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Introduction
Currently, the domain of optimization is attracting considerable 

interest from the academic and industrial communities, see, for 
instances [1-5]. The various existing techniques for solving a given 
problem and the efficient algorithmic implementations open up many 
perspectives and diverse applications in different areas [6-8].

There are different methods of optimization exist in the literature, 
among other, we cite, the simplex [1], the interior point [1,2], the 
exterior point methods, and evidently with their improved versions 
[9-13].

In most optimization problems, initialization points are necessary 
and required in the resolution algorithms for performing numerical 
implementations [6-8,11,12]. However, the choice of the initialization 
points is not general, and the values of these points depend strongly 
on the adopted technique. Furthermore, these points are considered as 
active or feasible in the applied method. 

In this study, we are interested by the optimization problem of the 
CSLP type (constraint satisfaction linear problems), where the set of 
constraints are linear and it is defined by determined the active point 
xact of a set E such as:

{ , }nE x IR subject to Ax b= ∈ ≤  (CSLP), where  

A is an mxn data matrix, not necessarily full rank and b is a given 
as vector IRm

The problem to solve is the determination of the active points 
satisfying all the aforementioned constraints. 

If the values of the matrix A and the vector b components are 
integer numbers, the above problem is discrete and can be solved by 
using the ellipse method [4]. However, in the case of optimization 
continuous, this is not studied in literature.

This past has motivated this investigation in the purpose of giving a 
theoretical and practical method of resolution of this problem. 

The method that we propose is based on the construction of an 
iterative algorithm, such that, from any initial point (feasible or not) one 
produces another better point x, then one associates to it two matrices 
A and Z. The lines of A are constituted by the active constraints, which 
are linearly independent. The columns of matrix Z are constituted of 
the kernel of matrix A, and are also linearly independent. 

This process allows to generate a sequence of points (xk)k∈IN which 
converge to the point that one search (feasible or active). It is important 
to mention that our method can be applied without knowing whether 
this domain of constraints is empty or not.

In the numerical implementation, we used the scientific 
environment FOTRAN F90 under windows, and the obtained results 
were very satisfactory.

The rest of this paper is organized as follows. In Sec. 2, we give some 
definitions and propositions that are used in this article. In Sec. 3, we 
present the construction of a die kernel. In Sec. 4, we give description of 
the active method and its implementation in Sec.5, we form algorithm 
for the active method. At last, we summarize our results in the last 
section.

We note that:

I={1, 2, 3,..., m} the set of constraint indices.

Xk: The iteration point k. 

{ : }t
k i k iI i I a x b= ∈ >  the set of constraints indices containing the 

point xk externally.

{ : }t
k i k iI i I a x b− = ∈ >  the set of constraints indices containing the 

point xk internally.

┴: Orthogonal.

nt: The total number of iterations.

xact: The active point.

xfe: The feasible point.

∆ K: The set of active constraints in xk point.

Ak: The matrix formed by the active constraints linearly independent 
at the point xk.
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Abstract
In this paper, we present an iterative method to determine active point of linear constraints. It is based on two 

basic operations which are addition and permutation of constraints. This procedure generates a finite sequence of 
points that basis in a new lemma and a new formula direction, the laspoint of sequence constitutes an active point, 
and this procedure gives also two matrices. The first one is constituted by the active constraints which are linearly 
independent and the second one is a matrix whose columns are the basis vectors of the kernel of the first matrix. 
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Zk: The kernel of the matrix Ak.

np: The total number of permutations resulting by the choice x0. 

zeli: The columns of index i deleted on the matrix Z1.

Definitions and Propositions 
Definition 

The constraint t
ia x  x ≤ bi is called active in xk if 

t
i ia x b=  [8].

This definition leads to the fact that, for any vector v, we can 
introduce all 

{ : }t
v i iI i I a v b= ∈ = 				               (3.1)

We then say that the vector v is a regular point of all eligible 

:{ n t
i iIR a v bv∆ = ∈ ≤ , for each i ∈ I

(or just a regular point of the constraints) if and only if it is a regular 
point of ; ( ) , 1,....,{ }n t

i iIR a x b i mD x ∈ = == . 

