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Introduction
Extreme value theorem (EVT) plays a significant role in the 

financial industry when it comes to estimating extreme events, which 
makes it useful in measuring risks [1,2]. Extreme events in finance are 
those events that occur with low probabilities of at most 0.05. Several 
studies on predictive performance of various values at risk (VaR) 
methods found EVT-based methods to be particularly accurate [3]. 

Fat tail distribution is a statistical distribution phenomenon. Its 
circumstance is commonly observed in financial returns data [4]. 
Manifestations of this are events which are less likely to occur but with 
high probability of devastating consequences when they take place [5]. 
Traditional method for financial risk measure often has an assumption 
of normality in the distribution. However, in most cases the data 
has fat tails and does not make true of the required assumption [6]. 
Therefore, in measuring financial risk, analysts need to apply a method 
without presumption of normal distribution [7]. EVT method may 
be used as it does not put emphasis on the distribution of the data. 
The drew attention to the insufficiency of the normal distribution for 
modeling the marginal distribution of returns as their heavy-tailed 
[8,9] disposition has a wider range than normal distribution. Few 
gather around the center and more populate the extremes either far 
above or far below the average [10,11]. Therefore, commonly, there is 
a sharp peakedness and heavy-tailedness in the distribution of price 
changes or returns [12,13].

In correspondence several market risk models have been developed, 
researchers have noted some common issues in risk measurement 
[14,15]. These issues typically arise from the disagreement between 
model assumptions and actual observations and/or empirical studies 
on financial data. Among these issues are eqn. (1) the non-normality 
or fat-tailedness of price distribution assets, eqn. (2) the presence of 
serial correlation and heteroscedasticity in financial time series [16,17], 
and eqn. (3) the problem of whether to model the entire distribution or 
only the tails. To address these issues, Suaiso and Mapa proposed the 
use of EVT approach in measuring market risk.

EVT is a technique for risk measurement especially when the 
concern is the tail of a probability distribution [18]. It gives the best 
available models to predict extreme events as it usually does not 
underestimate tail risk because it does not assume normality which 
traditional methods require [19,20]. In addition, EVT has methods in 
estimating extreme conditions because statistical methods illustrating 
common central values of observed variables could fail in describing 
such extreme behaviors [21].

What makes the EVT appealing is the fact that the nature of the 
asymptotic distribution of returns does not necessarily depend on 
the exact distribution of returns [22-24]. Additionally, EVT-based 
estimates of VaR directly concentrates on the tails of the distribution, 
thus avoiding a major flaw of other parametric approaches whose 
estimates are somehow biased by the emphasis they give to the central 
part of the distribution which leads to underestimating extremes and 
outliers. These extremes and outliers are of interest when calculating 
VaR [25]. Also, EVT allows one to concentrate on each of the two 
tails of the distribution independently [24], thus, allowing a flexible 
approach which can take skewness (a typical feature in financial time 
series) of the underlying distribution into account. The reveal that the 
different daily return distributions have different moment properties at 
their left and right tails. As some studies concluded, the left and right 
tails behave differently, and thus should be treated separately when 
estimating risk measures [26].

There are two broad methods of applying EVT [27,28]. The first of 
which is based on the generalized extreme value distributions known 
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Abstract
Extreme value theory (EVT) provides techniques for estimating models that predict events occurring at extremely 

low probabilities. In this paper, Peaks Over Threshold (POT) method of Extreme Value Theory was utilized. A 
conditional approach of the EVT was applied with the aid of ARMA-GARCH models to correct for the effects of 
autocorrelation and conditional heteroscedastic terms. Maximum likelihood estimates of model parameters for the 
fitted Generalized Pareto Distribution (GPD) were computed. These techniques were applied to the daily returns of 
Bangko de Oro, Mega World Corporation, Semirara Mining and Power Corporation, SM Investments Corporation, 
and Universal Robina Corporation. A comparison of value at risk (VaR) estimates showed that as becomes smaller, 
VaR estimates under normal distribution tend to underestimate VaR while estimates under EVT approaches the 
empirical results. Backtesting using the Basel Committee three-zone approach to assess the accuracy of VaR 
models reveal that VaR models under normality are not able to capture extreme returns and therefore underestimate 
tail risk while VaR models under EVT have high probability of model accuracy.
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as the block maximum model (BMM) approach. The second one is 
based on the generalized Pareto distribution (GPD) and is known as 
the peaks over threshold (POT) approach [29]. The block maxima 
method is the conventional EVT approach. It subdivides the sample 
into several blocks, from which a maximum can be drawn from each 
block. The distribution of the block maxima is determined by fitting 
the generalized extreme value (GEV) to the set of block maxima. 
One caveat in this approach is the choice of block size [30]. The more 
flexible approach to estimation of risk measures such as the [31-33] 
VaR is by using price changes greater than a chosen high threshold 
(exceedances) which known as the POT approach. Nortey et al. [25] 
stated that the POT approach developed by Pickands uses data more 
efficiently compared to the BMM approach.

The POT approach of EVT offers two methods [28]. These are 
the unconditional or static EVT model, which is the straightforward 
application of POT to the rates. The other is the conditional or dynamic 
EVT model, which applies POT to the residuals of the fitted ARMA-
GARCH model to account for the presence of serial correlation and 
heteroscedasticity [29].

