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Abstract

We consider the long time asymptotics for dissipative nonlinear Schrédinger equations of order 1<p<3 with
singular data including the Dirac delta function in one space dimension. 2000 Mathematics Subject Classification:

35Q55, 35B40.

Keywords: Dissipative NLS equations; Large initial data; Large time
asymptotics

Introduction

We consider the initial value problem for the following nonlinear
Schrodinger equations in one space dimension

idu +%8iu=ﬂ‘u1771u,u(0,x)=¢(x), (1)

where x€R, t€R, A=A +il,, A€R, j=12, 1,<0,|| >§T‘;1w, 1<p<3,
u(t,x) is an unknown complex-valued function. There are some
works concerning the physical applications of (1) [1,2]. We note
that A,<0 implies the dissipation of |u(t,x)| by nonlinear Ohm’s law
[1]. We are interested in the initial data involving the Dirac delta
function. Therefore the data are not necessarily in L2 Related work
can be seen in [3] in which homogeneous weighted L* space was
considered. Let L~ denote the usual Lebesgue space with the norm
lo].- = ess.iup‘yﬁ(x)‘ . For m,s€R, weighted homogeneous Sobolev space

m

H s defined by 1~ (sl - [(-a)" 1], <=} where /15 = [}/ (+) ¢
Let us introduce some notations. We define the dilation operator by
(D#)(x)=(it) 7 ¢(x/1) for 120 and define s-e=" for 20, E=e 2 .
Evolution operator U(f) is written as U(t)=MD ,FM, where F denotes
the Fourier transform. We also have U(~t)=M"'F'D'M"', where F'is

the inverse Fourier transform. We denote by the same letter C various
positive constants. The standard generator of Galilei transformations is
given by J(£)=U(£)xU(-t)=x+itd . We also have commutation relations

with Jand L=i0, + E(’Bf such that [L,]]=0. To prove our main result, we

introduce the function space:
1
Xor = 3 FU (1) y e CQOT)L" A HT OB )yl <o},

where ¢>0 is small enough, [9lly, ,=supoeer | FU (=) ¥y, with

Y =1 ~lC AR and m=1,2., our main result is

Theorem 1: We assume that F¢€Y,. Then the Cauchy problem (1)

with 5+333 _ p<3 hasaunique global solution u€X, _ satisfying the time
4. ~
decay estimate
s 11

lu@®)]| < Ct 2 {e)>

for any £>0.

Since the solution of the linear problem with the Dirac delta § is
given by U()é=ct e +,c=(27)"", we look for the solution of (1) with
the Dirac delta § as the initial function in the form

HZ T

u(t.x) =1 e TC(1).C(0) =c. (2)
We have the ordinary differential equation iac(r)/d= wE le@) ().
We change C(f)=w(t)e™*?, then
%w(t)%t"*;\w(t)\‘“ w(£)=0,w(0) = c,arg C(0) =0,
which can be solved explicitly as w(r):c[l—ﬂq 22%;1)&’"3]? and we also

1

have dargC(t)/di=-at >

w(r)|”" from which it follows that

argC(t)=—-A4 .[OZTJ)T?] ‘w(r) " dr = ﬁlog[l -2 2(3%;1)0”’53%].

Thus the solution has the form (2) with C(£)=w(t)e™s“®, It is
expected that the solution of (1) with data involving the Dirac delta
function behaves like (2). Our result says that the upper bound for
solutions is the same as given in (2).

Local Existence

In this section we prove the local existence of solutions in X, . We
denote the remainder terms

R AFMF o FM -l o™ o,

R=F(M'-1)F'|FMF " FMF'o,
where we denote ¢p=FU(-t)v. We need

Lemma 1: The estimate is true

IR < ot ol {lol
e — O%M L” H ’

H

For 0<e, u< % , j=1,2, provided the right-hand side is finite.

Proof: By the Sobolev inequality

*Corresponding author: Hayashi N, Department of Mathematics, Graduate School of
Science, Osaka University, Osaka, Toyonaka 560-0043, Japan, Tel: +81668505326;
E-mail: nhayashi@math.sci.osaka-u.ac.jp

Received April 27, 2016; Accepted April 28, 2016; Published May 02, 2016

Citation: Hayashi N, Li C, Naumkin Pl (2016) Dissipative Nonlinear Schrédinger
Equations with Singular Data. J Appl Computat Math 5: 304. doi:10.4172/2168-
9679.1000304

Copyright: © 2016 Hayashi N, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 5 « Issue 2 * 1000304



Citation: Hayashi N, Li C, Naumkin Pl (2016) Dissipative Nonlinear Schrédinger Equations with Singular Data. J Appl Computat Math 5: 304.

doi:10.4172/2168-9679.1000304

Page 2 of 3

|7 (M =1)F | . <C|F(M-1)F g % F(M-1)Fp 1:2
05t

H

<cr ol @)
for 0<gs% Also we write FMF'o=F(M-1)F'@+¢. Hence the first

term is estimated as

IR 1, < (|7 o +loll | (3 -1) 7 o],

SC“[ ol +loli ljw
H

In the same manner, we estimate the second term

p-1

IR, <cCt? Hfo o|..

