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Solution of Ordinary Differential Equation with Variable 
Coefficient Using Shehu Transforms

Abstract
Shehu transform is a new integral transform type used to solve differential equations as other integral transforms. In this study, we will discuss the Shehu transform 
method to solve ordinary differential equation of variable coefficient. In order to solve, first we discussed the relationship between this new integral transform with 
Laplace transform. 
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Introduction

Many problems in engineering and science can be formulated in terms of 
differential equations. The ordinary differential equations arise in many areas 
of Mathematics, as well as in Sciences and Engineering. In the literature there 
are numerous integral transforms [1] and widely used in physics, astronomy 
as well as in engineering. In order to solve the differential equations, the 
integral transform were extensively used and thus there are several works 
on the theory and application of integral transform such as the Laplace, 
Fourier, Shehu Transform, Mellin, and Hankel, Fourier Transform, Sumudu 
Transform, Elzaki Transform and Aboodh Transform. Aboodh Transform 
[2,3] was introduced by Khalid Aboodh in 2013, to facilitate the process of 
solving ordinary and partial differential equations in the time domain. This 
transformation has deeper connection with the Laplace and Elzaki Transform 
[4-6]. New integral transform, named as ZZ Transformation [7-10] introduce 
by Zain Ul Abadin Zafar [2016 ] , ZZ transform was successfully applied to 
integral equations, ordinary differential equations . The main objective of this 
article is to construct (introduce) relationship between Shehu transform and 
Laplace Transform which helps us to use Shehu transform simply to solve 
ordinary differential equation of variable coefficient. The plane of the paper 
is as follows: In section 2, we introduce the basic idea of Shehu transform, in 
section 3, we introduce Laplace Transform, Application in 4 and conclusion 
in 5, respectively. 

Shehu transform 

Definition: A new transform called the Shehu transform of the function (𝑡) 
belonging to a class 𝐴, where: 

|𝑡|

𝐴 = { (𝑡): ∃𝑁, 𝜂1, 𝜂2 > 0, |𝑓(𝑡)| <𝑁𝑒𝜂𝑖, 𝑖𝑓𝑡∈ (−1)𝑖 × [0 ∞) }

Where (𝑡) defined by 𝕊[𝑓(𝑡)] and is given by: 

𝕊 (𝑡)𝑑𝑡 			                (1.1)

Or 𝕊 𝑠𝑡𝑑𝑡 		                (1.2)

Laplace transform 

Definition: The Laplace transform of the function (𝑡), 𝑓or all𝑡 ≥ 0 is given 
by: 

𝑠𝑡𝑑𝑡 			                 (1.3)

Connection between Shehu transform and Laplace 
transform 

In this section, we present connections between Shehu transform and 
Laplace Transform 

Theorem 1: If {𝑓(𝑡)} = 𝑊(𝑠, 𝑢) and ℒ{𝑓(𝑡)} = 𝐹(𝑠) then 

𝑠

{𝑓(𝑡)} = 𝑊(𝑠, 𝑢) = 𝐹 ( ) 				                 (1.4)

𝑢

Proof: Since, from (1.2) we have: 

𝕊 𝑠𝑡𝑑𝑡

Put 𝑤 = 𝑢𝑡⟹𝑑𝑤

 
= 𝑑𝑡 in the above equation, we have 

𝑢

∞

⟹𝕊{𝑓(𝑡)} = 𝑊(𝑠, 𝑢) = 𝑢	 𝑒 𝑤𝑑𝑤       

 

𝑢

⟹𝕊𝑢𝑤𝑑𝑤 = 𝐹 (𝑠) 

𝑢

⟹𝑊(𝑠, 𝑢) = 𝐹 (𝑠)

𝑢

Hence the proof is completed. 

Theorem: If [𝑓(𝑡)] = 𝑊(𝑠, 𝑢)and ℒ{𝑓(𝑡)} = 𝐹(𝑠) then 
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  𝑑           𝑢

⟹𝕊{𝑡𝑒𝑎𝑡} = −𝑢   
 

    
  

[ ]

                              𝑑𝑠      𝑠 − 𝑎𝑢

                                           −𝑢

 = −𝑢 [(
   

𝑠 − 𝑎𝑢)2]

                                𝑢2
 = (

   
𝑠 − 𝑎𝑢)2

Example 2: Let us consider the second-order differential equation with 
variable coefficient 

𝑡𝑦′′ + 2𝑦′ + 𝑡𝑦 = cos𝑡 , (0) = 1, 𝑦′(0) = 1                                                   (1.6)