In a study by Suaiso and Mapa [31], the conditional and 
unconditional POT approach of the EVT in measuring market risk is 
compared with traditional VaR methods such as RiskMetrics and AR-
GARCH type models. The relative size, accuracy, an efficiency of the 
models are assessed using mean relative bias, backtesting, likelihood 
ratio tests, loss function, mean relative scaled bias, and computation 
of market risk charge. Their findings show that the conditional 
EVT model can capture market risk conservatively, accurately, and 
efficiently. Comparing the two EVT models, the conditional model is 
better than the unconditional model as the former can address some 
issues in risk measurement and effectively capture market risks [30].

Nortey et al. [25] studied the application of EVT in modeling the 
Ghana stock exchange index. The conditional EVT was applied due to 
the observed volatility in the returns series. Results showed that the 
POT approach of EVT, which fits a GPD model to the excesses above 
a threshold, can be very efficient in the modeling of extreme events 
in the stock market. A similar study was performed by Magnou [21] 
by applying EVT techniques to the Uruguayan Pension Fund returns 
which supports the findings of Nortey et al. [25] on the efficiency of 
EVT in financial risk application [31].

This study aims to measure financial risk associated with selected 
Philippine stocks under the framework of EVT. The objectives of the 
study are (1) to introduce and illustrate the Peaks Over Threshold (POT) 
approach of EVT in modeling tail returns of selected Philippine stocks, 
(2) demonstrate the use of semi-automatic threshold selection in R, (3) 
calculate risk measures such as value at risk (VaR), conditional value 
at risk (CVaR), and return level, (4) compare the risk measures under 
EVT with those computed under the normal distribution assumption 
and against the empirical result, (5) compute the threshold of the Basel 
Committee three-zone approach for backtesting at the 99% and 95% 
coverage levels for sample size 265; and (6) assess the accuracy of VaR 
models under EVT using the computed backtesting thresholds and 
compare with the accuracy of VaR models under normal distribution 
assumption.

It should be noted that this paper does not intend to discuss the 
causes of extreme events.

Instead, it will take a statistical perspective on the marginal tail 
distribution of the selected Philippine stocks’ fluctuations.

Conceptual Framework
The methods used in measuring financial risk for the stocks of 

Banco de Oro (BDO), Megaworld Corporation (MEG), SM Investments 
Corporation (SM), Semirara Mining and Power Corporation (SCC), 
and Universal Robina Corporation (URC) using the daily closing 
prices which were obtained from the Philippine Stock Exchange (PSE) 
are presented and discussed.

Autoregressive moving average (ARMA)

The process {xt; t ∊ } is an autoregressive moving average process 
of order (p,q), denoted by xt~ARMA(p,q) if 

1 1 0 1 1t t p t p p t p t q t qx x x x u u tθ θ θ θ− − − − −−∅ − −∅ = = + + ∈+ ∀  

where u~WN(0, σ2
u), and Ø1,…,Øp, θ1,…, θq are p+q constant and the 

polynomials ( ) 1Ø 1 Ø p
pz Ø z z= − − − and ( ) 11 q

qz z zθ = −θ + θ
have no common factors [11].

Augmented Dickey-Fuller unit root test

Before ARMA modeling, a series must be fairly stationary. To test 
for stationary, augmented Dickey-Fuller (ADF) test may be employed. 
When the time series is flat and potentially slow-turning around zero, 
the test equation of ADF is given by

1 1 1 2 2  t t t t p t p tz z z z z aθ α α α− − − −∆ = + ∆ + ∆ + + ∆ +

where the number of augmenting lags (p) is determined by minimizing 
the Schwartz Bayesian information criterion or minimizing the Akaike 
information criterion or lags are dropped until the last lag is statistically 
significant [24]. 

Box-Ljung test

Box-Ljung test is a diagnostic tool used to test the lack of fit of a 
time series model. The test is applied to the residuals of a time series 
after fitting an ARMA (p,q) model to the data. The test examines m 
autocorrelations of the residuals. If the autocorrelations are very small, 
we conclude that the model does not exhibit significant lack of fit. The 
Box-Ljung Q-test is a more quantitative way to test for autocorrelation 
at multiple lags jointly (Ljung and Box, 1967). The null hypothesis for 
this test is that the first m autocorrelations are jointly zero.

1 2: 0mH ρ ρ ρ∩ = = = =

.

The choice of m affects test performance. If N is the length of the 
observed time series, choosing m=In(N) is recommended for power 
[33]. Multiple values of m may also be tested. If seasonal autocorrelation 
is possible, consider testing at larger values of m such as 10 or 15. The 
Box-Ljung test statistic is given by

2

1
( ) ( 2)

m
h

h

pQ m N N
N h⋅

=

= +
−∑


General autoregressive conditional heteroscedasticity 
(GARCH)

The academic literature on modelling value at risk (VaR) and 
conditional value at risk (CVaR) indicates that a successful approach 
for modelling the high quintiles of the portfolio loss distribution is 
to combine a GARCH model with the EVT [20]. The GARCH part is 
responsible for capturing the dynamics of volatility while EVT provides 
a model for the behaviour of the extreme tail of the distribution. 

