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An Efficient Solver of Eigenmodes for a Class of 
Complex Optical Waveguides

Abstract

In this paper, for a class of complex optical waveguide, the high-precision computation of the propagation constants β  are studied. The corresponding Sturm-Liouville 
(S-L) problem is represented as 2( , ) ( , )x z x zzz zϕ α ϕ β ϕ β ϕ+ + =

  in an open domain (open on one side), where x is a given value. Firstly, a perfectly matched layer is used 
to terminate the open domain. Secondly, both the equation and the complex coordinate stretching transformations are constructed. Thirdly, the S-L problem is turned to 
a simplified form such as 2

ˆ̂ˆ̂̂ ˆ( )zz s zφ φ β φ+ =  in a bounded domain. Finally, the coefficient function ˆ( )s z  is approximated by a piecewise polynomial of degree two. 
Since the simplified equation in each layer can be solved analytically by the Kummer functions, the approximate dispersion equation is established to the TE case. When 
the coefficient function is continuous, the approximate solutions converge fast to the exact ones, as the maximum value of the subinterval sizes tends to zero. Numerical 
simulations show that high-precision eigenmodes may be obtained by the Müller's method with suitable initial values.
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Introduction

It is known that the eigenmodes play an important role in optimizing 
the designs of the microwave engineering for the integrated circuitry [1], 
microstrip substrates [2], and the integrated optical devices [3,4]. When 
we compute the wave propagation by use of the eigenmode expansion 
method, the high-precision propagation constants are needed [5-17]. 
For the complex and open waveguide with a curved interface, firstly 
we can construct both the local orthogonal coordinate and the equation 
transformations [18], and then the original propagation model (Helmholtz 
equation) is turned to a linear second-order partial differential equation 
with a flatted interface. The corresponding Sturm-Liouville (S-L) problem 
is represented as 2( , ) ( , ) ,zz zx z x zϕ α ϕ β ϕ β ϕ+ + =

  where the variable 
x is a given value and β is a propagation constant. That is, 2β  is 
known as the eigenvalue λ . Secondly, the open domain is truncated 
by the perfectly matched layer (PML) [19], or by a coordinate stretching 
transformation [20,21]. Then, the corresponding S-L problem is changed as 

2
ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ( , ( )) ( , ( ))zz zx z z x z zϕ α ϕ β ϕ β ϕ+ + =

 with the interface and the boundary 
conditions (the domain is bounded), where β̂  is an approximate value 
of β . When the transverse variable ẑ is discretized, there is a discrete 
set of eigenmodes, which is composed of a finite number of perturbed 
propagating modes, an infinite sequence of perturbed leaky modes and 
an infinite number of Berenger modes. Some numerical methods, such 
as the finite element method (FEM) [22-25], the finite difference method 
(FDM) [26], the multidomain pseudospectral method [27-29], and the 
B-spline modal method [30], approximately turn the original S-L problem to 
a matrix eigenvalue problem. However, we still hardly obtain high-precision 
eigenvalues, because these methods will produce large and complex 
matrices causing the difficulties in numerical implementation. For this 
reason, a different kind of treatment has been proposed, that is, turning the 
S-L problem to a root-finding problem of a nonlinear dispersion equation, 

where the roots of the equation are the eigenvalues or the propagation 
constants. There are some efficient methods to treat slab waveguides [31-
33] and rib waveguides [34]. For the varying refractive index’s waveguides 
terminated by the PMLs, the corresponding S-L problem is expressed 
as 2( , ) ,zz x zϕ β ϕ β ϕ+ =  and there are some approximate dispersion 
equations, which are established by the Wentzel-Kramers-Brillouin (WKB) 
method [35] and the differential transfer matrix method [36-40]. Yet, these 
methods cannot guarantee the approximation accuracy of the propagation 
constants. Although an exact dispersion equation for the waveguide with 
varying refractive-index profile has been constructed [41], it involves the 
derivatives of the refractive-index function and highly oscillatory integrals 
leading to the difficulties in numerical computation. Recently, we give 
efficient approximations of dispersion relations for the varying refractive-
index waveguides with the two flat interfaces, where the waveguides are 
open on both sides and terminated by two PMLs, and whose S-L problem is 
the simple form: 2

