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Abstract

In this paper, we characterize doubly truncated classes of absolutely continuous distributions by considering the
conditional expectation of functions of order statistics. Specific distributions considered as a particular case of the
general class of distributions are Weibull, Pareto, Power function, Rayleigh and Inverse Weibull.
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Introduction

The order statistics arise naturally in many real life applications
and it is considered as an increasingly important subject. Articles
relating to this area have appeared in numerous different publications.
Many authors have studied order statistics; for example, David [1],
Balakrishnan and Cohen [2], Arnold et al. [3], David [4], David and
Nagaraja [5] and Mahmoud et al. [6,7]. Several authors discussed
conditional expectations, for example, Balakrishnan and Sultan
[8], Mohie El-Din et al. [9], Abu-Youssef [10], Abd- El-Mougod
[11], Shawky and Abu-Zinadah [12], Shawky and Bakoban [13] and
Pushkarna et al. [14].

Let X, <X, <..<X_  be the first n order statistics based on
distribution with probability density function (pdf) f(x) and cumulative
distribution function (cdf) F(x). Then the pdf of the ' order statistics,
X ,1<r<mn,isgiven by (see David (1981))

rn

L@=CLFE] - F ] 7 (), 1
n!
where C, = m
and the joint pdf of two order statistics X_and X _, 1 <r<s<nis
given by

,—00 < X < 00,

L) = [F@T [F0)-F )] [1=F ()] £ (x) £ () <x <y <on, (1.2)

n!

(== —i(r=s)!

The doubly truncated case of a distribution is the most general case
since it includes the right truncated, left truncated and non-truncated
distributions as special cases, Joshi [15], Balakrishnan and Joshi [16],
Khan and Ali [17] and Ahmad [18], among others, investigated doubly
truncated distributions.

where C, =

Suppose that the random variable X has a cdf F(x) and pdf f(x),
where o < x f5. Let, for given ¢ and

[/ (x)dx = F(e)= P and [1(x)ds=F(7)=0.

Then the doubly truncated pdf of X, say g(x), and cdf, say G(x), are
given respectively by

g(x):@,a£e<x<ysﬂ» (1.3)

1

G(x):M (1.4)

where

[=Q - P, G(¢)=0and G(y)=1.

The conditional density function of X _y, given that X  x is given
[3] by

X (11! |

Ssr O Xrn =9 = i =GP

[G)-GEF -G *5().

ESX<Y<Y. (1.5)

Also, the conditional density function of X__x, given that Xy is
given by
-
Srs(|Xsn=y)= (s -
s (r—Di(s—r—DI[G()PT (L6)
(GG -GF " Tg(x)
Let

X.VZII = y] bl

where ¢(.) is a monotonic, continuous and differentiable function on
the interval (a,f). For abbreviation, we will denote

:us‘r = E[(p(Xs:n)‘Xr:n =x] and fur\s = E[(p(Xr:n)

Hgr = s‘r[@(y)‘xrn =x] and Hyls = r‘s[w(X)‘XS:n =yl (1.7)
Main Results

In this section, we characterize three general classes of distributions,

F(x)=1 —[b-ae M ,a<x< Bie,
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© Theorem 2
G(x):l{[b—ae’%q —vhe<x<y .1)
! Referring to (1.6), (1.7), then (2.1) if and only if

where !

y=1-P, I=P - Q, P=F(&), Q=F(y), G(£)=0, G(y)=1, o =0(0)+ Li (1) ( 1 j

F(a)=0, F()=1,and a # 0, ¢ 0, b are finite constants. aci=o v .(2.10)

i+1
Fx)=1-[a-b@x)]5a<x<f ie, [G(¥)] (0, [ew(x,.w.u)‘X = yJ —a)
. r+i+l\r+i+2 F+i+2:n

G(x):%{[a—b@(x)]c—V},£<x<y> (2.2) r+i+l

where Proof

v=1-PI=P-0. P=F(e), 0=F(r). G(s) =0, ()=,

F(a)=0, F()=1, and b # 0, ¢ # 0, a are finite constants.

F(x)=1-[b-ae““a<x<p-ie.

G(X)Z%{[b—aefm(")]—v},g<x<y, (2.3)
where

v=1 - P,1=P - Q, P=F(¢), Q=F(y), G(¢)=0, G(y)=1,

F(2)=0, F()=1,and C# 0, a > 0, b > 0 are finite constants.

Note: If we put I=-1, v=1, thus G(x) reduces to complete cdf of x,
ie F(x), a <x<f.

Let X be an absolutely continuous random variables with pdf
g(x), cdf G(x) and @(x) is a monotonic, continuous and differentiable
function on (¢,).