The GARCH (p,q) process is defined as
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( ) ( ) ( ) ( ) ( )
1 ( ) 1 ( )

F u y F u F x F uF y
F u F u

+ − −
= =

− −

Clearly, as the bulk of this observations lie in the range [0,u], the 
estimation of the distribution within this range is quite straightforward. 
However, a challenge in the estimation of the distribution above is in 
the presence of only a few numbers of observations in this range. The 
estimation of this conditional distribution function of excesses was 
proposed in Theorem 1.

Theorem 1

Balkema and Haan [2], For a large class of underlying distribution 
F, the excess distribution function Fu can be approximated by GPD for 
increasing threshold u.

As the threshold u becomes large and if the underlying distribution 
of the returns series belongs to the maximum domain of attraction of 
the Generalized Extreme Value (GEV) distribution, the distribution 
function of the exceedances over the threshold has approximately a 
GPD. 

Hence, for a large class of underlying distributions F and a high 
threshold u, the conditional distribution of excesses Fu(y) is well 
approximated by

( ) ( ), ,uF y G y uξ σ≈ →∞

Where ( ),G yξ σ  is the GPD which is given by

( )

1

,

1 1 , 0

1 exp , 0,

y if
G y

y if

ξ

ξ σ

ξ ξ
σ

ξ
σ

−
  − + ≠   = 

  − − =   

For 
( )[0, ], 0,

0, , 0.

Fx u
y

ξ

σ ξ
ξ

 − ≥


∈ 
− < 

 

In the given GPD model, ξ is the shape parameter or the tail index 
while σ is the scale parameter. The value of the scale parameter σ gives 
an idea of the behavior of the tail of the distribution with a large value 
indicating a very heavy tail. Indicated that generally, an upper tail for 
financial losses cannot be fixed. Because of this, only distributions with 
shape parameter ξ≥0 are suited to model financial return series. 

The GPD model can be expressed as a function of x by defining 
x=u+y which gives

( )

1

,

( )1 1 ,if 0

( )1 , if 0,

[ , ], 0,
for

, , 0.

x u

G x
x uexp

u
x

u u

ξ

ξ σ

ξ ξ
σ

ξ
σ

ξ

σ ξ
ξ

− −  − + ≠   = 
 − − − =   
∞ ≥

∈   − < 
 

Setting u=0 and σ=1, the resulting equation is also known as the 
standard GPD. 

The mean excess function for the GPD with parameter ξ<1 is also 
defined as

2 2 2
0

1 1

q p

t i t i j t j
i j

σ α α β σ− −
= =

= + ∈ +∑ ∑
where the variance at time t is denoted by 2

tσ while ∊t is a time series 
that is equal to σtωt where ωt is discrete white noise with zero mean 
and unit variance and αi and βj are parameters of  the model for which 
α0>0,αi ≥ 0,βj ≥ 0, i=1,…, q j=1,…,p.

Lagrange multiplier test

The Lagrange Multiplier (LM) test is a general principle for testing 
hypotheses about parameters in a likelihood framework. The hypothesis 
under test is expressed as one or more constraints on the values of the 
parameters. To perform an LM test only estimation of the parameters 
subject to the restrictions is required. The LM testing principle has 
found wide applicability to many problems of interest in econometrics 
[30]. Lagrangian Multiplier (LM) test is performed to examine the data 
for the presence of autoregressive conditional heteroscedastic (ARCH) 
effects and to indicate the presence of significant ARCH effects in the 
data [25].

Extreme value theory

The discussion of the POT approach is lifted from Nortey et al. [25]. 
Given a set of observations X1, X2,…,Xn with cumulative distribution 
function F(x) and a pre-determined threshold u, we are interested in 
the conditional distribution of the exceedances with respect to the 
threshold.

The POT method considers the distribution of exceedances over this 
threshold. As illustrated in Figure 1, an unknown distribution function 
F of a random variable X is considered. The distribution function Fu 
for values of x above a certain threshold u is estimated Magnou [21]. 
The exceedances are modeled using GPD with distribution function 
denoted by Fu(y), where 0 .Fy x u≤ ≤ −

If Xi>u, for any i=1,2,…, n, an exceedance is said to occur. 
Hence, we can define Y=Xi-u as the exceedances with respect to u. 
The corresponding distribution function, known as the conditional 
distribution function of excesses, Fu(y) defined as 

Fu(y)=P(x-u≤y|x>u),0≤y≤xF-u,

Where xF<∞ is the right end-point of F. We have 

( ) ( )
( )

|

|
( )

( y u) ( u)
( )

uF

P x

y P x y u x u

u
P x P x

P x u

P x y u x u
=

>

= ≤ + >

≤ + >

≤ + − ≤
=

>

Hence, since x=u+y for X>u, F expressed in terms of Fu gives

Figure 1: Schematic diagram of the problem.
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e(u)=E(X-u|X>u), where X-u|X>u~GPD(ξ,σ)

and

(u) , 0
1

ue uσ ξ σ ξ
ξ

+
= + >

−

This function gives the mean of the excesses of X over varying 
values of the threshold u.

The shape parameter ξ provides information on the tail 
distribution. If ξ>0 the tail of the GPD is Pareto and if ξ=0 the tail is 
exponential. In addition, if ξ<0 the GPD has a finite right endpoint. 
The two approaches mostly employed in the parameter estimation of 
the GPD are the maximum likelihood estimation (MLE) method and 
the method of Probability Weighted Movements (PWM). To estimate 
the parameters of the GPD that will be fitted to the exceedances, MLE 
will be considered because it produces smaller standard deviation [25]. 

