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Abstract

agreement with the theoretical analysis.

In this paper, we consider a type of space fractional advection-dispersion equation, which is obtained from the
classical advection-diffusion equation by replacing the spatial derivatives with a generalized derivative of fractional order.
Firstly, we utilize the modified weighted and shifted Grunwald difference operators to approximate the Riemann-Liouville
fractional derivatives and present the finite volume method. Specifically, we discuss the Crank-Nicolson scheme and solve
it in matrix form. