
 Open AccessISSN: 2168-9679

Journal of 
Applied & Computational Mathematics

Research Article

Heterogeneous-Homogeneous Reaction Mechanism on the 
Hydro Magneticnano Fluid Flow Over a Stretching Cylinder 
with Prescribed Heat Flux using Hermite Wavelet Method

Abstract
The current work provides the Hermite wavelet method (HWM) for an incompressible Nanofluid hydromagnetic flow through a stretching cylinder associated with 
heterogeneous-homogeneous chemical reactions. Single-walled carbon nanotubes (SWCNTs) with multi-walled carbon nanotubes (MWCNTs) as nanoparticles in the form 
of arranged heat flux are accounted for currently. Regulating equations, which are highly nonlinear coupled, are changed right into non-dimensional ordinary differential 
equations (ODEs) using appropriate similarity transformations. The desire for exceptional flow constraints on the flow feature is finalized truthfully through tables and graphs. 
Graphic summaries are offered for the rheological qualities of various parameters in size for velocity, temperature, concentrations, and nanoparticles. Comparison of the 
numerical outcomes is made with previously available consequences under particular cases, and the results are found to be in good agreement. The Hermite wavelet 
technique is hugely proficient and sensible for finding outcomes to this type of coupled nonlinear ODEs. The works are in outstanding accord for coupled nonlinear ordinary 
differential equations (ODEs) in engineering applications. 
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Introduction
The majority of the applied mathematics and engineering problems 

happen in highly nonlinear coupled differential equations. Several pertinent 
areas to wave phenomena enclose fluid mechanics, elastic media, plasma, 
optical fibres, etc. Also, obtaining accurate results for these problems is 
relatively unhurt. Nonetheless, in current years, numerical methods have 
drastically been urbanized to be used for a nonlinear coupled system of 
differential equations. A few of them were solved using different analytical 
and numerical methods.

The magnetic properties have significant uses in applied mathematics 
and engineering. For example, several manufacturing types of equipment, 
magnetohydrodynamic generators, bearings, pumps, and boundary layer 
manage are exaggerated by the contact involving the magnetic field and 
an electrically conducting fluid. The works of many researchers have been 
considered relative to these applications. One of the fundamental and 
significant issues around the hydromagnetic conduct of boundary layers is 
the length of fixed or moving surfaces within sight of a transverse magnetic 
field. The magnetic field and boundary layer problems are related in different 
industrial systems employing plasma flow transverse of magnetic fields and 
liquid metals [1]. Numerous scientists have contemplated the impacts of 
electrically conducting liquids, for example, fluid metals, water mixed with 
a little corrosive and different fixings within sight of an attractive field on 
the stream and warmth move of an incompressible gooey fluid disregarding 
a touching surface or an extending plate in an inactive liquid. Pavlov [2] 
was one of the principal pioneers in this field of study. Subsequently, a 
spearheading work by Pavlov [2], the flow past a moving level plate or an 
extending sheet within the transverse magnetic field has drawn thought, and 

a decent measure of writing has been produced on this problem ([3] and 
references therein).

From an energy-saving point of view, improvement of heat transfer 
execution in frameworks is an essential subject. The low thermal 
conductivity of regular heat transfer liquids, for example, water and oils, 
is a critical constraint for improving the exhibition and the compactness of 
frameworks. Solids usually have a higher warm conductivity than fluids. 
An imaginative and novel method to upgrade heat move is to utilize strong 
particles in the base liquid (for example, Nanofluids) in the scope of sizes 
10–50 nm. However, in recent times Nanofluid [4], an innovative type of 
fluid categorize outstanding to fluid-solid understanding in non-metal or 
metal nanoparticle suspension; started by Choi [5], to heighten thermal 
conductivity of the fluid. Carbon nanotubes fundamentally are the cylinder 
of single or numerous sheets of grapheme. Fixated on grapheme sheets, 
carbon nanotubes are recognized into two kinds, viz. single and multiple-
walled carbon nanotubes (SWCNTs and MWCNTs). For the most part, CNT 
is utilized in anodes, cathodes, impetus, and different clinical and natural 
applications because of its remarkable mechanical and electrical properties, 
just as flow conductivity. CNTs contain broad uses in aviation materials since 
they can likewise advance the reformist aviation materials' effects. A fluid 
system including CNT is exceptionally electrically conducting, suggesting 
that they may safeguard airplane from the lightning strike. Ample literature 
can be found on CNTs flow problems ([6-8] and and references therein). 
Sheikholeslami [9] studied the support of fixed suction occurrence on Nano 
fluid flow during cylinder and calculated efficient thermal conductivity in 
adding viscosity by KKL system. Kardri et al. [10] considered heat transfer 
and flow features during cylinder and recognize that the dual result exists 
for stretching cylinder. Nadeem et al. [11] investigated the individuality of 3D 
stagnation-point hybrid-Nano fluid flow during cylinder and established that 
heat transfer rate is advanced in hybrid Nano fluid than Nano fluid.

Heat flux is characterized as the pace transfer of heat energy during 
a predefined surface. Numerous scientists [12-14] exhibit flow and heat 
broadcast overextending cylinder utilizing recommended heat transition. 
Alavi et al. [15] studied endorsed heat motion to catch the quality of MHD 
flow over a dramatically extending sheet. Heat transfer examination utilizing 
recommended heat motion through stretching sheet was reviewed by 
Majeed et al. [15].
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Where the prime (‘) represents differentiation with respect to t.

Without loss of generality, we suppose that the molecular diffusion rates 
of chemical species A and B are of a similar size. Besides, we think that 
DA = DB, i.e. 1δ = ; so we believe from the hypothesis that g(t) + G(t) = 1. 
Thus, (2.3) and (2.4) gather together to
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With the rehabilitated boundary conditions
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Hermite wavelet operation matrix of integration

Hermite wavelet

Hermite wavelets are defined in detail (Shiralashetti and Kumbinarasaiah 
[42]).

Approximation of function

We would approximate y(x) under Hermite space by elements of 
Hermite wavelet basis as follows:
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Where , ( )m n xφ is given in (3.1).

We approximate )(xy by truncating the series as follows
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Operational matrix

Operational matrix of integration

Here, we extracted some Hermite wavelet basis at k = 1 as follows:

1,0
2( )xφ
π

=

1,1
1( ) (8 4)x xφ
π

= −

2
1,2

1( ) (32 32 4)x x xφ
π

= − +

3 2
1,3

1( ) (128 192 48 8)x x x xφ
π

= − + +

4 3 2
1,4

1( ) (512 1024 384 128 40)x x x x xφ
π

= − + + −

In various manufacturing developed, burning, paint fabricating, 
biomedical creation, food handling, and metal deliberation from commonly 
discovered mineral, homogeneous, heterogeneous synthetic responses 
happen. Bachok et al. [17] examined stagnation flow in the form of 
heterogeneous-homogeneous compound response over a growing 
surface by allowing for indistinguishable dispersion pace of reactant and 
auto catalyst. Muhammad et al. [18] investigated boundary layer Ferro-
hydrodynamic flow within sight of heterogeneous-homogeneous responses. 
Newly, Nano fluid flow with heterogeneous-homogeneous reactions was 
concentrated by Kumar et al. [19].

Practically all arithmetical modelling involves linear or nonlinear 
differential equations. To determine those equations impeccably, 
approximately, or mathematically a few specialists employ various excellent 
scientific, semi-analytic plans alongside lasting label of convergence. There 
are different mathematical techniques to solve such nonlinear differential 
equations; however, a few significant information counting circular 
occurrence determination be misplaced throughout the process of finding 
the solution. Hence, analytical techniques contain emerged to solve highly 
nonlinear differential equations such as the 

Homotopy Analysis Method (HAM) [20,21], Homotopy Analysis Sumudu 
Transform Method (HASTM) [22], Homotopy Perturbation Method [23,24], 
Variational Iteration Method[25-27], q- Homotopy Analysis Transform 
Method (q-HAM) [28], Energy Balance Method [29,30], new extended direct 
algebraic method [31,32], Homotopy Analysis Transform Method (HATM) 
[33], Differential Transformation Method (DTM) [34,35], Exp-function 
Method [36-38] and Akbari-Ganji's Method [39].