Risk measures

The issues of concern to most risk managers and financial analysts 
are the events that occur under extreme market conditions. These are 
events which have a tendency to produce huge unexpected losses that 
can lead to bankruptcy.

Since its introduction in the 1990s, value at risk (VaR) has become a 
standard risk measure in the practice of finance. It provides a threshold 
of the portfolio loss distribution such that losses higher than the 
threshold occur with a given probability; typical choices include 1% or 
5%. There are two ways in which EVT can be applied to VaR modeling. 
It is either done by directly applying EVT on the return series or by 
first running a GARCH model to account for clustering of volatility 
effect. The conditional approach through GARCH relies on cleaning 
the clustering of the extremes first through a GARCH model and EVT 
is applied to the residuals time series [6] .

As a result of the observed volatility in the daily returns data, 
the conditional EVT approach was preferred for the study. A similar 
realization was made by Polakow and Seymour [27] when they 
compared the conditional and unconditional approaches in the 
modeling of volatile South African stock market, and the conditional 
approach provided better results compared to the unconditional 
approach.

The discussion on the derivation of risk measures is from Nortey 
et al. [25] and Magnou [21]. Assuming a GPD function for the tail 
distribution,VaRα,CVaRα, and γM can be defined as a function of the 
GPD parameters.

The VaR of a financial portfolio at a confidence level, 0<α<1 can 
be defined as the smallest number l such that the probability of a loss L 
exceeding l over a certain time horizon is smaller than or equal to α . Thus, 
it is given as

ˆˆ
1ˆ

u

nVaR u
n

ξ
α

σ α
ξ

− 
= + − 

 
			                   (1)

Another measure of risk, conditional value at risk (CVaR), which 
is the average losses beyond VaR, has gained popularity. According to 
the Basel committee on banking supervision, it is more informative 
than VaR and has better properties for an extended analysis of the 
application of VaR for risk measurement in the context of regulation.

The CVaR is defined as the expected size of a loss given that the loss 
exceeds VaRα and is given by

( )ˆˆ VaR
CVaR VaR

1
uα

α α

σ ξ
ξ

+ −
= +

−
		                 (2)

CVaR, as opposed to VaR, is a coherent risk measure in the 
sense that it satisfies the properties of monotonicity, sub-additively, 
homogeneity, and translational invariance McNeil et al. [6]. 

The return level,γm, that is exceeded on average once every m 
observations is given by

ˆ
ˆ

1ˆ
u

m
mnu

n

ξσγ
ξ

   = + −    

				                   (3)

For presentation, it is often more convenient to give return levels 

on an annual scale so that the M-year return level is the level expected 
to be exceeded once every M years. If there are k observations per year, 
this corresponds to the m-observation return level, where m=M×k. 

Hence, the M-year return level is defined by
ˆ

ˆ
1ˆ

u
M

kMnu
n

ξσγ
ξ

   = + −    
			                     (4)

Backtesting 

The Basel Committee on Banking Supervision provides a forum 
for regular cooperation on banking supervisory matters. Its objective 
is to enhance understanding of key supervisory issues and improve the 
quality of banking supervision worldwide.

The Basel Committee on Banking Supervision (1996) developed a 
backtesting framework based on the method adopted by many of the 
banks that use internal market risk measurement models. The objective 
is to test the quality and accuracy of the VaR model. These backtesting 
programs typically consist of a periodic comparison of daily VaR 
measures with the subsequent daily profit or loss. The VaR measures 
are intended to be larger than all but a certain fraction of the trading 
outcomes, where that fraction is determined by the significance level 
of the VaR measure. Comparing the risk measures with the trading 
outcomes means counting the number of times that the risk measures 
were larger than the trading outcome. The fraction covered can then be 
compared with the intended coverage level to gauge the performance 
of the risk model. In interpreting the results of backtesting, the Basel 
Committee introduced the three-zone approach found in Table 1.

The table defines the green, yellow, and red zones that will be used 
to assess backtesting results. The results shown in the table are based on 
a sample of 250 observations. For other sample sizes or coverage level, 
the yellow zone begins at the point where the cumulative probability 

Zone Number of exceptions Cumulative probability (%)
Green 0 8.11

1 28.58
2 54.32
3 75.81
4 89.22

Yellow 5 99.88
6 98.63
7 99.60
8 99.89
9 99.97

Red ≥10 99.99

Table 1: Basel Committee three-zone approach for backtesting.



Citation: Velasco AAF, Lapuz DKP (2018) Extreme Value Modelling for Measuring Financial Risk with Application to Selected Philippine Stocks. J Appl 
Computat Math 7: 404. doi: 10.4172/2168-9679.1000404

Page 5 of 13

Volume 7 • Issue 3 • 1000404J Appl Computat Math, an open access journal
ISSN: 2168-9679 

equals or exceeds 95%, and the red zone begins at the point where 
the cumulative probability equals or exceeds 99.99%. The cumulative 
probability is simply the probability of obtaining a given number 
or fewer exceptions in a sample of 250 observations when the true 
coverage level is 99%.

If the model falls into the green zone, then there is no problem with 
the quality or accuracy of the model. The yellow zone is an ambiguous 
zone and the conclusion of model inaccuracy is not definite. If the 
model falls into the red zone, there is a high probability that the model 
is inaccurate [31].

Methodology
This presents the various methods and techniques employed in this 

study. The data used in the study as well as various assessment methods 
to describe the data. Illustrates producing a standardized independent 
and identically distributed (iid) series by fitting AR-GARCH models. It 
presents the application of EVT in modeling the tails of the iid series. 
Shows the computation of financial risk measures VaR, CVaR, and 
return level under EVT. It presents the backtesting procedure.

Data preparation and assessment

Daily closing prices of the stocks of BDO, MEG, SCC, SM, and 
URC are used in the study. These stocks are part of the Philippine Stock 
Exchange index (PSEi) composition and belong to different subsectors 
such as banking (e.g., BDO), property (e.g., MEG), mining (e.g., SCC), 
conglomerate (e.g., SM), and consumer (e.g., URC). Data spanning 
from July 1, 2006 to June 30, 2017 were obtained from the Philippine 
Stock Exchange (PSE). Data from July 1, 2006 to June 30, 2016 were 
used for modeling. The data from July 1, 2016 to June 30, 2017 were 
used for backtesting. Since the financial market only provides raw data 
of the realized values of the various financial indices, the daily log-
returns (for the purpose of this paper will be used interchangeably with 
returns) were derived as follows.

1

In 100%t
t

t

R
R

γ
−

 
= × 

 

where γt denotes the daily logarithmic return at day t,Rt represents 
the daily return at day t and In(.) represents the natural logarithmic 
function. 

The volatility of the financial returns over the period was examined. 
From the histogram of returns and tests for normality, we assess the 
presumption that financial returns have fat tails and deviate from the 
normal distribution. We initially test the stationarity of the data using 
the ADF test.

In order to apply the extreme value method to any data, Coles 
et al. [9] emphasizes that it is a strong requirement for the data to be 
independent and identically distributed (iid). To check for this iid 
requirement, we employed the Box-Ljung test for autocorrelation. In 
addition to this, a Lagrangian Multiplier (LM) test was performed to test 
the data for the presence of autoregressive conditional heteroscedastic 
(ARCH) effects.

Statistical Analysis Software (SAS) 9.3 and R Statistical Software 
3.4.1 were used to analyze the data. AR-GARCH modeling was 
performed in SAS using PROC ARIMA and PROC AUTOREG, while 
the application of extreme value theory and fitting of GPD model to 
the exceedances were completed using the extRemes, evir, and qrm 
packages in R. 

ARMA-GARCH model fitting

To produce a complete iid process with relatively no autocorrelation 
terms and no heteroscedastic effects, different combinations of 
Autoregressive Moving Average-Generalized Autoregressive 
Conditional Heteroscedasticity (ARMA-GARCH) models were fitted 
McNeil and Frey [22]. The best fitting model was identified based on 
the Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) values.

Based on the ADF test, it was found that the returns series for BDO, 
MEG, SCC, SM, and URC are fairly stationary along the mean. An 
ARMA model is fitted to the data then the Lagrangian Multiplier (LM) 
test was performed. If the LM test reveals the presence of significant 
ARCH effects, an ARMA-GARCH model was fitted to the data.

The residuals from the chosen ARMA-GARCH model were 
extracted with their corresponding conditional variances. A 

standardized iid series was calculated as t
t

t

e
γ

σ
′ =  where et is the 

residual term at time t and σt is the corresponding conditional standard 
deviation at time t.

Extreme value modeling

The first step in the application of POT approach of the EVT is the 
selection of appropriate threshold levels for the tails of the distribution. 
So far, there is no algorithm with a satisfactory performance for the 
selection of the threshold u available Magnou [21]. It is for this reason 
that graphical approaches are used to select the threshold u by using 
hill plots and shape parameter plots. The use of the semi-automatic 
threshold selection sel. threshold function in R was introduced in this 
study.

After setting the threshold, a GDP model was fitted to each of the 
tails of the standardized series. The adopted EVT model is that of the 
GPD. Not only does this approach allow reliable estimation of VaR, 
CVaR, and return level, but it also provides insight on the tail thickness 
through the fitted value of one of the GPD parameters known as the 
shape parameter Loh and Stoyanov [20]. Plots of the estimated GPD 
models fitted as curves against empirical excesses over the selected 
thresholds and empirical quantiles of excesses against the quintiles of 
the fitted GPD models in quantile-quantile (Q-Q) plots are examined 
to evaluate the fit of the model to the series. MLEs of the parameters 
are calculated.

Calculation of risk measures under EVT

The risk measures VaR and CVaR associated with each of the tails 
were computed under various αlevels set at α=0.05,0.025,0.01,0.005 
using the fitted GDP model. M-year return level estimates were 
computed for various periods: 1 year, 5 years, 10 years, 20 years, and 
50 years. The risk measures were computed using equations. The 
VaR under normal distribution assumption was also computed for 
the various levels. The computed VaR under these two methods were 
compared with the empirical result.

Assessment of VaR models using backtesting

The back testing procedure developed by the Basel Committee on 
banking supervision was used to assess the accuracy of VaR models 
using 95% and 99% coverage levels. Data spanning July 1, 2016 to June 
30, 2017 were used for back testing in which there are 265 trading days. 
Since the Basel Committee only released the three-zone approach 
tresholds for 99% coverage level for a sample size of 250, thresholds for 
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95% and 99% coverage level and n=265 were computed and presented 
in Tables A1 and A2.