Solution: Taking Shehu Transform on both sides of Eq. 1.6, we get 

[𝑡𝑦′′ + 2𝑦′ + 𝑡𝑦 = cos𝑡]

⟹ −𝑢𝑑𝑠
  

𝑑[𝑢𝑠2
2 (𝑠, 𝑢) − 𝑢

 
𝑠𝑦(0) − 𝑦′(0)] + 2 [𝑢

 
𝑠𝑌(𝑠, 𝑢) − 𝑦(0)] − 

𝑢𝑑𝑠
 

𝑑𝑌(𝑠, 𝑢) = 𝑠
   2

𝑢𝑠+ 𝑢2

Using the given Initial conditions (0) = 1, 𝑦′(0) = 1
 2     

⟹ −  [ 2 ( , ) −  − 1] + 2 [ ( , ) − 1] − ( , ) = 2 + 2 

2  2  1    
⟹ −  [ 2 ( , ) + 2 ( , ) − ] + 2 ( , ) − 2 − ( , ) = 2 + 2 

2  2     
⟹ [− ( , ) − ( , ) + 1 + 2 ( , ) − 2 − ( , ) = 2 + 2] 

2    
⟹ − ( , ) − ( , ) = 2 + 2 + 1 

 2 + 2  

⟹ − { ( )} [  ] = 2 + 2 + 1 

 2   

⟹ − { ( )} = ( 2 + 2)2 + 2 + 2 

If we multiplying both sides by 𝑢, we get: 
 3  2 

⟹ − { ( )} = ( 2 + 2)2 + 2 + 
2 

But, from (1.5) we know that [𝑡𝑓(𝑡)] = −𝑢
 

𝑑𝕊[𝑓(𝑡)]
 

3  2 

⟹[ ( )] = ( 2 + 2)2 + 2 + 2 

Apply Inverse Shehu Transformation on both sides, we get 
3  2 

( ) = −1 (( 2 + 2)2) + −1 ( 2 + 2) 

From Table 1, we have that 𝕊−1 (𝑠2𝑢+2𝑢2) = sin 𝑡 and (
     

 
𝑠2𝑢+3𝑢𝑠2)2 = −2𝑢𝑑𝑠𝑑 (𝑠2𝑢+2𝑢2) = 𝕊 (2𝑡 sin 𝑡)

 
⟹ ( ) =  sin  + sin 2 

1 sin  
⟹( ) =  sin  +  

2  

                             𝑑

[𝑡𝑓(𝑡)] = [−𝑢
 

𝕊[𝑓(𝑡)]] 				                 (1.5)

                           𝑑𝑠

Proof: We know that from (1.3), 𝑠𝑡𝑑𝑡

∞

                   𝑠𝑡                

⟹𝐹 ( ) = ∫ 𝑓(𝑡)𝑒𝑑𝑡

𝑢                  0

∞
𝑑          𝑠                              𝑑𝑡

⟹
 

𝐹 ( ) = 
 

 [∫ 𝑓(𝑡)𝑒
𝑑𝑠      𝑢                 𝑑𝑠

0

 (𝑒 𝑡) 𝑑𝑡

𝑑𝑡

𝑑𝑡

∞
       𝑑                            𝑠𝑡 
⟹ −𝑢

 
𝐹 ( ) = ∫ 𝑡𝑓(𝑡)𝑒	

      𝑑𝑠       𝑢

                            0

But, from (1.4) we have that {𝑓(𝑡)} = 𝑊(𝑠, 𝑢) = 𝐹 (𝑠)

                             𝑢

∞

                                          
𝑑𝑡

⟹ −𝑢
 

𝕊{𝑓(𝑡)} = ∫ 𝑡𝑓(𝑡)𝑒	 𝑑𝑡

𝑑𝑠                                  0

 = 𝕊{𝑡𝑓(𝑡)}

                                     𝑑
∴𝕊{𝑡𝑓(𝑡)} = −𝑢

 
𝕊{𝑓(𝑡)}

                                    𝑑𝑠

Generalization:{𝑡𝑛𝑓(𝑡)} = −𝑢
 

𝑑𝑛
𝑛𝕊{𝑓(𝑡)}

					                    𝑑𝑠
Example 1: Find {𝑡𝑒𝑎𝑡} Solution: We know that 𝕊{𝑡𝑓(𝑡)} = −𝑢

 
𝑑𝕊{𝑓(𝑡)}

                                                                                                    𝑑𝑠

Here (𝑡) = 𝑒𝑎𝑡

                              𝑢
⟹𝑊(𝑠, 𝑢) = [

   
]