To the very best of our understanding, no study was performed in an 
incompressible Nano fluidhydro magnetic flow during stretching cylinders 
associated with heterogeneous- homogeneous chemical reactions by 
using the wavelet technique. Wavelet theory is one of the recent emerging 
approaches in applied mathematics. It has a wide range of applications in 
the following fields as Signal analyses, computer science, mathematical 
modeling, image processing, and applied sciences. Many mathematicians’ 
contributions towards wavelets based numerical methods are as follows: 
Laguerre wavelets method [40], Hermite wavelets method [41], B-spline 
approach [42], Wavelet collocation method [43], Generalized Hermite 
wavelets method [44], etc. SWCNTs and MWCNTs as nanoparticles in 
the look of set heat transfer motion are considered here. It has significant 
uses in anodes, cathodes, semiconductors, microelectronics, paper 
creation, glass blowing, plastic sheets, polymer preparation, food handling, 
ignition, aviation materials, paint industry, and mechanical different clinical 
and biomedical innovation, and ecological investigations. The numerical 
simulations have been employed using a numerical method recognized 
as HWM (see, for details, [41]. The Velocity and temperature distribution 
are advanced in MWCNT than SWCNT, and the opposite trend could be 
seen for concentration circulations presented in tables and graphs. The 
results gotten are compared to the earlier findings, which are in excellent 
agreement with the current work. It is expected that modern literary works 
will undoubtedly offer better details for the science and industrial sectors. 

The organization of this paper is as follows; section 2 is devoted to 
the problem formulation. The progress of the Hermite matrix of integration 
is available in section 3. Section 4 reveals the method of solution, and the 
results are discussed in section 5. Finally, the conclusion is drawn in section 6.

Problem formulation

The basic highly nonlinear coupled ordinary differential equations 
(ODEs), which described in an incompressible nanofluid hydro magnetic flow 
through stretching cylinder associated with heterogeneous- homogeneous 
chemical reaction, can be summarized as introduced by ShankarGeri et al. 
[45]: 

( ) ( ) ( ) ( )2.5 21 2 2 1 1 0CNT

f

t f f f f f fργ γ φ φ φ
ρ

     ′′′ ′′ ′′ ′ ′+ + + − − + − − Μ =           
 (2.1)
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Now integrate above first nine basis concerning x limit from 0 to x, then 
express as a linear combination of Hermite wavelet basis as,
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Next, twice integration of above nine basis is given below
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Again triple integration of above nine basis is given by,

1,0 9
0 0 0

5 3 1 1( ) 0 0 0 0 0 ( )
96 64 64 384

x x x

x dxdxdx xφ φ =   ∫ ∫ ∫

1,1 9
0 0 0

7 1 1 1( ) 0 0 0 0 0 ( )
128 24 128 1536

x x x

x dxdxdx xφ φ− − − =   ∫ ∫ ∫

1,2 9
0 0 0

1 1 1 1( ) 0 0 0 0 0 ( )
80 64 96 3840

x x x

x dxdxdx xφ φ− − − =   ∫ ∫ ∫

1,3 9
0 0 0

19 3 5 1( ) 0 0 0 0 0 ( )
96 20 128 7680

x x x

x dxdxdx xφ φ =   ∫ ∫ ∫

1,4 9
0 0 0

13 7 1 1( ) 0 0 0 0 0 ( )
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x x x

x dxdxdx xφ φ− − − =   ∫ ∫ ∫

1,6 9 1,9
0 0 0

133 81 29 1( ) 0 0 0 0 0 0 ( ) ( )
36 32 56 32256

x x x

x dxdxdx x xφ φ φ = +  ∫ ∫ ∫

1,6 9 1,9
0 0 0

133 81 29 1( ) 0 0 0 0 0 0 ( ) ( )
36 32 56 32256

x x x

x dxdxdx x xφ φ φ = +  ∫ ∫ ∫

1,7 9 1,10
0 0 0

193 37 103 1( ) 0 0 0 0 0 0 ( ) ( )
40 9 64 46080

x x x

x dxdxdx x xφ φ φ = +  ∫ ∫ ∫

1,8 9 1,11
0 0 0

1211 773 335 1( ) 0 0 0 0 0 0 ( ) ( )
22 20 36 46080

x x x

x dxdxdx x xφ φ φ− − − = +  ∫ ∫ ∫

Hence,
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where,
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   
   
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In the same way, we can create matrices for our convenience. In the 
result section, the third-order highly nonlinear coupled ordinary differential 
equations are solved using N=6 and 9. So, we generated matrices of order 
9*9 up to a triple operational matrix of integration.