Definition 

Let D be a domain of constraints in IRn, defined by [5]

; ( ) , 1,....,{ }n t
i iIR a x b i mD x ∈ = ==                  		                (3.2)

We call all candidates constraints, any set of constraints, among the
t
ia  (x) ≤ bi considered as active constraint of the solution that we 

search for.

Proposition 

A direction d is tangent to x∈X, if and only if there exists a sequence 
(dn) of limit d, and a sequence (μn) of positive real zero limit, such that 
x+µndn∈X. [5].

Remarks 

Most of the algorithms fail when they have to solve a problem 
whose constraints are not qualified in the solution. Therefore it is 
preferable to change the description of the set of constraints before 
solving the problem.

Proposition (CS contraints satisfaction) 

The constraints of D domain are qualified at the point x ∈ D, if the 
gradients in x of the active constraints [5].

  ) 1, .,   ) 1, .{ ( } ( }.,{  i jh x i p g x j q∇ …∇= … ∪ =  are linearly independent, 
where

( ) ( )   1, ,       1, ,i i j jh x b for i p and g x b for j q= = … < = …  such that p +q=m. 

Construction of Kernel Matrix
This section contains the most important results for the kernel 

numerical calculation of any matrix, especially in the case where 
we have a lot of matrices of large size, and to avoid repetition of the 
calculations.

The calculation of a matrices and vector kernel obeys certain rules 
of compliance.

These results are given in the following:

Lemma 

Let v be a vector v ∈Rn, which defines a set of constraints as follows:
: 0{ }n tIR v ax x= ∈ − =

Where α is a real number	              (4.1)

 then v⊥∆  i.e. v is orthogonal to ∆.

Proof

Let 1 2 1,   ,     0 tx x then v x α∈ ∆ − = 			                    (1)

2  0 tv x α− = 					                   (2)

By subtraction (1) of (2) it comes: ( )2 1 2 1  0       0t t tv x v x v x xα α− − + = ⇒ − =

This gives that 1 2  v x x┴
 for each 1 2,   .  x x so v∈∆ ∆┴ .

From this lemma, we can construct sets ∆+ and ∆ - that help us to 
lead the constraint equations in the following two corollaries:

Corollary 

Let Δ be a set of constraints of the form: { |  :    } 0 n tx R v x α∆ = ∈ − ≤

Where v is a vector of ,nIR Rα ∈ . Then  : { ,  '  n na R x x R+ =∆ ∈  
such that   'a x x= −  with  0,  '  0 t tv x v xα α− < − = , v +∈ ∆ 	              (4.2)

Corollary 

Consider the same data of corollary 4.2, then 
{ | : ,  |  |'n na R x x R∆ = ∈ ∃ ∈  such that   'a x x= −  with } ….(4.3) where 

 v− ∈ ∆ .

Lemma 

Let v be a vector in |Rn*, then its kernel is formed by the following 
basis { }1 2 3 1,  ,  , ,   nz z z z −…  where  0t

iv z = , for each i=1,2,…,n-1        (4.4)

Proof

It suffices to show that the rows of the matrix 1 2 2 1( ... )t
n nv z z z z− −  

are linearly independent. Consider the scalars 1 2 3 1,  ,  ,  ...,  ,nλ λ λ λ λ−  
satisfying 

1 1 2 2 3 3 1 1 0n nv z z z zλ λ λ λ λ − −+ + + +…+ = Multiplying by vt, 

it follows: 1 1 2 2 3 3 1 1.  0t t t t t
n nv v v z v z v z v zλ λ λ λ λ − −+ + + +… =  such as 

  v 0 1,2, , 1t t
i jv z z i n= = … − and 2

1
t n

i iv v v== ∑  then λ=0. And (1), we 
have: 1 1 2 2 3 3 1 1  0   0n n iz z z zλ λ λ λ λ− −+ + +…+ = =  for each i=1,…,n-1, 
from where the result. 

Lemma 

Let v1 and v2 be a two vectors in Rn, the set { }1 2 3 1,  ,  ,  ...,  nz z z z − is 
a basis of the kernel vector v1, where the im index {1,2,...., n-1} satisfies

1

2 2
1

n
t t

im i
i

v z v zMax
−

=

≠ 				                (4-5)

i=1

Then the matrix 1 2 1 1 1 1( ..... ... )t
im im nv v z z z z− + −  is invertible if and 

only if 2 0t
imv z ≠ .