ˆˆ ˆˆ ˆ ˆˆ( , ( ))zz x z zϕ β ϕ β ϕ+ = with the interface and the boundary 
conditions [42]. In this paper, we extend our previous works [42] to the 
ones for a class of complex waveguides. Namely, the S-L problems are 
extended to 2( , ) ( , )zz zx z x zϕ α ϕ β ϕ β ϕ+ + =

  with the interface and the 
boundary conditions, where the domain is open on one side. For simplicity, 
we only develop a solver of computing the transverse electric (TE) 
eigenmodes for the waveguides, which are terminated by the PML along 
one transverse direction. The rest of this paper is organized as follows. In 
Section 2, a modified S-L problem (dispersion equation) is introduced when 
a PML is used, and a solver for the dispersion equations for the TE case 
is constructed, where the coefficient functions are approximated by the 
piecewise polynomials of degree two, and the approximate eigenfunctions 
are expressed analytically by the Kummer functions. In Section 3, the 
numerical simulations for the TE case are given. Finally, the conclusions 
are presented in Section 4.

Mathematical Modelling and 
Implementation of Eigenmodes

Now, we start from the following equation, which can be obtained by 
transforming the Helmholtz equation as mentioned above:

( , ) ( , ) 0 lim 0.zz z z
V x z V x z V Vα β

→∞
+ + = =

 ，  	                     (1)

When the eigenmode expansion method is used to solve the Eq. (1), 

the S-L problem of the operator 2 ( , ) ( , )z zL x z x z= ∂ + ∂ + α β  must be 
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considered [43], where x is a given value.

For a dual-layer planar waveguide with the transverse variable z
shown in Figures 1 & 2, we consider the S-L problem of the operator L 
(dispersion equation) as follows:

L ( , ) ( , ) 0;
(0) 0, lim ( ) 0;

zz z

z

x z x z z
z

ϕ ϕ α ϕ β ϕ λϕ
ϕ ϕ

→+∞

 = + + = >
 = =



 ，
                 (2)

where ( , )x zα and ( , )x zβ can be regarded as the functions only related 

with variable z since x is a given value, λ is an eigenvalue of the operator
L , ϕ is an eigenfunction corresponding the eigenvalue λ , 2=λ β , 

and β is called the propagation constant.

By the feature of the optical waveguides, we assume that ( , )x zα and 

( , )x zβ are constants as the variable z  is large enough. Namely, there 

is a d making 1( , )x z = α α  and 1( , )x z = β β  as z d> , where 1α  

and 1
β  are two constants. So, when z d> , the dispersion equation can 

be simply written as follows:

1 1 , .zz z z d+ + = >

ϕ α ϕ β ϕ λϕ  			                  (3)

In order to numerically solve Eq.(2), we must truncate the open domain 
to the finite one. Thus, we choose a PML to truncate the open domain, that 

is, making a complex coordinate stretching transform:

0
ˆ i ( ) ,

z
z z dσ τ τ= + ∫  				                (4)

where ( ) 0σ τ =  for 0 z H≤ ≤ , otherwise 3 2( ) (1 )Cσ τ τ τ= ⋅ + ; here 
z H
D H

τ −
=

−
, i 1= −  and 0 .d H D< < <

Then, Eq.(2) is approximately turned as the following form:

1 1

ˆˆ̂̂̂ ( , ) ( , ) , 0 ;
ˆ̂1 1 1 ˆˆ̂( ) ,

1 i ( ) 1 i ( ) 1 i ( )
;

ˆ̂(0) 0, ( ) 0;

zz zx z x z z H

z z z z z z
H z D

D

ϕ α ϕ β ϕ λϕ
ϕ ϕα β ϕ λϕ

σ σ σ

ϕ ϕ

 + + = < ≤

 + + =
+ + +

 < <
 = =









d dd
d d d  (5)

where 2ˆ̂λ β= .