Method of solution

Now, assume that

( ) ( )Tf x A xψ′′′ = 					               (4.1)

Integrate Eq. (4.1) with respect to x form 0 to x,we get,

( ) ( ) ( ) ( )0 Tf x f A P x xψ ψ′′ ′′  = + +  			            (4.2)

Integrate (4.2) with respect to x form 0 to x

( ) ( ) ( ) ( ) ( )0 0 Tf x f x f A P x xψ ψ′ ′ ′′ ′ ′ = + + +  	            (4.3)

Integrate (4.3) concerning x form 0 to x

( ) ( ) ( ) ( ) ( ) ( )
2

0 0 0
2

Txf x f x f f A P x xψ ψ′ ′′ ′′ ′′ = + + + +  	           (4.4)

( ) ( ) ( ) ( )
2

0
2

Txf x x f A P x xψ ψ′′ ′′ ′′ = + + +  		             (4.5)

Put x η= in (4.3) we get

( ) ( ) ( ) ( )1 0 T

x
f f A P x x

η
η η ψ ψ

=
′ ′′ ′ ′ = + + +  	           (4.6)

( ) ( ) ( ){ }10 1 T

x
f A P x x

η
ψ ψ

η =
′′ ′ ′ = − − +  	          (4.7)

Fit (4.7) in (4.2, 4.3, 4.5) we get 

( ) ( ) ( ){ } ( ) ( )1 1 T T

x
f x A P x x A P x x

η
ψ ψ ψ ψ

η =
′′ ′ ′   = − − + + +       (4.8)

( ) ( ) ( ){ } ( ) ( )1 1 T T

x

xf x A P x x A P x x
η

ψ ψ ψ ψ
η =

′ ′ ′ ′ ′   = + − − + + +     (4.9)

( ) ( ) ( ){ } ( ) ( )
2 1 1

2
T T

x

xf x x A P x x A P x x
η

ψ ψ ψ ψ
η =

′ ′ ′′ ′′   = + − − + + +    		

					                               (4.10)

Again put 

( ) ( )Tx B xθ ψ′′ = 					                 (4.11)

Integrate (4.11) with respect to x form 0 to x

( ) ( ) ( )1 Tx B P x xθ ψ ψ′  = − + +  			              (4.12)

Integrate (4.12) concerning x form 0 to x

( ) ( ) ( ) ( )0 Tx x B P x xθ θ ψ ψ′ ′ = − + + 
		               (4.13)

Put x η= in the above equation, we get 

( ) ( ) ( ) ( )0 T

x
B P x x

η
θ η θ η ψ ψ

=
′ ′ = − + +  		           (4.14)

( ) ( ) ( )0 T

x
B P x x

η
θ η ψ ψ

=
′ ′ = − +  		            (4.15)

Form (4.15) and (4.13), we get

( ) ( ) ( ) ( ) ( )T T

x
x B P x x x B P x x

η
θ η ψ ψ ψ ψ

=
′ ′ ′ ′   = − + − + +    	

						                (4.16)

Again put 

( ) ( )Tg x C xψ′′ = 					                  (4.17)

Integrate (4.17) concerning x form 0 to x

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0T T
sg x g C P x x K g C P x xψ ψ ψ ψ′ ′    = + + = + +   

						              (4.18)

Integrate (4.18) concerning x form 0 to x

( ) ( ) ( ) ( ) ( )0 0 T
sg x g K g x C P x xψ ψ′ ′ = + + +  		

						                (4.19)

Put x η= in the above equation, we get 

( ) ( )[ ] ( ) ( )0 1 T
s x

g g K C P x x
η

η η ψ ψ
=

′ ′ = + + +  	          (4.20)

( ) [ ] ( ) ( )( )10 1
1

T

x
s

g C P x x
K η

ψ ψ
η =

′ ′ = − + +
	          (4.21)

form (4.21) and (4.18), (4.19) we get

( ) [ ] ( ) ( )( ) ( ) ( )1 1
1

T T
s x

s

g x K C P x x C P x x
K η

ψ ψ ψ ψ
η =

′ ′ ′   = − + + +   +
						              (4.22)

( ) [ ]
[ ] ( ) ( )( ) ( ) ( )1

1
1

s T T

x
s

K x
g x C P x x C P x x

K η
ψ ψ ψ ψ

η =

+
′ ′ ′ ′   = − + + +   +

					      	          (4.23)

Again put 

( ) ( )TG x D xψ′′ = 					             (4.24)