Proof

The same proof of Lemma (4.4), in the rows of the matrix (v1 v2 
z1…….zim-1…..zn-1)

t which are linearly independent vectors.

Corollary 

Keeping the same data of Lemma (4-4), but here 2 0t
imv z ≠ . Then the 

matrix 2 1 2 2 1( ...... )t
n nv z z z z− − is full rank.

Proof

The vectors v1, v2 are linearly dependent.

Lemma 

Let v1and v2 be a two vectors in Rn, admitting { }1 2 3 1,  , , ,  nz z z z −…
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as the kernel of a basis vector { }1 1 2 3,  ,  ,  , ,  kv i i i i… the index set of {1, 2, 
3,…, n-1} such that ² 

t
jv z ≠ 0 for each { }1 2 3 ,  ,  , ,  kj i i i i∉ … . 

And ² 
t

jv z =0 for each { }1 2 3 ,  ,  , ,  j i i i i∉ … 		               (4.6)

Then the set { } { }1 2 1 2 3 ' ,  ' ,  , '   ,     ,  ,  , ,   { }i i ik i kz z z z i i i i i… ∉ …∪  
form a common basis of the kernel vectors v1 and v2, and verifying 

   '    j j j imz z zβ= +  with 2 2 /   T T
j j imv z v zβ = −

where 
1 2

2 2 2/{ , ,.... }k

t t t
im j jj I i i i

v z Max v z Max v z
∈

= =  

{1,2,......, 1}j n∈ −

Proof 

Since { }1 2 3 1 ,  ,  , ,  nz z z z −…  is a basis of the kernel vector v1.

We will show that ' ' ' '
1 2 ( 1), 1, 2{ , ,...... } { : { { , ,....., }i i i k ik i kz z z z z i i i i i− ∪ ∈ ∉    (4.7)

from a common basis vectors v1 and v2, knowing ' ' ' '
1 2 ( 1),{ , ,...... }i i i k ikz z z z−  

resulting kernel v1 such that

'    i i i imz z zβ= +  and '
1 1 1   0 0  0t t t

i i im iv z i v z v zβ β= + = + =

When { }1 2 ,  , , ki i i i∈ … . For vector v2, we have: if { }1 2 ,  , , ki i i i∈ … , 
it comes

⇒z'i∈ Ker (v2), for each { }
'

' ' ' '2
2 2 2 2

2
1 2'  ,  ,0 ,

t
t t t ti

i i i
im

kit

v zv z v z v i i i iz v z
v z

= − = …− = ∈ .

And if { } { }1 21,2,..., 1 /  ,  , , ,ki n i i i∈ − …  it comes 2
t

iv z =0 because 
{i1, i2,…,ik }is the largest subset of {1,2,...,n-1} satisfies ² 

t
jv z  ≠ 0, when i 

∈{ i1, i2,…,ik }.

It remains to show that set (4.7) is linearly independent.

2

' '
1 {1,2,.........., 1}/{ , ,..... ] 0

t k

k
l il il i n i i i i iz zλ λ= ∈ −+ =∑ ∑ impose

2

' '
1 {1,2,.........., 1}/{ , ,..... ]( ) 0

t k

k
l il il il im i n i i i i iz z zλ β λ= ∈ −+ + =∑ ∑  

1, 2

' '

1 1 {1,2,.... 1}/{ , ,..... }
0

k

k k

il il il il im i i
i i i n i i i

z z zλ λ β λ
= = ∈ −

+ + =∑ ∑ ∑

⇒λ'il=0 l=1,…,k with il ≠ im et λi=0 if i ∈ {1,2,...,n-1}/{ i1, i2,…,ik }.

Because { z1, z2, z3,…, zn-1} are linearly independent, from where 
the result.

Description of the Active Method
We focus in this section on a so-called active point approach

We construct the iterated xk+1 by the formula 1  k k k kx x dα+ = +  
where αk is the displacement step in the dk direction. 

The choice of αk and dk ensures that xk+1 approaches the border of 

the constraints better than xk, and 1
1

( )k
k t

k

AA
a+

+

= .. (5.1) such as Ak is the 
matrix of active constraints at point xk+1

This process is repeated until the stopping test is satisfied.