Case 1: when 0 z H≤ ≤ , we make the transformation 

0

( , )ˆ( ) exp ( )
2

d
z x tz t z = − ⋅ 

 ∫
αϕ φ


. Then, the equation

ˆˆ̂̂ ( , ) ( , ) , 0zz zx z x z z Hϕ α ϕ β ϕ λϕ+ + = < ≤



                        (6)

can be transformed to the following form:

0
ˆ( ) , 0 ;zz s z z Hφ φ λφ+ = < ≤ 	  		                 (7)

where 
2

0
( , )( , )( ) ( , )

4 2
z x zx zs z x z

αα
β= − −




 .

Case 2: when H z D< ≤ , we make the other transformation
1 ˆ

2ˆ ˆ̂( ) e ( )
z

z z
α

ϕ φ
−

= ⋅
 . Then, the equation becomes

1
1

ˆ̂1 1 ˆˆ̂( ) ,
1 i ( ) 1 i ( ) 1 i ( )

;
z z z z z z

H z D

αϕ ϕ β ϕ λϕ
σ σ σ

+ + =
+ + +
< <





d dd
d d d             (8)

that is,

ˆ̂̂ 1 1
ˆˆ̂̂̂ .zz zϕ α ϕ β ϕ λϕ+ + =



 			                  (9)

It can be transformed to the following form:

ˆ̂ 1
ˆ ,zz sφ φ λφ+ = 	  	  		                (10)

where
2
1

1 1 4
s = −

α
β



 is a constant.

Thus, the original eigenvalue problem of the operator L  is 
approximated by

ˆ̂
ˆˆ( ) , 0 ,zz s z z Dφ φ λφ+ = < <  			                 (11)

where (0) ( ) 0Dφ φ= = , 0ˆ( ) ( )s z s z=  for 0 z d< ≤ , and 1ˆ( )s z s=  
for d z D< < .

Remark 1: ẑ z= as 0 z H≤ ≤ .

For the reason that it is a differential equation with variable coefficients 
in [0, ]d , we first divide the interval [0, ]d  into k subintervals with 

h d k= . Then the subintervals are denoted by 1[ , ]j j jI z z−= related 

to ( 1, 2, , )jz jh j k= = ⋅⋅⋅ , and the function 0 ( )s z  is interpolated 

by a polynomial of degree two, and ( )jy z  is the approximation of the 
( )zφ  as jz I∈ . Thus, the form of approximated equation is

2
2

2
( ) 0,j

j j j j
y

a z b z c y
z

+ + + =
d

d
 		             (12)

where the coefficients of approximated equation are given by

 
Figure 1. Sketch of the optical waveguide terminated by a PML (marked by 
green).
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Figure 2. The propagation constants from Example. Left: leaky modes. Right: Berenger 
modes. ‘*’ stands for obtained from the asymptotic solutions for the slab waveguide, 
‘+’stands for the results of with k=16, and ‘o’ stands for the \results of with k=64.
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2
0 0 0 1 0 2

0 0 0 1 0 2
2 2 2

0 0 0 1 0 2

2[ ( ) 2 ( ) ( )] ,

[(1 4 ) ( ) (8 4) ( ) (3 4 ) ( )] ,

ˆ(2 ) ( ) 4( ) ( ) (2 3 1) ( ) ,

j

j

j

a s t s t s t h

b j s t j s t j s t h

c j j s t j j s t j j s t λ

 = − +

 = − + − + −


= − + − + − + −

         (13)

here 0 ( 1)t j h= − , 1 ( 1 / 2)t j h= − ,and 2t jh= ( 1, 2, , )j k= ⋅⋅⋅ .

Eq.(12) can be changed to the form of the confluent hypergeometric 
equation, and a pair of linearly independent solutions { ( ), ( )}j jm z n z
as jz I∈ are given by the Kummer functions. Then the approximated 
solution of φ  as jz I∈ can be expressed in the following form

( ) ( ) ( )j j j j jy z A m z B n z= + , 1,2, ,j k= ⋅ ⋅ ⋅  .

