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Introduction
This is a work I did in 1993, but I never published it. Let us consider 

a generic stable linear system where the initial state is 0:

u(s)=G(s).y(s); 		  s=σ+jω

Where u is the output signal (the measured signal) and y the 
non-note input signal. In many cases it’s impossible to achieve a
computational method to reverse and solve the equation:
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because in many system, G(jω) behaves as a low pass filter when ω is a 
big number and so u/G behaves as 0/0; in this case the computational 
method becomes very difficult.

We can consider a different recursive approach see Figure 1, the 
input signal y(t), the output signal u(t) and a re-transformation of the 
output signal G×u(t), we can think to re input to the system the output 
signal.

Now, consider the signal:

Δ=u-G.u

Next, the following sequence
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We demonstrate now that Hn → y when n → ∞, if G is under some 
conditions. We can see this process as a generic de-convolution 
algorithm.

In fact
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remember that;

u=G.y

so
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Let now consider the following fraction
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The condition for the convergence is |1-G|<1 for every σ where G 
is stable and for every jω; this is not a great limitation, we will see this
problem above.

So the limit
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Means exactly as
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=
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This is a work I did in1993, but I never published it.

Let us consider a generic stable linear system where the
initial state is 0: 
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were u is the output signal (the measured signal) and y the
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0/0 ; in this case the computational method becomes very
difficult.
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We demonstrate now that yHn  when n , if G is 
under some conditions. We can see this process as a generic 
de-convolution algorithm.
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the condition for the convergence is 11 <G for every 
 where G is stable and for every j ; this is not a great
limitation, we will see this problem above.

So the limit: 
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May be a problem if the condition |1-G|< 1 for every σ where G is 
stable and for every jω is not satisfied.

Let us see now how we can bypass this problem, we can modify a 
little the system, and measure u′ instead of u:

u′=k.G.y

i.e.

u′=G′.y

where k is a real constant, and G′= k.G.

Now we can postulate that there is a k for witch |1-G′|<1 for every 
σ+jω as above and apply the process, in this case we have:
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and again
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So the problem |1-G|<1 for every σ+jω as above scan be resolved.

The algorithm can be extended to linear multi dimensions systems. 
For non-linear systems the problem is a bit more complex but, if we can 
have a good model of the system and of the non-linearity, may be that 
the method converges again.
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