Initialization

Location of the starting point x0: Let E be a set of constraints in a 
general form (equalities, inequalities, and mixed) be an arbitrary point 
and x0 be a point of departure in IRn.

We can distinguish the situation from the point x0 with respect to 
E, in one of the following three cases:

Case 1: Point x0 is located within E.

Case 2: The point x0 is located outside of E.

Case 3: The point x0 is located in the boundary of E.

Geometric representation at point x0 

Adding and permutation of Constraints

Adding a constraint: Let Ak be the matrix of active constraints at xk 
point of iteration k, stitch-forming iteration k +1, we add in the matrix 
Ak the constraint 1

t
ka + resulting from the following two equations: 

( )
1 1

_( )
ta xk bi i

k

t
k k k

i I x

a x b Max
−

+ +
∈

− =  if xk is the result of the first or third case 

cited in sub -section (5.1.1)

Because, When the point xk is situated in the interior domain
( )  1E ξ = , We seek the constraint that nears to this xk point. in fact, 

If _( )ki I x∈  it gives all ( ) 0t
i k ia x b− < . Then we choose the constraint  

( )1 1
t
k k ka x b+ +−  that have a negate f max-value ( )1 1 0t

k k ka x b+ +− < . Note 

that ( )1 1 ( )t t
k k k i k i

k

Max
a x b  a x b  

i I x+ +
−

− = −
∈ 		                (5.2) 

This result is obtained by remplacing the xk point in all constraint 
of domain E (Figure 1). 

Else in other part if xk is the result of second case cited in sub-
section 5.1.1. i.e.

The point xk is cited in exterior of E, we seek the constraint which is 
far to this point xk in fact.

If ( ), ki I x+∈ it gives all ( ) 0t
i k ia x b− > . Then we choose the 

constraint ( ) 0t
i k ia x b− > that have a positif max-value: ( ) 0t

i k ia x b− > .

Note that ( )( )1 1   t t
k k k i k i

k

Max
a x b a x b

i I x+ +
+

− = −
∈  	               (5.3)

This result is obtained by remplacing the xk point in all constraint 
of domain E. 

Permutation of constraints: Let xk be the point in iteration k, 
in which two matrices are associated Ak, Zk, and ik is the index on 
constraints that can be added to Ak to obtain Ak+1, zk is the column that 
can be eliminated from the matrix Zk-1 to reach Zk.

Permute the constraint of index ik by another constraint of index i0 

that result of equality: 
{ }0 0  1,2, ,  

Maxt t
i i i ii k

a zel a zel
∈ …

=

If and only if where the algorithm is moved from iteration k to 
iteration k+1 we meet the condition 0t t

ik k nka Z =  

Where nk is the number of columns of matrix Zk.

and { } , 1, ,  izel i k= …  is a set of columns eliminated on the matrix Z1.

Remarks: (1) The rows of the matrix Ak+1 are linearly independent, 
they are also active at the point xk+1. (2) From the kernel of the matrix 
Ak, we can easily determine the Zk+1 matrix whose columns form a basis 
of the kernel of Ak+1.

Direction of displacement 

We consider the matrix Ak composed of active constraints linearly 
independent at the point xk and the columns of the matrix Zk form a 
basis of the kernel of Ak. 
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1
t
ka +  the constraint that may be added to the matrix Ak. 

To determine the direction dk, we distinguish two alternatives:

If k=0, we pose ). .T
k ik k ikd a x bξ= ∇ − …  		                (5.4)

Where, ik is the index of the constraint to added to Ak. 

 ξ is indicative of the position xk, and

if xk is the result of the second case. (§5.1.1)

ξ=1 If xk is the result of another case. (§5.1.1)

If k ≠ 0, here, we find also two other alternative:

If 0t
ik k nka Z ≠

, the direction dk is resulted by solution of the 
following linear system:

 
0

  
0

k
t
ik k

k

A
a d
Z

ξ
−

   
   =   
   
   

				                 (5.5)

( ) ( )0

0

1   2 §4 1 1
 ,  

1     k k k

if x case
Where Z Z z

if x E
ξ− − ∈ − −

= =
∈

and zk is the column that can be eliminated from the matrix Zk-1 to 
obtain Zk.