Suppose ( )j zω is the approximation of ˆ( )zϕ in jz I∈ , we have

0

( , ) d
2( ) [ ( ) ( )],( 1,2, , ).

z x t t
j j j j jz e A m z B n z j k

α

ω
−

= + =∫




           (14)

Since 1s is constant for d z D< < , the results of field ˆ( )zφ satisfy
ˆ ˆi iˆ( ) z zz Ae Beγ γφ −= + , d z D< < , where 1

ˆsγ λ= − .

Set 0 0z = and +1kz D= , then two linearly independent solutions 
are shown on 1[ , ]k kz z +  as follows:

ˆi
1( ) z

km z e γ
+ = , ˆi

1( ) z
kn z e γ−
+ =  , 			                  (15)

with the boundary conditions (0) 0φ = and ˆ( ) 0Dφ = . Therefore, the 

approximated solutions of φ  at 0 0z =  and φ at +1kz D= should be 
defined as 1(0) 0y = and 1( ) 0ky D+ = , respectively.

To obtain the constants of jA  and jB ( 1, 2, , )j k=  we require 
the solutions ( )j zω of field ˆ( )zϕ  and their first order derivatives are 
continuous at zj. Thus, the interface conditions at ( 1,2, , )jz j k=  are

1( ) ( )j j j jz zω ω += , 1( ) ( )j j j jz zω ω +′ ′= ; 		              (16)

that is,

1( ) ( )j j j jy z y z+= , 1( ) ( )j j j jy z y z+′ ′= . 		                 (17)

According to these conditions, a linear system of jA and
( 1,2, , )jB j k= ⋅ ⋅ ⋅  can be obtained.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(0) (0) 0,
( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) 0,

j j j j j j j j j j j j

j j j j j j j j j j j j

k k k k

A m B n
A m z B n z A m z B n z

A m z B n z A n z B n z

A m D B n D

+ + + +

+ + + +

+ + + +

+ =
 + = +
 ′ ′ ′ ′+ = +
 + =

               (18)

here ( 1,2, , )j k= ⋅ ⋅ ⋅ . In order to simplify these equations, let

/ ( 1,2, , )j j jR B A j k= = ⋅ ⋅ ⋅ , the dispersion relations of β̂ are

1
1

1

1 1
1

1 1

ˆ2i1
1

1

(0) ,
(0)

[ ] [ ]
,

[ ] [ ]

( ) .
( )

j j j j j j j j
j

j j j j j j j j

Dk
k

k

mR
n

m m n R m m n R
R

n m n R n m n R

m DR e
n D

γ

+ +
+

+ +

+
+

+


= −


 ′ ′ ′+ − + = − ′ ′ ′+ − +

 = − = −


 	            (19)

Specially, when j k=  ,

2i
1

[ ] i [ ]
.

[ ] i [ ]
d k k k k k k

k
k k k k k k

m n R m n R
R e

m n R m n R
γ γ

γ+
′ ′+ + +

= − ⋅
′ ′+ − +

 		                 (20)

The evaluation on 1kR + depends on 1R recursively. Furthermore, 1kR +

is determined by 1
ˆsγ λ= − . Hence, the dispersion relation with respect 

to β̂ is as follow:
ˆ2i

1
ˆ( ) D

kf R e γλ += + . 				                (21)

Special Case: when ( , ) 0x zα = , the S-L problem of the operator L 
becomes

ˆ̂ 1

ˆˆ̂̂ ( , ) ;
ˆˆ̂̂ ;

0zz

zz

x z z d

d z D

ϕ β ϕ λϕ

ϕ β ϕ λϕ

 + = < ≤


+ = < <

， 

，    





	  	               (22)

where ( , )x zβ depends only on z , and 1
β is a constant. Moreover, the 

top and bottom boundary conditions are ˆ̂(0) ( ) 0Dϕ ϕ= = . Applying a 

polynomial of degree two to interpolate the function ( , )x zβ as jz I∈ , 
then we get the approximated equation

2
2

2
d

( ) 0,
d

j
j j j j

y
a z b z c y

z
+ + + =

 