Results and Discussion
This paper applied the EVT approach in analyzing extreme daily 

returns of BDO, MEG, SCC, SM, and URC. An in-depth analysis of 
the extreme value methodology applied to the high frequency (daily) 
returns of the five selected stocks of the PSE is presented.

ARMA-GARCH modeling

The daily logarithmic returns plot for each of the five stocks is 
presented in Figure 2. It can be observed that the returns series are fairly 
stationary along the mean. Heteroscedasticity, or the circumstance in 
which the variability of a variable is unequal over time, is prominent 
in the daily returns series as expected in a financial time series data. 
This suggests that an ARMAGARCH model is to be fitted to the data to 
model the mean and the variance.

Figure 3 illustrates the histogram of the daily returns data. A 
classical bell-shaped, symmetric histogram for each of the stocks can 
be seen with most of the frequency counts gathered in the middle and 
with the counts dying off in the tails. Examination of the histogram of 
the daily returns illustrates that the stocks have fat tails.

Computed summary statistics from the data indicate that all the 
returns series have positive means, non-zero coefficient of skewness, 
and high positive coefficient of kurtosis. Furthermore, Kolmogorov-
Smirnov, Cramer von Mises, and Anderson-Darling tests for normality 
confirm the non-normality of the series (p<0.05). These summary 
statistics and tests for normality results are shown in detail in Tables 
A3 and Table A4.

ADF test revealed that the returns series are relatively stationary 
(p<0.05). The means were modeled using a purely-AR model so that 
the AUTOREG procedure in SAS may be used to model the variance 
using GARCH models in the case that conditional heteroscedastic 
terms are present in the series. Fitted ARMA-GARCH models for 

each of the selected stocks are presented in Table 2. Corresponding 
parameter estimates and statistics for the fitted models are tabulated in 
Table A5. The daily returns of SCC is found to be stationary and can be 
considered as a complete iid process with relatively no autocorrelation 
(p<0.05), as indicated by the Box-Ljung test. Significant ARCH effects 
are present in all the five stocks. Hence, GARCH or ARCH models 
were fitted.

The standardized series for each of the stocks were produced. 
Autocorrelation and conditional heteroscedasticity tests performed on 
the standardized series and squared standardized series showed that no 
autocorrelation existed and no conditional heteroscedastic terms are 
evident in the series. Hence, the standardized series were considered 
suitable for the application of EVT. The extRemes, evir, and qrm 
packages in R were used for the application of EVT.

Extreme value modeling

The first step in the application of EVT is the selection of a 
threshold. Since both tails will be modeled in this study, a threshold 
is selected for each of the tails. The interest is to find an appropriate 
threshold for Generalized Pareto models by fitting the models to a 
sequence of thresholds in order to find the lowest possible threshold 
that yields roughly the same parameter estimates as any higher 
threshold. Previous papers on the application of EVT used the graphical 
approach for threshold selection. A similar approach is employed in 
this study through the use of hill plots and GPD shape parameter plots. 
The threshold selection function in qrm package was introduced in 
this study, in addition to the traditional graphical approach. Figures 
4 and 5 show the hill plots of the 250 order statistics for the right tails 
and 350 order statistics for the left tail. The threshold is expected to fall 
within a range where the hill plots are relatively stable. These ranges are 
indicated by the two vertical lines in each plot.

Upon examination of the GPD shape parameter plots in Figures 6 
and 7, it was observed that for both tails the shape plots are relatively 
steady in the ranges determined from the hill plots. The shape parameters 
are considered to be stable within the ranges indicated by the vertical 
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SM 
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Figure 2: Daily logarithmic returns plot for the selected stocks.
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Figure 3: Histogram of returns for the selected stocks.

BDO           MEG             SCC

SM           URC

Figure 4: Hill plots for left tails.

lines, which are similar to or narrower than ranges in the hill plots. The 
ranges for which the hill plots and GPD shape parameter plots are both 
stable are at (0.6881, 0.7257) for the left tail and (0.8437, 0.8969) for the 

right tail distributions of BDO, (0.7767, 0.8125) and (1.0939, 1.1208) 
for MEG, (0.6983, 0.7380) and (0.8116, 0.8583) for SC, (0.5193, 0.7584) 
and (0.8417, 0.8906) for SM, and (0.5212, 0.5413) and (0.8308, 0.8531) for 
URC. These ranges were used in the sel.threshold function in R to identify 
the corresponding threshold within each range. 

The calculated threshold values are tabulated in Table 3. It can be 
observed that higher threshold values were computed for the right tails 
which suggests that the distribution of losses is more stable compared 
to the distribution of gains which are more extreme.

GPD models were fitted to the exceedances with respect to 
the threshold levels and parameter estimates for the fitted models 

Stock Subsector Mean Variance
BDO banking and 

financials 
AR(2) GARCH(1,1)

MEG property AR(3) ARCH(1)
SCC mining constant mean GARCH(1,1)
 SM conglomerate AR(2) ARCH(1)
URC consumer AR(3) GARCH(1,1)

Table 2: Results of the ARMA-GARCH model fitting.
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Stock Left-tail Right-tail
BDO 0.715 0.895
MEG 0.812 1.11 
SCC 0.699 0.829 
SM 0.701 0.889

URC 0.521 0.651

Table 3: Computed threshold for the tail distribution of the stocks.