If 0t
ik k nka Z = , the direction dk is resulted by the solve of the 

following linear system:

0
 

0

k
t
ik k

k

A
a d
Z

ξ

−   
   =   

     

					                  (5.6)

Where ( )0

00

1   2 §4 1 1
 ,  

1     
k

k t
i

if x caseA
A

if x Ea
ξ

−  − ∈ − −
= =  

∈ 
and io is the index of 

constraint satisfying 
{ }0 0 1,2, ., 

Maxt t
i i i ii k

a zel a zel
∈ …

=  that concerned by the 

permutation. (By application of Lemma 4.7). 

Step of displacement 

Let xk is the point of iteration k, and dk the direction of displacement 
at the point xk. 

After finding the associated constraint of iteration (k+1) which 
is active at the point xk+1, then 1 1 1. t t

k k k k k ka x b a d+ + +− = − ∝ , from the 
determination of the direction dk, it comes that 1  t

k ka d ξ+ = , Which 
gives 1 1 . t

k k k ka x b+ +− = − ∝ ξ as 0k∝ >  and 1ξ = .

We conclude that 1 1( )t
k k k kAbs a x bα + += − . So, the step in the 

direction of displacement dk denoted by αk is given by the following 
expression

( )  t
k ik ik kAbs b a x∝ = −  				                 (5.7) 

Where ik is the index of constraint to added in the matrix Ak.

Remarks: The active constraint at xk, is also active at the point xk+1.

Theorem of convergence

Let (xk)k ∈ IN be an iterative sequence defined by 1 1 1 k k k kx x dα− − −= + , 
where αk-1 is the displacement step along the direction dk-1, and x0 is a 
finit starting point of IRn.

Then the sequence ( )k Ik Nx ∈  formed by a set of the directions 

 

 

            

 

   

      

Case 2      Max Abs (ri) 
                  i=1,…,  m 

 X0.  ai
t x0> bi 

                              

                             
                                                                                                          constraint 
                    Case 3  .  aitx0=bi                                                                                       of   index i   

                             x0           Min Abs (ri) 
                                                           i=1,…,m                                                                                     
                                             

                 

                                                              
                                                                         

                                                                           X0 .     Case 1 
                                               ai

t x0< bi       
 Figure 1: Geometric representation at point x0.
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(dk)k ∈IN for the two cases (§5-1-1) Is convergent after a finite number 
of iterations.

Proof

It sufficiently to show that the set of direction (dk)k∈IN is linearly 
independent

By recurrence we can write that the scalar product
1

1

 . 0 such that       .
m

i i i i
i

d IR and d the set of directionλ λ
+

=

= ∈∑
First we consider λ1 d1+λ2 d2=0 (*) and we proof λ1=λ2=0

With application of our new defined direction, then 

1 1 1 2 1 2.  .  0t t
i ia d a dλ λ+ = , we have 1 1 0t

ia d ξ= ≠ and 1 2  0t
ia d =  then 

1 2 2  0 dλ ξ λ+ = and 1 1.  0   0soλ ξ λ= =

we replace in (*), we obtain 2 2. 0dλ =

as we know d2 is a non-null direction, then it result that λ2=0

now we have 1 2  0λ λ= =

we suppose that are true for all step m, and we proof it for step m+1.

1 1 2 2   0  0,   0  1, ,  m m i id d d d for i mλ λ λ λ+ +…+ = ≠ = = …

1 1 2 2 1 1    0   m m m md d d dλ λ λ λ + ++ +…+ + =

1 1 1 2 1      m m m m m m m md d x x x xλ λ + + + + ++ = − + −

2  m mx x += − +

1 1    m m m m m mx x d dλ λ + += − + + +

1 1    m m m m m mx x d dλ λ + += − + + +

1 1 m mdλ + +=

We have  0mλ = , and we know, the direction dm+1 is non-null, it 
result 1  0mλ + = . 

Finally the set of direction ( ) INk k
d

∈
is linearly independent.

Algorithm for the Active Method
Data: The matrix A, the vector b and the departure x0.

Output: The point to find is active exact point.