 			                 (23)

where
2

0 1 2

0 1 2
2 2 2

0 1 2

2[ ( , ) 2 ( , ) ( , )] ;

[(1 4 ) ( , ) (8 4) ( , ) (3 4 ) ( , )] ;

ˆ(2 ) ( , ) 4( ) ( , ) (2 3 1) ( , ) .

j

j

j

a x t x t x t h

b j x t j x t j x t h

c j j x t j j x t j j x t

β β β

β β β

β β β λ

 = − +

 = − + − + −

 = − + − + − + −

  



   

  



         (24)

Referring to the Kummer functions, eventually, we derive the dispersion 
relations as follows:

1

1
1

1

1 1
1

1 1

ˆ ˆ2i1
1

1

(0) ,
(0)

[ ] [ ]
,

[ ] [ ]

( )
.

( )

j j j j j j j j
j

j j j j j j j j

Dk
k

k

mR
n

m m n R m m n R
R

n m n R n m n R

m D
R e

n D
β λ

+ +
+

+ +

− ⋅+
+

+


 = −

 ′ ′ ′+ − + = − ′ ′ ′+ − +

 = − = −



	                               (25)

Asymptotic solutions for the TE case: for the Berenger modes in a 
dual-layer optical waveguide terminated by a PML, 0ŝ is the average value 
of 0 ( )s z at the 17 points distributing equally within the interval [0, ]d . We 
can obtain the following formula [44]:

22 3
31 2 4

1 2 3 4
1 1 1

ˆ ,
a aW aa a as

a W W W
ηλ

 
 ≈ − − − −
 
 

 		               (26)

where 1Im( ) 0W > ,η is an integer, and

ˆi( )a D d= − ; 2 1 4a δ= ; 3 1 4a aδ= − ;

21
4 12

1
164

a
a

δ
δ= − ; 1 0 1ŝ sδ = − ; 1 1

i ˆLambert W( , ( ) )
2

W D dη δ= ± ⋅ − ; 

0≥η  except 1
i ˆLambertW(0, ( ) )
2

D d δ− − .

And asymptotic solutions of leaky modes are also obtained as follow [44]:
2 3

32 4
0 2 3 4 ,W A AAA A A

A W W W
ι

ι ι ι
γ ≈ − − −  			                 (27)

where

0 0
ˆŝγ λ= − ; ia d= − ; 1

2 4
A δ

= − ; 1
3

i
4

A
d
δ

= ;
2

1 1
4 2

3
32 4

A
d

δ δ
= − + ;

1 0 1ŝ sδ = − ; 
1

1
( 1)LambertW( , );

2

q dW pι δ
+−

= ⋅  2( 1)p q= − + +ι ; for 

0,1q = ; 1, 2,p = − − ⋅ ⋅ ⋅ .

At last, we find the roots of the equation ˆ( ) 0f λ =  by the Müller’s 
method with suitable initial values, which are taken by the asymptotic 
solutions.

Numerical Examples

The theory of this paper has been implemented and tested on a number of 
examples. For simplicity, we still denote β  as β̂ in the following statements. 
For example, let 16C = , 0.8d = , 1.6H = , 1.7D = , 2

1 1.45s = , 
3( , ) 15.6(0.4 )x z zα = − , and ( , ) 60.84 sech( 0.4)x z z= × −β .
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Therefore, 6 2
0( ) 60.84[sech( 0.4) (0.4 ) 3(0.4 ) 7.8]s z z z z= − − − + −  for 

0 z d< ≤ .

The propagation constants β  of propagating modes satisfy
2

0 0min( ( )) max( ( ))s z s zβ< <  for 0 z d< ≤ . Thus, the propagation 
constants of propagating modes, leaky modes and Berenger modes are 
shown in Tables 1, 2 and 3, respectively. In Table 1, 1β , 2β  and 3β  
are taken as the initial values. In Tables 2 and 3, 1β , 2β  and 3β  are 
represented as the iterative values as k = 16, 32 and 64, respectively.