BDO           MEG             SCC

SM           URC

Figure 5: Hill plots for right tails.

BDO            JGS            MEG

SM           URC

Figure 6: GPD shape parameter plots for left tails.
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were calculated. Plots of the estimated GPD models fitted as curves 
against empirical excesses over the selected thresholds are presented 
in Figures 8 and 9. The plots show that the estimated GPD models 
provide a good fit to the extreme values since all the points on the plots 
lie approximately on the curves with no significant deviations to the 
curves. Tabulated GPD model parameter estimates and statistics are 
shown in Table A6.

It can be seen from Figures 8 and 9 that the GPD models provide 
a good fit to the exceedances for the tails of the returns series for each 
of the selected stocks. This is also confirmed by the results obtained by 

fitting the empirical quantiles of excesses against the quantiles of the 
fitted GPD models in quantile-quantile (QQ) plots shown in Figures 10 
and 11. For both tails, the plots do not have significant departures from 
the straight line. The points corresponding to the largest observations 
can be observed on the plot but are not considered significant deviations 
since they are not very distant from the line.

Plots of the fitted GPD models and QQ-plots confirm the adequacy 
of the fitted models to the tails of the distribution of returns. Risk 
measures were computed using the fitted GPD models.

BDO            JGS            MEG

SM           URC

Figure 7: GPD shape parameter plots for right tails.

BDO           MEG           SCC

SM             URC

Figure 8: Plots of the empirical exceedances with the fitted GPD model for left tails.
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Risk measures

The computed VaR and CVaR for each of the tails after fitting the 
extreme value distribution indicate that at a 95% confidence level, the 
expected market loss would not be more than 5.95% for BDO, 4.81% 
for MEG, 4.13% for SCC, 3.76% for SM, and 5.66% for URC for a one-
day duration. In the case that the daily loss exceeds these levels, the 
average loss is expected to be 8.16% for BDO, 5.54% for MEG, 5.11% for 
SCC, 5.14% for SM, and 7.10% for URC. Similarly, the expected market 
return for one-day duration is expected to be at most 4.78% for BDO, 
6.52% for MEG, 5.21% for SCC, 4.46% for SM, and 4.27% for URC. If 
the daily gain exceeds these levels, an average gain is expected to be 

6.33% for BDO, 9.51% for MEG, 6.22% for SCC, 6.13% for SM, and 
5.44% for URC. Similar interpretation may be done for the computed 
risk measures for higher quantiles. The computed VaR and CVaR 
values under EVT framework for other levels of α are summarized in 
Table A7.

Alternatively, the above results also imply that for an investment 
of Php 1 million in these stocks, the expected loss over one trading 
day will not exceed Php 59,500 for BDO, Php 48,100 for MEG, Php 
41,300 for SCC, Php 37,600 for SM, and Php 56,600 for URC, with 
a 95% confidence level. For the same investment and with the same 
confidence level, the expected gain over one trading day will not exceed 

BDO           MEG           SCC

SM             URC

Figure 9: Plots of the empirical exceedances with the fitted GPD model for right tails.

BDO             MEG                      SCC

SM                 URC

Figure 10: QQ-plot of fitted GPD model for left tails.
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Php 47,800 for BDO, Php 65,200 for MEG, Php 52,100 for SCC, Php 
44,600 for SM, and Php 42,700 for URC.

A comparison of the risk measures between the right tails and left 
tails indicate that from July 1, 2006 to June 30, 2016, investments in 
BDO and URC have been exposed to more extreme losses than extreme 
gains, as evidenced by the greater VaR values for the left tails compared 
to the right tails. The opposite may be said about investments in MEG, 
SCC, and SM, which have been exposed to more extreme gains rather 
than extreme losses.

One of the risk measures, return level, determine the maximum 
gain or loss of each of the stocks. For illustrative purposes, the return 
levels for BDO are interpreted as follows: a maximum loss of 8.54% is 
expected once every year, a maximum loss of 12.15% is expected every 
five years, 14.13% every 10 years, 16.43% every 20 years, and 20.03% 
every 50 years; a maximum gain of 8.27% is expected once every year, 
a maximum gain of 11.06% is expected every five years, 12.56% every 
10 years, 14.19% every 20 years, and 16.72% every 50 years. Similar 
means of interpretation may be done for the return level estimates for 
the other stocks. Return levels for other stocks were computed and 
tabulated in Table A8.

A comparison of the calculated VaR under EVT and normal 
distribution assumption against the empirical results revealed that 
for lower quantiles or higher levels, the two methods tend to slightly 
overestimate the VaR. However, it was observed that for higher 
quantiles or lower α levels, VaR estimates under normal distribution 
assumption significantly underestimated the VaR. On the other hand, 
VaR estimates under EVT converges to the empirical result. VaR values 
under normal distribution assumption and empirical results are shown 
in Table A8.

Backtesting

To assess the accuracy of the VaR models, backtesting using 
the three-zone approach developed by the Basel Committee was 
performed. Results of the backtesting procedure are found in Table 
4 for the 99% and 95% coverage levels. Zone classifications for the 

BDO             MEG                      SCC

SM                 URC

Figure 11: QQ-plot of fitted GPD model for right tails.

number of exceedances were based on the calculated values for the 
three-zone approach in Tables A1 and A2. Backtesting results show 
that all the VaR models under EVT are classified under the Green zone 
which indicates high probability of model accuracy.