1-Choose an arbitrary starting point, x0 in IRn, set k=0.

2- As long as stopping criterion is defined.

a) Computation of a searched direction, calculate dk.

b) Determine the step αk, and the new point xk+1=xk+ αk dk and add 
the active constraint t

ika  in xk+1.

c) Test: if 0t t
ik k nka Z = , we call the permute procedure. 

d) Construct the active matrix 1
k

k t
ik

A
A

a+


=


 
 

The same way, we calculate the basis of KerAk+1.

e) K=k+1 and return to a). 

Remarks:

i) This method determines the active points of a problem (E), 
without any constraints condition i.e., it does not require to make the 
linearly independent constraints.

ii) This method can be applied to any set E, defined by linear 
constraints, and even if it is empty.

Numerical Tests
From a practical point of view, our method has remarkable 

advantages.

This will be shown by numerical application of this method in 
different cases that may exist: the number of constraints, the number of 
variables, and the size of the matrix to be taken.

The obtained results are listed in the following tables:

Case 1: Standard form (Small size, Large size)

a - Let m=11 and n=5

1 1 1 1 0
1 1 1 1 0

2 1 3 0 1
2 1 3 0 1

1 1 0 0 0
 1 1 0 0 0

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

A

− 
 − − − 
 −
 

− − − 
 
 

= − − 
 − 
 −
 

− 
 −
  − 

 and 

8
8

20
20
5
5

0
0
0
0
0

b

 
 − 
 
 

− 
 
 

= − 
 
 
 
 
 
 
  
 

Table 1 shows the Standard form of small size and large size [9].

b - Let m=26 and n=12

11 12 13 14   50X x x x+ + + =

21 22 23 24   30X x x x+ + + =

31 32 33 34   70X x x x+ + + =

11 21 31  30 0 1,2,3  1, ,4ijX x x x i and j+ + = ≥ = = …   

12 22 32 13 23 33 14 24 34  60         20           40X x x X x x X x x+ + = + + = + + =

Table 2 shows the inequality form in Large size.

1 2

0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0

 
0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

A A

− − − −   
   − − −   
   

= =   
− − −   

   − − −      
   

x0 r0 ai1 r1 ai2 ai3 r3 xsol Zxsol

8 -20 2 -7 1 -3.999 -1 -1.826×10-7 1,833 -1-1,49×10-8

8 1 1 -1 3,166 1 0
8 3 0 -1 1 7,5 0,333 0,333
8 0 0 0 4,5 0,333 0,333
8 -1 0 9,333 0 1

Table 1: Standard form (Small size, Large size).
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1 2

0 0 0 0 1 0 0 1 1 0 0 1
1 1 0 0 0 0 0 0 1 1 0 0
1 0 1 0 1 0 1 0 0 0 0 0

 
1 0 0 1 0 0 0 0 1 0 0 1

1 0 1 0 0 0 0 0 1 0 1 0
1 1 0 0 1 1 0 0 0 0 0 0

t tZ Z

− −   
   − −   
   − −

= =   
− −   

   − −      − −   

Case 2: Inequality form (Large size)

Let m=39 and n=10 
1 1

2 2

3 3

4 4

b
b

 b=
b
b

A
A

A and
A
A

   
   
   =    
      
   

1

9.119 61.555 0.012 0 0 0 0
9.119 61.555 0.012 0 0 0 0
9.119 0 0 0 0 0 0 0 0

0 61.555 0 0 0 0 0 0 0
0 0 0.012 0 0 0 0 0 0

3.475 0 0 100 0 0 0 0 0 0
3.475 0 0 100 0 0 0 0 0 0

0 3.475 0 0 100 0 0 0 0 0
7.407 0 0 0 57.407 0 1 1 0 0
7.407 50.0017 0 0 50 50 0 1.908 4.

a a a
a a a
a

a
a

A

− − −
− − −
−

−
−

=
−

−
−

− −
− 681 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a=1.231059

( )1 50 250 150 150 150 72,068 72,068 159.538 434.365 500tb = − −

2

7.407 50.0017 0 0 50 50 0 1.908 4.681 0
0 50 0.01 0 0 50 0 0 8.999 8.999
1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