Theorems 1-4 given below characterize the general class given by
(2.1), Theorems 5-8 characterize the general class given by (2.2), while
Theorems 9-12 characterize the general class given by (2.3).

Theorem 1

Referring to (1.6), (1.7) and (2.1), then

1
3= b+ aB [V (X)X, = 3] bE [V ()

X = y}} , (2.4)

where

- 6 25
V(x) lG(x)+v @3)
Proof

It is clear from (1.6) and (1.7) that

e(yax- 26)

e (r_1)!(s£sr__11))!![c(y)]“" I(ﬂ(x)[c(x)]r [et)-etr”
Integrating (2.6) by parts, we get

o=t e P T 006 ()] e (27)

Differentiating (2.1) with respect to x, we have

be’—a Ig(x) (2.8)

(0(x)= ac IG(x)+v

From (2.7) and (2.8), we obtain

G e -y (f6(x)] [6(3)-G(]

Hogs = Hoys — g(x)dx

W (2.9)
. 7ﬁl[b5(1(() 7‘1}1/(/\‘)&‘\ (x‘y)zi‘c.

Simplifying (2.9), we get (2.4). Thus, the theorem is proved.

It is clear that
r < r=l1
. —W_E@(x)[c;(x)] g(x)dx.

Integrating by parts, we get
1

Hyyn=0() —m'j@(x)m(x)]"dx

Compensation for (2.8) in (2.11), we have

(2.11)

oy =0(¥) = m {I(be“"‘) - a)%l:G(x):lr dx. (2.12)

Expand and compensation for (2.12), after some

1
lG(x) +v
simplification, we get (2.10). Thus (2.1) implies (2.10). Now from (1.6)
and (2.10), we obtain

GO L] a(x)ax-
1

o)+ L3 (L] o[G0 elo)ar-a

ac = v r+i+1

. (2.13)

Taking the derivative, we get
/
_ (;)g(J’) [iem) _l}
telglee e
v

which gives

?(y)

—¢(y)

acp(y)e™ _ Ig(y)
b—ae™?Y v+I1G(y)

Integrate (2.14), hence G(y) has the form (2.1), and so (2.10)
implies (2.1).

(2.14)

Special case:

Return to the (2.10), if we put [=-1, v=1we get

- i+l
Hpa =0(¥)+ 017 2 [i(f)j . { reislpeie2 [ Al P y} - a},
a<x<y<f (2.15)

the relation (2.15) is before doubly truncated case.

Theorem 3
Referring to (1.5), (1.7) and (2.1), then
A = (s 1) ., (16

{ak, [N (X)X, =x]-bE, [N (x,,)

]
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where

- . (2.23)
N(y) _ [1- G(y)] ) 2.17) My o(x)+ acll— o I[ +v] ()] g(»)dy
[lG(y) ] Simplifying (2.23), we obtain (2.20). Thus (2.1) implies (2.20), i.e.
It is clear from (1.5) and (1.7) that the necessary condition is proved. To prove the sufficient condition,
(n=r). , . from (2.20) and (1.7), we have
T =) (=) -G ()™ Jo0)[G0) -G -6 ()] 8l 7(” " N1-G(y )dy = b e
( Ji(n =)0 =Gl oG jq) [ ) g (v)dv=p(x)+ e e o
Integrating by parts, we get XD_G(y)]W N(y)g(y)dy_ J-N OI[1-60 ”'g(y)dy
(n - r)! A
Hy = Ho oy, — (s—r—Di(n-s+)I-G(x)]"" I (2.18) Taking the derivative of (2.24) with respect to x, we get (2.8), and
i * integrate it we have (2.1), thus (2.20) implies (2.1). Then, the Theorem
eWIG(»)-G(x)I " 1-G(y)I" " dy is proved.
Substituting (2.7) in (2. 18) we get Special case
(n—r)! t - Return to (2.17), if we put I=-1, v=1 we get
A A P TP v+1 NI-G(x I [b ae " INOIG(r) =G ()1 , P ) 8 1
— P —
(n—r)t 7 o) ;ur+l‘r_(p(x)_mEr+l‘r|:e X’_x}rc(n—r)’ a<x<y<p>

My =y~ fa—c[b —ae*V INGIG(y)

(s=r=1)(n=-s+1)[1-G(x)]""
G x[l—c(y>r~

{I[a b N (y)g,, o)y

.(2.19) it is before doubly truncated case (Table 1).

Theorem 5
= /1\4\, +
ac(n s +1

Referring to (1.6), (1.7) and (2.2), then
After some simplification, we get (2.16).

i{b@\.\ [o(X.)V(X,,)

where V(x) is defined in (2.5).