A similar framework for backtesting was applied to VaR under 
normal distribution assumption. Results are shown in Table 4. 
Inspection of Table 5 shows that there are more exceptions for VaR 
under normal distribution assumption compared to EVT.

It can also be seen that not all VaR models under the normal 
distribution assumption were classified under the Green zone, 
specifically for the 99% coverage level, as observed in left tail model for 
BDO and right tail models for MEG, SCC, and SM. This implies that 
the VaR approach using the assumption of normality was not able to 
capture extreme losses, and therefore, underestimated tail risk.

Conclusion
The main objective of this paper is to examine the application of 

EVT in measuring financial risk of the selected Philippines stocks BDO, 
MEG, SCC, SM, and URC. Results of the study showed that the daily 
returns series of these five stocks deviate from the normal distribution 
and are asymmetric in nature. Hence, the EVT model is found to be 
more appropriate to fit to the tails of the distribution of returns.

Stock Number of exceptions Zone  Zone
99% 95% 99% 95%

BDO Left 0 0 Green Green
Right 0 0 Green Green

MEG Left 2 7 Green Green
Right 0 0 Green Green

SCC Left 2 4 Green Green
Right 0 4 Green Green

SM Left 2 4 Green Green
Right 1 7 Green Green

URC Left 0 1 Green Green
Right 1 6 Green Green

Table 4: Backtesting results for VaR under EVT.
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Preference for the conditional EVT approach was due to the 
observed volatility in the data and previous studies [25,31] which 
concluded that conditional EVT is better than the unconditional 
approach in financial risk applications. The paper employed the POT 
approach of the EVT, which fitted a GPD model to excesses above 
a threshold u for each of the tails of the distributions of the selected 
stocks. As concluded in studies by Genkay and Selkuk (2004) and 
Krehbiel and Adkins [19] that the left and right tails behave differently 
and should be treated separately, a similar realization was observed in 
this study. The GPD models were found to provide a good fit to the data 
as evidenced by the plots of empirical exceedances with the fitted GPD 
model and the QQ plots.

Risk measures under the EVT framework revealed that stock 
investments in BDO and URC have been exposed to more extreme 
losses than extreme gains, while MEG, SCC, and SM have been exposed 
to more extreme daily returns. VaR and CVaR for various levels 
were computed, as well as M-year return levels for various periods. 
Assessment of VaR models using the three-zone approach developed by 
the Basel Committee on Banking Supervision yielded positive results. 
The VaR models under the EVT framework for each of the tails of the 
selected stocks fall under the green zone of backtesting, indicating high 
probability of model accuracy. A comparison of the calculated VaR 
under EVT and normal distribution assumption against the empirical 
results showed that as becomes smaller, VaR estimates under normal 
distribution assumption tend to underestimate VaR while estimates 
under EVT approach the empirical VaR values.

This study was able to illustrate the use of the POT approach of EVT 
in modeling tail returns of selected Philippine stocks. The possibility of 
utilizing the semi-automatic threshold selection function in R was also 
explored. Risk measures VaR, CVaR, and return level were computed 
and VaR estimates under EVT and under the normal distribution 
assumption were compared with empirical results. The accuracy of 
the computed VaR estimates were also assessed through backtesting 
using Basel committee three-zone approach. With the results of this 
study, it can be concluded that the POT approach of conditional EVT 
can be utilized in measuring financial risk associated with five selected 
Philippine stocks: BDO, MEG, SM, SCC, and URC.

Recommendations
In a study by Suaiso and Mapa [31], the VaR model under EVT 

was compared with the Risk Metrics model developed by J.P. Morgan 
and different ARMA-GARCH type models. The RiskMetrics model 
employs various time series techniques in modeling the mean and 
variance of returns. However, ARMA-GARCH type models do not 
forecast VaR. The models forecast the returns and conditional variance 
of the time series. The returns are forecasted using ARMA models, while 

the volatility is forecasted using models such as GARCH, exponential 
GARCH (EGARCH), GARCH-in-mean (GARCH-M), and integrated 
in variance GARCH (IGARCH). These volatility models are said to 
capture volatility clustering in financial time series data.

Hence, in addition to VaR models under the normal distribution 
assumption, VaR models under the RiskMetrics approach and ARMA-
GARCH approach may also be included for comparison with EVT-
based VaR models.

In assessing VaR models, banks look into a model’s conservatism, 
accuracy, and efficiency. A VaR model is considered conservative if it 
systematically produces high estimates of risk relative to other models. 
Accuracy can be assessed by analyzing the number of times the VaR 
estimates are lower than the losses and the magnitude of those losses. 
An efficient VaR model provides sufficient conservatism [13]. 

One measure of model conservatism is the mean relative bias 
(MRB) statistic Hendricks [17]. It tests whether different VaR models 
produce risk estimates of similar average size. For model accuracy, 
backtesting using the Basel Committee three-zone approach is the 
standard practice. Likelihood ratio (LR) tests, in contrast, can be used 
to assess if the model is inaccurate [8]. Therefore, the use of MRB 
statistic and LR tests is recommended in assessing model adequacy for 
future research.

In this study, the EVT was applied to five selected stocks listed 
in the Philippine stock exchange. Applying these methods to a more 
representative sample of Philippine stocks may also be considered in 
subsequent studies.
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