0 0 3.475 0 0 100 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0

A

− − − − − 
 − − − − 
 −
 

− 
 
 =

− 
 − 
 −
 
 
 − 

( )2 500 234.076 0 0 8.037 1 349.031 1 9 4.5tb = − − − −

3 3

0 1 0 0 0 0 0 0 0 0 9.718
0 0 0 0 0 0 1 0 0 0 0.01
0 0 0 0 0 0 1 0 0 0 100
0 0 1 0 0 0 0 0 0 0 9
0 0 1 0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 1 0 0 0.01
0 0 0 0 0 0 0 1 0 0 54.918
0 0 0 0 0 0 0 0 1 0 50
0 0 0 0 0 0 0 0 1 0 100
0 0 1 0 0 0 0 0 0 0.001

A b

o

   
  − −  
  
  

− −  
  
  = =

− −  
  
  
  − −
  
  
  − −  

















44

100 0 0 1 0 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0

4.68380 0 0 0 1 0 0 0 0 0
0.010 0 0 0 0 0 0 0 0 1
500 0 0 0 0 0 0 0 0 1
00 1 0 0 0 1 0 0 0 0
00 1 1 0 0 0 0 0 0 0
00 0 0 0 0 0 1 1 0 0

500 0 0 0 0 0 1 1 0 0

A b

  
   −−   
  
  

−−   
  = =
  

−   
  −   
  −
  

−   

Table 3 shows the mixed form in large size.
3,475 0 0 100 0 0 0 0 0 0
7,407 50,0017 0 0 50 50 0 1,908 4,681 0
9,119 61,555 0,012 0 0 0 0

0 3,475 0 0 100 0 0 0 0 0
0 0 3,475 0 0 100 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

x

a a a

A

− 
 − 
 − − −
 

− 
 = −
 

− 
 − 
 −
 

− 

Case 3 Mixed form (Large size)

a - Let m=23 and n=7

1 1

2 2

3 3

 
A b

A A and b b
A b

   
   = =   
   
   

 

such that mi =8, i=1,2 and m3 =7

1

0 0 0.325 1 1.098 0 0
0 0 0 0 0.1316 0 1

12.2 10 0 0 0 0 0
12.2 10 0 0 0 0 0

127.01542 10 0 0 200 0 0
127.01542 10 0 0 200 0 0

65.346 0 0 20.346 200 0 0
65.346 0 0 20.346 200 0 0

A

− − 
 − 
 −
 

− =  − −
 

− 
 
 
 − − − 

12

1 0 0 0 0 0 2,1568 0.1
1 0 0 0 0 0 2.1568 200
0 0 1.0833 0 0 0 0 0.1
1 0 0 0 0 0 0 1600

,
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

A b

− −   
   −   
   −
   

− −   = =   
   

−   
   
   
   −   

x01 x02 r0 xsol1 xsol2 nt Ax Zx r6

8 8 -38 10 1,666 6 A1 A2 z1x -2,885×10-7

8 8 20 8,333 z2x

8 8 6,66 14,99
8 8 13,33 25
8 8 4,99 11,66
8 8 14,99 18,33

Table 2: Inequality form (Large size).

x01 x02 r0 xsol1 xsol2 nt Ax Z1x Z2x

8 8 -700.131 1,64 1,258 9 4,49 ×10-4 -3,95×10-10

8 8 1,258 36,878 0,013 -0,349
8 8 -64,23 36,878 0 -0,349
8 8 0,777 49,999 1,56x10-5 0
8 8 1,639 28,258 4,49x10-4 1

Table 3: Mixed form (large size).
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23 3

120
0 0 1 0 0 0 0 92.666

0.01
0 0 0 1 0 0 0 66

32.786
0 0 0 1 0 0 0 95

885
,0 0 0 0 1 0 0 3

0
0 0 0 0 1 0 0 12

20
0 0 0 0 0 1 0 1.412

85
0 0 0 0 0 0 1 0.819

95

A b and b

 
−    −    −    

    
    = = =− −    
    
    
    −    − −    

 

Table 5 shows the mixed form in large size.

