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Abstract
This work presents a transformation of the classical thermal diffusion equation into a fractional thermal diffusion equation with respect to time, considering consistency 
with the dimensionality of time

Keywords: Fractional calculus • Dimension-Diffusion 

Rasolomampiandry G1*, Rakotoson R2,  Randimbindrainibe F3

1Cognitive Sciences and Applications Research Laboratory (LR - SCA), Madagascar
2Doctoral School in Engineering and Innovation Sciences and Techniques (ED - STII), Madagascar
3Ecole Supérieure Polytechnique Antananarivo (ESPA) - University of Antananarivo, BP 1500, Ankatso - Antananarivo 101 – Madagascar

*Address for Correspondence: Rasolomampiandry G, Cognitive Sciences 
and Applications Research Laboratory, BP 1500, Ankatso - Antananarivo 101 – 
Madagascar, E-mail: rasologil@gmail.com

Copyright: © 2021 Rasolomampiandry G. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited.

Received 09 December 2021; Accepted 23 December 2021; Published 30 December 
2021

Introduction 
Fractional calculus (FC), involving derivatives and integrals of non-integer 
order, is the natural generalization of classical calculus, which in recent years 
has become a powerful and widely used tool for better modeling and control 
of processes in many fields of science and engineering [1-5]. Many physical 
phenomena have an “intrinsic” fractional order description and therefore FC 
is needed to explain them [2]. In many applications, the FC provides more 
accurate models of physics than ordinary calculus. Since its success in 
describing anomalous scattering [11-17], non-integer order calculus in both 
one-dimensional and multidimensional space, it has become an important 
tool in many fields of physics, mechanics, chemistry, engineering, finance and 
bioengineering [7-10]. Fundamental physics considerations in favor of using 
models based on non-integer-order derivatives are given in [6-14]. Additionally, 
fractional derivatives provide an excellent tool for the description of memory 
and the hereditary properties of various materials and processes [13]. These 
are advantages of FC compared to classical integer order models, in which 
such effects are indeed neglected.

In this article, we will consider the general form of the thermal diffusion equation, 
we will transform it into a  time fractional thermal diffusion equation, taking into 
account the dimensionality of time.

To do this, in section 2, we will make the choice of the fractional derivative used 
and what it is necessary to respect to change the ordinary derivative of time 
into a fractional derivative. And the use of the results thus obtained to have the 
primary objective. Before the conclusion, we will focus on a discretization and a 
numerical simulation of the equation obtained.

Time Fractional derivatives and 
dimensionality

Fractional derivatives
To analyze the dynamic behavior of a fractional system, it is necessary to 
use an appropriate definition of fractional derivative. Indeed, the definition of 
the fraction and the derivative of order is not unique and there are several 
definitions, including: Grunwald-Letnikov, Riemann-Liouville, Reisz and the 
representation of Caputo, and so on. In the case of Caputo, the derivative of a 
constant is zero and we can define, correctly, the initial conditions for fractional 
differential equations which can be treated using an analogy with the classical 
case (ordinary derivative). The Caputo derivative also involves a memory effect 
by means of a convolution between the derivatives of integer order and a power 
of time. For this reason, in this article we prefer to use the fractional derivative 
of Caputo.

The fractional derivative of Caputo for a function of time f (t) is defined as 
follows [13], when the order of the derivative  :
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Sizing of the variable ‘t’
For a thermal diffusion equation, the variable‘t‘represents the time in seconds. 
We will propose a simple procedure to construct the time fractional thermal 
diffusion equation. To do this, we replace the time ordinary derivative operator 
with the fractional as follows:
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α

α→ , 0<α<1  [1] [2]  (2) 

We can see that (2) is not quite exact, from a physical point of view, because 

the derivative operator of time  d
dt

  has for dimension the inverse of the second 

1s−  and that of the operator of the fractional derivative of time is 
d
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α

α . In order 

to be consistent with the dimensionality of time we introduce the new parameter 
σ with the following way:
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where α is an arbitrary parameter which represents the order of the derivative. 
In the case where α = 1, expression (3) becomes an ordinary derived operator. 
In this way (3) is dimensionally consistent if and only if the new parameter 
has the dimension of time [σ] = s. Hence we have a simple procedure to 
construct fractional differential equations. It consists to replace in the following, 
the ordinary derivative in the ordinary differential equation by the   fractional 
derivative operator:                                                

1

1d d
dt dt

α

α ασ −→ ,0<α<1  [1] [2]  (4)

Expression (4) is a time derivative in the usual sense, because its dimension is 
1s−  . The parameter σ  (auxiliary parameter) represents the fractional time 

components in the system [3,4]. 

Expression of the fractional thermal 
diffusion equation
If t is the temporal variable and x the spatial variable, the classical thermal 
diffusion equation is written:

( , ) ( , ) ( , )xT t x a T t x f t x
t
∂

− ∆ =
∂

 (5)

• ‘a’ is the diffusivity coefficient

• ( , )T t x  is the temperature corresponding to the variables t and x

• ( , )f t x is the second member of equation (1) for the variables t and x 

• t> 0 and x belongs to a certain domain of space 

From the previous paragraph the fractional thermal diffusion equation with 
respect to time is written

1
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In our case 
t
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Finally, the fractional thermal diffusion equation with respect to time is written:
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1 ( , ) ( , ) ( , )C
t xD T t x a T t x f t xα

ασ − − ∆ =  , 0<α<1    (6)

Note:
The parameter α , which represents the order of the fractional derivative, can 
be related to the parameter σ, which characterizes the presence of fractional 

structures in the system. For the present case, referring to the principle taken 
in [3] and [4], (6) is written:
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And we take aα σ=  ,(6) is written:
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Discretization and simulation 

Discretization
For our discretization, it suffices to consider the variable x only on the real line 
because σ has no impact on the spatial variable:

[ ]00,t T∈  and [ ]0,x X∈

On the segment [ ]00,T , we build a finite sequence ( )0i i n
t

≤ ≤
 such that  0Tk

n
=

and it ik=  - Similarly, on the segment [ ]0, X  , a finite sequence ( )
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This relation is valid for 0i ≠
2
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More precisely
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Simulation
Make 0 1T = ; 0 2X = , 0 <α <1 and we take as an initial condition (0, ) 0T x =  

for all [ ]00,x X∈

The boundary condition is ( ,0) ( ,2) 0T t T t= =  for all [ ]00,t T∈ .

a=0.05, ( , ) exp( )f t x t x= −
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Figure 1: Graphical representation of the temperature variation. If the time t 
varies between 0 and 1 and the position x between 0 and 2, when the order of 
the fractional derivative is 0.9.
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(9) can still be written:

If , ( , )i j i jT T t x= then ; ( , )i p j i jT T t pk x− = −  and 0 0jT =  for 0 j m≤ ≤ ,

, 0i mT =  for 0 i n≤ ≤  and if we note , ( , )i j i jf f t x=  we have
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If we vary j, we have m equations:
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We have the following matrix representation:
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 If A is the tridiagonal square matrix of order m, ( )ijA a= ,1 , 1i j m≤ ≤ − .

Such that ,1 1ii kha i mαλ= − ≤ ≤ − ; 1 1,1 2i ia i m+ = ≤ ≤ − ; 1 1,1 2iia i m+ = ≤ ≤ −
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And we have a matrix equation similar to the case i = 1. Thus, we  have n 
matrix equations:  

i i iAT B= ,  1 i n≤ ≤ , (14)

such as  , 1 1( )i i j j mT T ≤ ≤ −= , , 1 1( )i ij hk h i j j mB fα αβ γ ≤ ≤ −= −

Solving these equations, gives us the values ​of , 1 ,1( )i j i n j mT ≤ ≤ ≤ ≤

From the above mentioned data, from MATLAB software, we get the following 
graphical representation:

Conclusion
The important point for this article is the introduction of the parameter ‘σ ‘ in 
the case of the fractional thermal diffusion equation with respect to time. But 
the problem that still arises is the identification of the expression of ‘σ’ in the 
general case, i.e: Is it possible to give a method to search ‘σ’ for all cases.
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