Integrate (4.24) concerning x form 0 to x

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0T TsKG x G D P x x g D P x xψ ψ ψ ψ
δ

′ ′    = + + = − + +   
						                (4.25)

( ) [ ] ( ) ( )( ) ( ) ( )1 1
1

T Ts
x

s

KG x C P x x D P x x
K η

ψ ψ ψ ψ
δ η =

′ ′ ′   = − − + + +   +
						               (4.26)

Integrate (4.26) concerning x form 0 to x

( ) ( ) [ ] ( ) ( )( ) ( ) ( )0 1
1

T Ts
x

s

K xG x G C P x x D P x x
K η

ψ ψ ψ ψ
δ η =

′ ′ ′ ′   = − − + + +   +
						                (4.27)

Put x η= in the above equation, we get 

( ) ( ) [ ] ( ) ( )( ) ( ) ( )0 1
1

T Ts
x x

s

KG G C P x x D P x x
K η η

ηη ψ ψ ψ ψ
δ η = =

′ ′ ′ ′   = − − + + +   +
						                (4.28)

( ) [ ] ( ) ( )( ) ( ) ( )0 1
1

T Ts
x x

s

KG C P x x D P x x
K η η

η ψ ψ ψ ψ
δ η = =

′ ′ ′ ′   = − + − +   +
	        (4.29)

form (4.29) and (4.27), we get

( ) [ ] ( ) ( )( ) ( ) ( )

[ ] ( ) ( )( ) ( ) ( )

1
1

1
1

T Ts
x x

s

T Ts
x

s

KG x C P x x D P x x
K

K x C P x x D P x x
K

η η

η

η ψ ψ ψ ψ
δ η

ψ ψ ψ ψ
δ η

= =

=

′ ′ ′ ′   = − + − +   +

′ ′ ′ ′   − − + + +   +
						                 (4.30)

Substitute , , , , , , , , , , , ,f f f f g g g G G Gθ θ θ′′′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ in a given 

system of highly nonlinear coupled ODEs. Then collate each ODE by 

the following collocation points 
2 1
2i
ix
N
−

= . Where 1,2,3, ,i N= ⋅⋅⋅  and 
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Nrepresents the size of the operational matrix. Then we get a nonlinear 
algebraic equations system and solve this system by Newton's method 
that yields the Hermite wavelet's unknown coefficients. Substitute these 
unknown coefficients to , ,f gθ and G  will reflect the Laguerre wavelet-
based numerical solutions for a given system of nonlinear coupled ODEs.

Results and Discussions
To find the Hermite wavelet functional matrix method's efficiency, 

we solved highly nonlinear coupled ordinary differential equations and 
compared the calculated outcomes with other methods available in the 
literature. From Table 2, we compare the Runge-Kutta method, Finite 
difference method, DTM, and HWM methods when 0γ φΜ = = =  and in 
the nonexistence of a chemical reaction. Hence we can be fulfilled that 
HWM is a more suitable method for solving highly nonlinear coupled ODEs 
(2.1–2.5). The physical behaviour of different known physical parameters in 
the confirmed flow problem on the velocity, temperature, and concentration 
fields is presented in Figures 1-10.

The velocity curves for different values of curvature parameter γ are 
presented in Figure 1. We noticeable the increase in fluid velocity during 
growth. Temperature dispersionbecause of curvature parameter γ have been 
depicted in Figure 2. Temperature dispersionenhances like velocity profiles 
for increasing γ . Velocity and temperature curves are superior in MWCNT 
than SWCNT. The concentration curves (Figure 3) support an undefined 
way like temperature curves when γ heightens and afterward concentration 
boundary layers obtain thicker. The velocity curves for different values of 
nanoparticle concentration φ are presented in Figure 4. We evident the 
improvement in liquid velocity for increasing φ and henceforth impetus 
boundary layer gets thicker. Figure 5 shows that the temperature curves 
for various nanoparticle concentration values φ, and it uncovered that 
temperature curves increase with the increase in φ. This choice with an 
actual component that φ increases shows thermal conductivity quickens 
and in like manner thermal boundary layer width gets increased. Velocity 

Figure 1. Velocity curves for different values of curvature parameter.