Conclusions

To compute the eigenmodes of the complex optical waveguide which is 
open on one side, based on our previous methods, the second-order linear 
differential equation in standard form of the corresponding S-L problem 
has been reduced to the equation without the first derivative term. Then, a 
PML is used to terminate the open waveguide. Also, the coefficient function 
of the simplified S-L problem is approximated by a piecewise polynomial 
of degree two. Since the solutions of the approximated equation in each 
layer are analytically expressed by the Kummer functions, the approximate 
dispersion equation is established to the TE case. Apparently, the 
approximate solutions will converge to the exact ones as the number k of 
subintervals tends to infinity, or equivalently the step size tends to zero. 
In the numerical example, we find out the roots of the dispersion equation 
by the Müller’s method, where three different asymptotic solutions of slab 
waveguides play the roles of initial values. Numerical simulations show 
that the iteration converges fast and high-precision values for propagation 
constants may be obtained only if a suitable root-finding method is adopted 
and some good initial values are given. Thus, further research will be 
performed in future.

Appendix

When 0a ≠ , let’s begin to consider the second order differential 
equation as follow

2( ) ( ) ( ) 0,y z az bz c y z′′ + + + =  			                (28)

by the change of variables ( 2 )t z b a= + , we have

2( ) ( ) ( ) 0,y t at C y t′′ + + =  			                                  (29)

where 2[ (4 )]C c b a= − .

Further change of variables

2x at= − , exp(- 2) ( ) ( )x w x y t=  			                  (30)

leads to
2

2
d 1 d 1( ) ( ) 0,

2 d 4 4d
w w Cx x w x

x ax
 

+ − − − =  − 
 		                 (31)

which is in the form of the confluent hypergeometric equation

( )
2

2
d d ( ) 0,

dd
w wx B x Aw x

xx
+ − − =  			                (32)

with 
1 -
4 4

CA
a

=
−

 and 1 2B = . Two linearly independent solutions are 

given by the Kummer functions ( , , )M A B x and ( , , )U A B x .However,
( , , )U A B x has a branch point 0x = , Hence, two linearly independent 

solutions of Eq. (28) are given by

1
2

1( ) exp(- ( ) 2) , , ( ) ,
2

1 3( ) exp(- ( ) 2) [ ( )] , , ( ) ,
2 2

m z x z M A x z

n z x z x z M A x z

  
= ⋅  

 

  

= ⋅ +  
 

 	             (33)

where

2( ) (2 )x z a z b a= − +    ,
21 1 4 .

4 44 16
C b acA

a a a
−

= − = +
− −

Recall the following differential formulas for the Kummer function:

( , , ) ( 1, 1, ).d aM a b x M a b x
dx b

= + +  			              (34)

The derivatives of ( )m z  and ( )n z  can be expressed as

β1 β2 β3 Approximate Solution β
7.740
7.755
7.770
7.785

7.745
7.760
7.775
7.790

7.750
7.765
7.780
7.795

7.02573-0.00000i
7.02573-0.00000i
7.02573-0.00000i
7.02573-0.00000i

Table 1: Propagation constants of propagating modes.

ι 1β for 16k = 2β for 32k =  3β for 64k =
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.83852+ 5.42434i
1.52393+11.41193i
1.92469+15.63788i
2.33529+19.97154i
2.48289+24.20780i
2.63137+28.30444i
2.77607+32.36134i
2.90682+36.39285i
3.02505+40.40465i
3.13316+44.40159i
3.23285+48.38733i
3.32531+52.36441i
3.41152+56.33462i
3.49226+60.29931i
3.56816+64.25948i
3.63978+68.21591i
3.70756+72.16920i
3.77190+76.11984i
3.83312+80.06821i
3.89152+84.01462i

0.83852+ 5.42434i
1.52393+11.41192i
1.92468+15.63788i
2.33529+19.97154i
2.48289+24.20780i
2.63137+28.30444i
2.77607+32.36133i
2.90682+36.39285i
3.02504+40.40464i
3.13316+44.40159i
3.23284+48.38733i
3.32531+52.36440i
3.41151+56.33462i
3.49224+60.29931i
3.56815+64.25949i
3.63977+68.21592i
3.70755+72.16921i
3.77190+76.11984i
3.83312+80.06821i
3.89152+84.01462i

