and "D; are Do ( ): r(i- a) P -« r(ll,a)fu
respectively the left fractional derivatives of Riemann-Liouville and the right
fractional derivatives of Caputo, both of order o with 0<a<1 and ¢ €[0,1], the

boundary conditions are: 1 af -f Ia W] g

£ (0)=0 and f(1)=0 (10) Dy (t) (I~a)(I-a) (t, tJ) (t, fJ+1) f

Numerical resolution 7 f .
« 1 i-1 . I-a .

Tofind the discrete form of equation (9), subdivide the interval [0,1]into N parts Do/ (¢ )5 ZO [(tz fj) (ti_tj+1) }rr(ll,a)fo

j=0

/

ith constant step , — L, so there exist (N + 1) points ¢, i=0,1,...., N on this .
" P N xist ) points f, i=0,1...., I Slnceti:ihandtj:jhthenwehave,

. i
interval with ,=0 and ¢ ,=1, ¢, = ih = 7y arearranged in ascending order.

il - l-a l-a lh -’
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This scheme allows us to find the approximate value of the derivative of the
function f at each point ti.

We Qetermine th'e discrete form of this equation (9) and translate the equation DS’ f(tl)é W 21 (fjﬂ—fj){ (i—j)m— (i—(j+ 1))1711} (1}(2# fo
obtained in matrix form. 0

Here are the different steps to follow to find this discrete form of the equation
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We will present the discrete form of each type of fractional derivative, firstly the
left fractional derivative of Riemann-Liouville and secondly the right fractional
derivative of Caputo, of order o,0<ai<1 [9,14].
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Approximation of the fractional derivative of Riemann-Liouville of order o at 0 re-a /:“( ){( ) ( ) }
point t. . N .
) ) . ) o For j from 0 to 7, we obtain the coefficients of f, noted h-c, with:
For this, we will use the relation (7) between the left fractional derivative of '

Riemann-Liouville and the left fractional derivative of Caputo of order o ,I—a . g\l .
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By using the approximation of the derivative by the method of finite differences Cii~ r(z a) for j =i
(11) and by decomposing the integral, we obtain the following relation:

The approximation of the right fractional derivative of Caputo of order o for the
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at point ¢, using the formulate of method of finite differences (11) and
decomposition of the integral (12), we have:
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Substitute t, and tj by i/ and jh, the approximation becomes:
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For i <j < N—1, we obtain the coefficients noted /™ d of the function @,
with :

1
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Thus, by composition of the two operators, we can write the initial equation (9)
in the following discrete form:
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Fori ranging from 1 to N-1, we get, for each value of i, the following expanded
form:
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Where for 0<k<N,

the coefficients &y

are defined by:
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Thus, we can write the following system of N+1 equations of unknowns f;

foz
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This system can be translated by matrix form:
Al_,k xF .= G,- where:  (17)
1 0 0
Ao a, - - - Qi
A= -~ -+ - |, the matrix of the coefficients of f of the system
Ax1o Axan - - - Axaw
0 0 P 1

the matrix of unknowns f with i rows, 0<i<N

the matrix equation of the second member.

"E v
0

These coefficients can be calculated with programming under Matlab language
that we will present below.
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Programming under Matlab language and numerical
examples

In this programming, firstly, we presented the case where N fixed and o varies
and secondly the case where . fixed and N varies to know the influences of
the values of Vand those of the values of o in the results obtained graphically.

The following programming allow us to calculate step by step these coefficients
¢, d,, &, in order to represent the functions f(N,c) graphically.

In this section, the numerical results of calculations are presented. In presented
solutions of equations, we assume the following parameters: for N fixed, we
choose two values of N, N=100 and N=200, & € {0,0.1,0.2,0.8,0.9,1} but for
afixed, « =0.1, & =0.8, « =0.9, Ne {200, 300, 500, 1000}. Here, the
function g, the constant rand m are given in the programming. These values
of g, rand m can be changed in this programming.

In this example of
r=x%m=2x* (7).

Calculation function of f(N,c)

programming, we take g(¢)=27’sin(xt),

function f=varnalpha(N,alpha)
% N=input('value of N=")
% alpha=input('value of alpha=")
¢ = zeros(N,N+1);
% Calculation of ¢
%
for j=1:N
for k=0:j
if k ==0
ta = 1/gamma(2-alpha);
th = (1 - alpha)*j*(-alpha);
tc = (j)*(1-alpha);
td = (j - 1)\(1-alpha);
c(j,k+1) =ta * (tb - tc + td);

elseif k<j
ta = 1/gamma(2-alpha);
th = (j - k + 1)M1-alpha);
tc = (j - k)M(1-alpha);
td = (- k- 1)(1-alpha);
c(j,k+1) = ta * (tb - 2*tc + td);
else
c(j,k+1) = 1/gamma(2-alpha);
end
end
end
% Calculation of d

0, e e ke o ok ok ok ok ok ok
%

d = zeros(N,N);

fori=1:N-1
forj=i:N
ifj==16&j~=N
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d(i,j) = 1/gamma(2-alpha);
elseif j<N
tad = 1/gamma(2-alpha);
thd = (j - i + 1)M(1-alpha);
ted = (j - i)M1-alpha);
tdd = (- i - 1)M(1-alpha);
d(i,j) = tad * (tbd - 2*tcd + tdd);
else
tld = (N -i- 1)1 - alpha);
t2d = (N - )M(1 - alpha);
d(i,j) = (t1d - t2d)/gamma(2-alpha);
end
end
end
% matrix coefficients
b=1;
a = zeros(N+1,N+1);
ce = (b / N)M-2*alpha);
r=pir2;
fori=1:N-1
fork=0:N
S=0;
ifk<i
forj=i:N
S =S +d(ij)*c(,k+1);
end
a(i+1,k+l)=ce*S;
elseif k == i
forj=i:N
S =S +d(i,j)*c(,k+1);
end
a(i+L,k+l)=ce*S+r;
else
forj=k:N
S =S +d(ij)*c(k+1);
end
a(i+l,k+l)=ce*S;
end
end

end

ce=1;
bb=zeros(N+1,1);
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fori=2:N
bb(i,1)=2.*pi*2.*sin(pi.*(i/N));

end

a(1,1)=1;

a(N+1,N+1)=1;

bb(1,1)=0;

bb(N+1,1)=0;

f=a\bb;

fori=1:N+1
t(i)=i.*(1IN)

end

plot(t,f)

grid minor

Analyzing the graphical representations seen previously, we note that when o
is fixed and N varies then the shape of all the curves are the same and they
are confused for all the values of N but the maximum value of the approximate
solution f, reached is the same at the point t=0.5, and decreases when the
value of increases. For fixed N and variable, the shape of the curves does not
change and the curves are different for different values of o, but the maximum
values of the functions f as a function of t remain the same for different values
of N. We also observe that when o is close to 0 then the curves approach the
curve corresponding to a=0 and they approach the curve corresponding to
a=1when o is close to 1 (Figures 1 and 2).
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Figure 1. Approximate solutions for fixed N and variable c.
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Figure 2. Approximate solutions for fixed o and variable N.

Conclusion

In our work, we opted for a numerical method using programming under Matlab
one of the methods allowing to find the coefficients of the matrix in order to
obtain approximate solutions of the function at the point for two different cases
by fixing and by varying and by fixing and by varying. Our perspective is to
apply this method for different problems in certain fields such as sciences,
mechanics, etc.
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