X, -]} (2.25)

X, =y]|-aE,[V(X.,)

Hyps = My —
Theorem 4

Referring to (1.5), (1.7), then (2.1) if and only if

Proof
Hyyp = 9(x) +mEm\r
, (2.20) As before in Theorem (1), differentiate (2.2) with respect to x, we
(Y) _ _ _ h
|:N(y)€¢ Xr _x:| C(n_r)Er+l‘r|:N(y)|Xr:n _x:| ave‘
. . _bp(x)-a lg(x) (2.26)
where N(y) is defined in (2.17). (p(x) e lG(x) .
Proof Compensation for (2.26) in (2.7), we get
It is clear that
(n-r) =gty ——— = j{b‘/’() }
by == o Jo()[1-G ()] g (v)dy (221) B (s —r- G be
-G N
i VG [G(y)-G(x)] ™ glx)dx : (227)
Integrating by parts, we get
) 1 r=1
1 T ., = - _
lur+l‘r :¢(X)+WJ¢(J))[I—G(J/)]” dy . (222) Iur+l‘.s bcr.‘[(bqj(-x) G)V(x)gr‘s (X‘y) dx

Compensation for (2.8) in (2.22), we have Simplifying (2.27), we obtain (2.25). Thus, the Theorem is proved.

Name [IG(x)+v] @(x) (hv) (a,b,c)
Weibull _ox XP ot o e (-1,0,6)
e ale<x<y<P,e=0,y > oxp (e —e 7 e ) (-1,0,1)
Pareto FxPiase<x<ysf,e=0,y—> In(x) (6P(yP—*), &F P) (-6,0,p)
In[x7]
(-6°,0,-1)
Power function 1-6°xP,a<e<x<y<PB,e=0,y - «© 17 (67 (eP—yP), 1-6" &) (1,1,1)
ln[f} 6r1,1)
[
In[x”]
Rayleigh x? or et e (-1,0,6)
P a<e<x<y< (e‘”+e”,e"”)
i P —
Inverse Weibull NN <x<y<f 6x (efgy, Lt ,,) (-1,0,1)
Table 1: Example of G(x)= % {[b—ae "™ —v} distributions.
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Theorem 6
Referring to (1.6), (1.7), then (2.2) if and only if

Ltve, [o(X, )V (X,)|X, 0 =]~

bor aky, [V (X)X 0 =

Hypo =0(¥) = vp> (2.28)
Where V(x) is defined in (2.5).
Proof

As before in Theorem (2), from (2. 26) and (2.11), we have

o) P o] e

=o(y _7". bop(x)-a) (X)gr\m(x‘y)dx

Therefore, we get (2.28), then (2.2) implies (2.28). To prove the
sufficient condition, from (2.28) and (1.7), we obtain

G(ry)]* .[(p(x)[G(x)]H g(x)dx = p(y)-

17 IG(x [ ]g

(b(p(x)— )lG(

Taking the derivative, we get (2.26) and we obtain, after integration,
(2.2). Thus (2.28) implies (2.2).

(2.29)

—

(2.30)

ber,

Special case
Return to (2.28), then put I=-1, v=1, we get

1
Hopria :(/’(y)"'w{”Er\m [V(X rrrr )‘le =
a<x<y<f,

y]_bEf\m [(/)(X',")V(X rrrr )‘Xvﬂ :y] 4

it is before doubly truncated case.
Theorem 7

Referring to (1.5), (1.7) and (2.2), then
!
be(n—s+1)

{bE, [0(X,2)N(X,,)| X, =x]-aE, [N(X,,)

where N(y) is defined in (2.17).

Hy =Koy, —

, (231

-

Proof

As before in Theorem (3), compensation for (2.26) in (2.18), we
have

Name [1G(x) + v]
Weibull » » -
(efeL _e ’efeL )
Power function 1- 67 xP,
ase<x<ysB,e=0,y—o
Rayleigh

_pe2
e™a<e<x<y<p,
=0,y >

Inverse Weibull

ot
e ia<e<x<y<p,

=0,y > ©

Table 2: Example of G(x)=

- aptor

(n=r)!

R P i T J(bqo )=NW[G()-G(x)]

<[1-G()]” e0)dy=p, mng bo(r)-a)N (») g, (v]x)dv (2.32)

After simplification, we get (2.31). Then (2.2) implies (2.31).
Theorem 8

Referring to (1.5), (1.7), then (2.2) if and only if

fow :‘”(x)*ﬁ , (2.33)

{bEm\r[(P(Xm:n)N(Xm:n) X, = x] - aEm\r [N(Xm:n)

where N(y) is defined in (2.17).