                         𝑠 − 𝑎𝑢
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Example 3: Consider the ordinary differential equation with variable 
coefficients (Table 2)

𝑡𝑦′′ + (1 − 2𝑡)′ − 2𝑦 = 0 , 𝑦(0) = 1, 𝑦′(0) = 2                                               (1.7)

Solution: Applying the Shehu transform of both sides of Eq. 1.7, we get 

[𝑡𝑦′′ + 𝑦′ − 2𝑡𝑦′ − 2𝑦 = 0 ] 				                 (1.8)

Using the differential property of Shehu transform Eq.1.8 can be written as: 
( , ) 

− (0) −  
 − [ 22  ′(0)] + [ ( , ) − (0)] + 2 [ ( , ) − (0)] 

− 2( , ) = 0 

Using the given Initial conditions (0) = 1, 𝑦′(0) = 2

 2     
⟹ −  [ 2 ( , ) −  − 2] + [ ( , ) − 1] + 2  [ ( , ) − 1] − 2 ( , ) = 0 

2  2  1   1 
⟹ −  [ 2 ( , ) + 2 ( , ) − ] + [ ( , ) − 1] + 2  [ ( , ) + ( , )] 

− 2( , ) = 0 

2  2    
⟹ [− ( , ) − ( , ) + 1] + [ ( , ) − 1] + [2 ( , ) + 2 ( , )] 

    

− 2( , ) = 0 

2    
⟹ − ( , ) − ( , ) + 2 ( , ) = 0 

   

Rearranging the terms, we have 

𝑑𝑠2 𝑠⟹
 

(𝑠, 𝑢) [2𝑠 − 
 

] = 𝑌(𝑠, 𝑢) [ ]

⟹
 

𝑌(𝑠, 𝑢) = 𝑌(𝑠, 𝑢) [− 
   

]1
-2

⟹
 

𝑌(𝑠, 𝑢) = 𝑌(𝑠, 𝑢) [
   

]1
-2

Separating variables, we have 

 
     𝑑(𝑠, 𝑦)        −1      

 
          

  
= 𝑑𝑠

      (𝑠, 𝑢)        𝑠 − 2𝑢

and an integration yield 

ln|(𝑠, 𝑢)| = − ln|𝑠 − 2𝑢| + 𝑐1

Or 

                    𝑐
𝕊[𝑦(𝑡)] = 

  
                𝑠 − 2𝑢

By using Shehu inverse transform we obtain the solution in the following 
way, 

(𝑡) = 𝑐𝑒2𝑡 						                    (1.9)

We now determine value of c by using given initial value (0) = 1, implies 𝑐 
= 1

Therefore, from equation (1.9), 

(𝑡) = 𝑒2𝑡

Conclusion 

In this paper, we have successfully conducted a relationship between 
Shehu transform and Laplace transform which help as Shehu Transform 
is applied directly to obtain the solution of ordinary differential equation 
with variable coefficient. It may be concluded that Shehu Transform is very 
powerful and efficient in finding the solution for a wide class of ordinary 
differential equation with variable coefficient.  
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f(t) 𝕊{f(t)} = W(s, u)
1 𝑢

 
                         

  𝑠
𝑡 𝑢2

                      
   𝑠2

𝑡2 2! 𝑢3

 
                 

  𝑠3
𝑡𝑛 𝑛! 𝑢𝑛+1

          
   𝑠𝑛+1

𝑒𝑎𝑡 𝑢

 
             

  𝑠 − 𝑎𝑢
cos(𝑎𝑡) 𝑢𝑠

 
    𝑠2 + 𝛼2𝑢2

sin(𝑎𝑡) 𝛼𝑢2

    𝑠2 + 𝛼2𝑢2

Table 1. Shehu transform of some common functions.

f(t) ℒ{f(t)} = F(s)
1 1

 
                         

  𝑠
𝑡 1

                         
  𝑠2

𝑡2 2!

 
                 

  𝑠3
𝑡𝑛                                𝑛! 

                          
                                 𝑠𝑛+1

𝑒𝑎𝑡 1

 
          

  𝑠 − 𝑎
cos(𝑎𝑡) 𝑠3

                      
  𝑠2 + 𝛼2

sin(𝑎𝑡) 𝛼𝑠2

                         
  𝑠2 + 𝛼2

Table 2. Laplace transform of some common functions. 
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