0.83852+ 5.42434i
1.52393+11.41192i
1.92468+15.63788i
2.33529+19.97154i
2.48289+24.20780i
2.63137+28.30444i
2.77607+32.36133i
2.90682+36.39285i
3.02504+40.40464i
3.13316+44.40159i
3.23284+48.38733i
3.32531+52.36440i
3.41151+56.33462i
3.49224+60.29931i
3.56815+64.25949i
3.63977+68.21592i
3.70755+72.16921i
3.77190+76.11985i
3.83312+80.06821i
3.89152+84.01462i

Table 2: Propagation constants of leaky modes for the TE case.

η
1β for 16k =  2β for 32k = 3β  for 64k =

1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9

10
10

1.74842+ 9.71020i
2.42335+13.41599i
2.96306+16.91230i
3.51505+20.14151i
4.31788+23.37743i
5.09828+26.69102i
 5.86661+29.99240i
 6.64466+33.27954i
 7.43504+36.56089i
 8.23428+39.83971i
 9.04015+43.11623i
 9.85166+46.39052i
10.66815+49.66286i
11.48902+52.93352i
12.31375+56.20274i
13.14192+59.47070i
13.97316+62.73752i
14.80716+66.00335i
15.64367+69.26828i
16.48245+72.53239i

1.74842+9.710198i
2.42335+13.41599i
2.96306+16.91230i
3.51505+20.14151i
4.31788+23.37743i
5.09828+26.69102i
5.86661+29.99241i
6.64466+33.27954i
7.43504+36.56089i
8.23429+39.83971i
9.04016+43.11623i
9.85167+46.39052i

10.66815+49.66286i
11.48902+52.93352i
12.31376+56.20274i
13.14193+59.47069i
13.97317+62.73752i
14.80717+66.00335i
15.64367+69.26827i
16.48245+72.53239i

1.74842+9.710198i
2.42335+13.41599i
2.96306+16.91230i
3.51505+20.14151i
4.31788+23.37743i
5.09828+26.69102i
5.86661+29.99241i
6.64466+33.27954i
7.43504+36.56089i
8.23429+39.83971i
9.04016+43.11623i
9.85167+46.39052i

10.66816+49.66286i
11.48902+52.93352i
12.31376+56.20274i
13.14193+59.47070i
13.97317+62.73752i
14.80717+66.00335i
15.64367+69.26827i
16.48245+72.53239i

Table 3: Propagation constants of Berenger modes for the TE case.
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1( ) ( ) ( ) 2 ( ) exp(- ( ) 2)
2

31, , ( ) ,
2

1 ( ) 2 1( ) ( ) ( ) ( ) ( )
2 ( ) 3

3 5exp(- ( ) 2) , , ( ) .
2 2

m z x z m z Ax z x z

M A x z

x z An z x z n z x z x z
x z

x z M A x z

 ′ ′ ′= − +

  
× + 

 
 − + ′ ′ ′= − +



 × +   

                                 (35)

Special Case: when a=0, and 0b ≠ , Eq.(28) becomes

( ) ( ) ( ) 0y z bz c y z′′ + + =  				                (36)

and two linearly independent solutions are given by the Airy functions

( ) Ai( ( )), ( ) Bi( ( )),m z w z n x w z= =  		                (37)

where 2/3( ) bz cw z
b
+

= − . Therefore,

1/3 1/3( ) - Ai ( ( )), ( ) - Bi ( ( )).m z b w z n x b w z′ ′ ′ ′= =  	             (38)

The Airy functions and their derivatives can be evaluated in Matlab as

( ) ( )airy Aix x= , ( ) ( )1, Aairy ix x′= ,

( ) ( ),a ry 2i Bix x= , ( ) ( )3, Bairy ix x′= . 		               (39)

When 0a b= = , Eq.(28) becomes

( ) ( ) 0y z cy z′′ + = , 				                (40)

which has two linearly indecent solutions

i i( ) , ( ) .cz czm z e n z e−= =  			               (41)
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