Where, the remaining matrices are given by:

Where, the remaining matrices are given by: Zx=obseve in Table 6

21

0 0 0 2 0 0 3 2 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 0 2 0 3 0 1 3

,and
0 0 0 1 1 0 0 3 0 0 2 0 0 3 0
0 0 0 1 2 0 0 0 3 0 0 2 0 0 1

A A

− − −   
   − − −   = =
   − −
   

−   

Discussion
The numerical results obtained in the previous examples, show 

the efficiency of the proposed a new method to solve any initialization 
problem of optimization with linear constraints.

In the first example, with ( )0 8,  8,  8,  8,  8x = , we remark that 
the constraint in the first iteration, appears also in other iterations 
until the third iteration. The last iteration gives the active point, 

( )1.833, 3.166, 7.5, 4.5, 9.333actx =

In addition, our method allows defining two matrices A3 and Z3 
satisfying:

3

2 1  3  0 1
1 1  0  0 0
1 1 1 1 0

A
− 

 =  
 − − − 

by constraints of the domain of optimization. It satisfied Ax.Xact=bx,

And its lines are linearly independent.

3 8

1 1 0.333 0.333 0
1.49 10 0 0.333 0.333 1

tZ
x −

− 
=  − 

Satisfies Ax.Zx=0 mxxn

We observe that xact is feasible with respect to the constraints which 
do not appear in Ax.

x0 r0 ai1 x1 ai2 x2 ai3 x3 ai4 np r4 xsol
8 -2536.12 127.015 2.271 12.2 -62.967 65.346 3.8 -12.2 1 -1600 Is not found
8 -100 8.45 -10 83.179 0 164.64 10
8 0 8 0 8 0 8 0
8 0 8 0 8 20.346 -69.388 0
8 200 -1.02 0 44.14 200 5.815 0
8 0 8 0 8 0 8 0
8 0 8 0 8 0 8 0

Table 4: Standard form (large size).

x01 x02 r0 xsol1 xsol2 nt Ax zx r4

-8 -8 -30 -8 -9.18 4 A1        A2 -1.62×10-6

-8 - 8 -9.4 -6,32
- 8 -10 -8 -10
-8 -10 -2,87 -7.88
-8 -10 -9,38 -6.17
-8 -9,41
-8 -13,27
-8 -6.25
-8 -6.81
-8 -10.82

Table 5: Mixed form (large size).

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 -0,15 0 -1,1 -0,15 1,35 -1,5 1,35 -0,3 -0,4 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 -0,25 0 -1,5 -0,25 -0,75 0,5 2,25 -0,5 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0,05 0 0,7 0,05 -0,45 1,5 -0,45 0.1 0,8 0,4
0 0,65 0 2,1 0,65 0,149 0,5 -2,85 0 0

Table 6: Where, the remaining matrices are given by: Zx=obseve in the above table.
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From a numerical point of view, it is difficult to take the best 
starting point in IRn, which helps us to obtain easily the active point 
that we search. 

In a numerical application, it is competent to verify whether the 
domain of optimization is empty or not. This problem is very easy to 
solve it by our method.

We easily can know the state of the domain. This has been illustrated 
in the numerical test-case 3 (Table 4). 

All the above results show the efficiency of this method in the 
problem of optimization, where the domains are consecutives, and 
with small size.

For large size, the problem is substantially the same; one has only to 
do a large amount of calculations.

So, the discussion is similar to that of domains of small sizes.

These results are showed in examples of three cases. 

Conclusion
After a long scientific research, we have not found any thing on 

the method that discusses to solve this type of continues problem 
optimization, and then we have suggested this method with a new 
formula direction dk.

In this work, we studied theoretically and algorithmically an active 
method, which determines the extremes of a set defined by linear 
constraints. This set is in the form of equalities, inequalities or both of 
them. These m constraints are linear and function of n variables, our 
results can be givens in the following points:

• Starting from any initial point, it generates points belonging
to the set E.

• It is possible to construct from the m constraints two matrices,
where the lines of the first are linearly independents and actives, 
and the columns of the second form a basis of the kernel of the
first matrix.

• Our method can be applied to matrices of large sizes.

• The active point is determined in at most n+ np iterations.

• The other advantage is the simplification of the computation,
because each used constraint appears at most only once.

• Our method can be used in other algorithms of resolution of
optimization problems to simplify their initializations and to
improve their results.
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