Figure 3. Concentration curves for different values of curvature parameter.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fl (t)

Effect of nanoparticle concentration  on velocity distribution

MWCNT at  = 0.12

SWCNT at  = 0.12

MWCNT at  = 0.08

SWCNT at  = 0.08

MWCNT at  = 0.04

SWCNT at  = 0.04

MWCNT at  = 0

SWCNT at  = 0

Figure 2. Temperature curves for different values of curvature parameter.
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Definition Notation Parameter

0.5

0

f L
U

ν 
 
 

γ curvature parameter

B

A

D
D δ the ratio of the mass diffusion 

coefficient

( )f p f

f

Cµ

κ
Pr Prandtl number

f

AD
ν

Sc Schmidt number

2
1 0

0

k a L
U λ Homogeneous chemical 

reaction factor

0

fs

A

Lk
D U

ν
Ks

Heterogeneous chemical 
reaction factor

2
0

0

n f

f

B L
U

σ
ρ M Revised magnetic parameter

Table 1. The dimensionless parameters are introduced in equations (2.1-2.5).

Table 2. Variation of θ(0)
 
for different values of Pr.

Pr
Bachok and 
Ishak [14]

Elbashbeshy 
[13]

SankarGiri  
et al. [45]

Present Method

HWM (N=6) HWM(N=12)
0.72 1.2367 1.2253 1.236582 1.20374 1.23667
1.00 1.0000 1.0000 0.999999 0.98872 1.00000
6.70 0.3333 - 0.333303 0.30131 0.33331
10.0 0.2688 0.2688 0.268768 0.27621 0.26887
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Figure 5. Temperature curves for different values of nanoparticle concentration.
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Figure 6. Velocity curves for different values of the magneticfield parameter.

 

Figure 7. Temperature curves for different values of the magneticfield 
parameter.
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Figure 8. Concentration curves for different values of Schmidt number.
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Figure 9. Concentration curves for different values of homogeneous chemical 
reaction factor.
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Figure 4. Velocity curves for different values of nanoparticle concentration.
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and temperature curves are advanced in MWCNT than SWCNT. The 
velocity curves for different values of the magnetic-field parameter M are 
presented in Figure 6. The graphical agreement embraces the rejection of 
liquid speed while the potency of the magnetic field gets engorged. Figure 
7 revealed how magnetic-field parameter M follows up on temperature field. 
We comprehend that temperature dispersion is supported with M. While 
extra work total needed to loosen up nanofluid contrary to the magnetic 
field's purpose, heats transport nanofluid and improve temperature curves. 
Velocity and temperature curves are advanced in MWCNT than SWCNT. 
Schmidt number is perceived as a proportion of the rate of momentum 
diffusivity to the rate of mass diffusivity; thus, higher estimations of Sc 
suggest little mass distribution and as an aftereffect concentration curves 
refute, which are depicted in Figure 8. Concentration curves are superior 
in SWCNT than MWCNT. Uniform chemical reaction factor λ intensifies 
the spices B, which balanced nanoparticles in it. Like this nanoparticles' 
creation upgrades. This legitimizes that g is increased in the scheme as 
explained in Figure 9. In Figure 10, we reveal the thump of heterogeneous 
chemical reaction factor (Ks) on the flow. The first-order heterogeneous 
response happens in the endurance of solid engrossing warmed heated 
surface, which absorbs A and B and afterward a reply happens and following 
flavours B emerged from the divider thermally energizing nanoparticle in it. 
Consequently g upturns. Concentration curves are greater in SWCNT than 
MWCNT.

Conclusion
This manuscript enlarges heterogeneous-homogeneous chemical 

reaction in an incompressible nanofluid hydromagnetic flow through a 
stretching cylinder. SWCNTs, as well as MWCNTs nanoparticles, are 
considered at this point. We reformed coupled PDEs to couple highly 
nonlinear ODEs using the similarity technique and then resolved by HWM. 
The outcome process of HWM shows the competence of HWM for solving 
highly nonlinear differential equations, which is shown in the tables and 
figures. The computed solution via this technique is close to a numerical 
solution. Moreover, the HWM is more capable than any numerical method 
to solve this type of equations. The critical outcomes of the foregoing study 
may be summarized as follows: 

The velocity curves are the same for different values γ and φ. 

Temperature curves are improved with γ, M, and φ. 

Velocity and temperature curves are advanced in MWCNT than 
SWCNT, and opposite results are seen in the case of concentration curves. 

Concentration curves increase for chemical reaction factor.
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