FMF g5

This completes the proof of the lemma.

- 2[’ el lok

Let us consider the linearized version of (1)

i0u+ %6?14 =2 1v[" vu(0,x) = §(x), (4)

where V€ X, p.[|v[ly  <p and p>0. By the integral equation associated
with (4), we have

Iy ()1, <|\f¢ul+cj VO @ ()], de

where y(£)=FU(-t)u(t), @(t)=FU(-t)v(t). Using the representation
v(t)=MD,p(t)+MD F(M-1)F"¢(t), in view of (3), we have

IVl <2 o (0) L+ I F (M=) F (1),

<o)l 4 o) —+s<c;z[1+,€Jp, )
Hence

Iy ()1l 7o, +Cor jzz (mz ]dt

3,;5
< 7|, +cprr e 2

H

(6)

2.
if 3— é > p and 0<T<1. In the same way as in the proof of (6), we have
WOl <7l scpr? 2, @)
2 2
if 3 —% >p and 0<T<1. We multiply both sides of the equation (4) by
FU(-t), to get

0w ()= 2% |p(t) " p()+ 41 F (R +R,). (8)

We have by (8) and Lemma 1 with y=¢

rlre,
Iy (). <N ol +Co7 [ 12 ar

3p e

| 7| +CprT )

if 3—§> p and 0<T<1. Hence by (6), (7) and (9), we have

Eali
lv (<2 +cor s (10)

which implies there exists a T=T(p)>0 such that [ul[ly <p. In the
same way, we find that there exists a T=T(p)>0 such that

1
EHVI "’ZHXLT (11
for the difference of two solutions, where io,u; +%aiuj =2v, 'y,

uj(O,x):(])(x), j=1,2. By (10) and (11), we find that there exists a time T
such that the transformation u=Sv is a contraction mapping from X, ,
into itself. This implies the local existence of solutions in X ,.

[, - <

i
2y 7

Proof of Theorem 1
Under the assumptions Az<0,\iz\>§—\/ll\ﬂ1\, we have a dissipation
p

property of solutions to (1) such that ||Ju(?)||<||x¢|| [2,4,5]. From the
local existence theorem, it is enough to prove the a-priori estimate of
FU(-t)u(t). We represent the solution of (8) in the form y=re™, r=|y/,
w=argy, then we find

Pt pl

i0,r—row= i Zr”+/1t 2e™ (R+R)

from which it follows that

(R +R )j

61*)71‘ 37 +Im[il 2
=] =]
ow=—At 2" —r"Re{lt 2e (R +Rz)]~

Then we have

W] p L
dr—At PrrSCplt Y,
if ur-n<3, since we have HR,H.;ESC[‘“%(/H)} e for j=1,2 by Lemma 1.
Define
F(o)- ()

[1 24, (p-1) 2 ,(O)Hf

3-p
By a direct calculation we get dr/di- 2T F =05 (0) -
both sides of the above inequality by F?, we obtain

#(0). Multiplying

Z( r)+ At ;(pF r—F"r’)<CF "p”zl%[l+z’%”’”]<z>’5.
By the Young inequalitpr‘lrSF'PrP+(p— 1). If A,<0, then
5[( )<= (p-1)1 e ?pPi [1+t il )j<t>%

Integrating in time, we get

=(roy oy -2

=

dr

+Cp" (F()) [L(F(2))” rl%’[lw’%"””](r)

=F(0)+Cor (F()) [[(F(e)) T"T"(1+r’?‘”")j<r> Sdr, (12)
since by the definition (F(t))"”:r(O)"”—2/171%(;7—1)/(3—;7)‘ Let us
consider the second term of the right-hand side of (12). We find
(F ()" =rO) [1,4“23 {P; D5 oy Ji , therefore

e (R e

2G-p) p) [T

<C<t> 2Ap-1 I‘r 2 2 d‘r+C<l>7§[%JJ‘lirz[p—l] ERE

l L

e
1

N

<C{fyzi<c(r):
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el op _p,3 1 1 sk i . : >5+«/§
for -Z=-Z(p-1+1>0 and -T+5<3 =, which is satisfied if p>=—=
Hence

r(t)<F(t)+Cp" (1) 1 <C(1)2 7.

Since u(t)=MD y+MD F(M-1)F "'y, we have
u(O)o €2 () + €2 |F (M=) F ] < (o)

This completes the proof of the theorem.

Finally we make a remark. In the same way as in the proof of
Theorem 1.2 from [5], we obtain the following result.

Theorem 2: Assume that F¢€Y,. Then the Cauchy problem (1)
with % <p g@ has a unique global solution u€X, _ satisfying

the time decay estimate

(o) 1o < €1 ey 7
for all £>0.
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