X, = x]}

Proof

As before in Theorem (4), compensation for (2.26) in (2.23), we

have
/

Mooy =¢(x)+m

j[bg"(y) —a]N()[1-6(»)] " g(y)dy

Then, we obtain (2.35). Thus (2.2) implies (2.33). Now from (1.7)
and (2.33) we get

-6

(2.34)

(y)dy=<o<x>+%wfw<y>fv<y>
-GG (235)

[1-G(»)] " g(y)dr- IN(y) [1-G)]" g(»)dy

bell - G(

Taking the derivative with respect to x, we obtain (2.26), and
integrate it we have (2.2), thus (2.33) implies (2.2).

Hence, the Theorem is proved. Special caseReturn to (2.33), then
put [=-1, v=1, we get

1
lur+l‘r = (D(X) -

be(n—r)

{bEM‘ [ (Y)‘x}—a}, a<x<y<p

it is before doubly truncated case (Table 2).
Theorem 9

Referring to (1.6), (1.7) and (2.3), then

P O wita)|y =] } (2.36)
Hys = My o {(b V)Er\s [e ‘Xr:s = y} a
b(x) (Lv) (a,b,c)
, , 1,08
o o0 ( )
,QIP

(@7 (&2 + y°), 1-0¢?) (1,1,1)

[Ejp ' (ép,’1 1)
0

xP
yl _0s? e (—1,0,9)
e’xz (eey +e* e gy)
- _oy P _Pc P —Qs P (01_1v1)
e_gx P (e O Lt g )

v} distributions.
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Name [IG(x) +v] o(x) (Lv) (a,b,c)
Power distribution | 1-6+* x",ase<x<y<B,e=0,y=0 Ln[1-6"x"] (B7°(e” + y°), 1-67¢P) (1,0,-1)
Weibull e ase<x<ysB,e=0,y—o« 6x° b o g -1,0,1
y<B Y @+ ) ( )
Burr (1+6xP)V, a<e<x<y<B,e=0, yo In[1 + 6x°] (By ™) + 6% +1), 1+6%) (-1,0,y)
Inverse Weibull o - , » - -1,0,1
e a<e<x<y<Be=0,y >0 e @ +e ") ¢ )

Table 3: Example of G(x)= %{b —ae Y — v} distributions.

Proof

As given in Theorems (1) and (5), , differentiate (2.3) with respect
to x, we have

p(x) =g (x): (2.37)
o(x)=—e"g(x)
Compensation for (2.37) in (2.7), we get
1 T C X
ty, =g ——[[(B=v)e™ —a]g, (x| )ax > (2.38)

acr
which gives (2.36). Thus, (2.3) implies (2.36).
Theorem 10
Referring to (1.6) and (1.7), then (2.3) if and only if

{(b—v)Er‘m[ecw(X,v,,) X, = y} _a} . (239)

¥

Hra =0()
Proof

1
acr

As given previously of Theorems (2) and (6), substituting from
(2.26) in (2.11), we have

1 r cp|\x —C X
Hipa =0(0) = [ [bv—ae g, (aly)dx  (240)

After some simplification, we get (2.36). Then (2.3) implies (2.36).
Now from (1.7) and (2.36), we obtain

o [6(0)] " g(x)ee=1G()

G et 1

’ [G(y)]r cr

Taking the derivative with respect to y, we get

o)~

acr

lg(y) _ace ™ p(y) . (2.41)
IG(y) b-v—ae™™

Integrate (2.41), we obtain (2.3).

Special case
Return to (2.36), then put I=-1, v=1, we get

My = (D(y) {(b— l)Er‘H1 |:erw(X, ”)‘pr]:n - y} - a} ,a<x<y<fs

1
acr

it is before doubly truncated case.

Theorem 11
Referring to (1.5), (1.7) and (2.3), then
_ ! ol y =
By =By =TT {(1-b+v)E, [e X, = x} ta. (242)
Proof

As previously in Theorems (3) and (7), from (2.37) in (2.18), we have

1
ac(n -5+ 1)
which gives (2.42).

Y
My =ty [[(1=b+v)e ) +alg,, (v]x)dy,

Theorem 12

Referring to (1.5) and (1.7), then (2.3) if and only if
LU=b+v) HW[ col,.)

actn—r) .(2.43)

ﬂrﬂ‘r = ¢(x)
Proof

Xr-n = xj| + #
’ c(n—r)

Similarly as given in Theorems (4) and (8), we easily prove it.

Special case

Return to (2.43), then put I=-1, v=1, we get

E,,+|‘I,[e(‘W(X"M)‘X/‘:’I =x]+

MH\,:‘/’(X)— ,a<x<y<p.

ac(n—r) c(n—r)

The relation before doubly truncated case (Table 3).

Conclusion

It was obtained recurrence relations based on order statistics
without truncated and doubly truncated, and have been getting
function of various distributions new by using certain parameters.
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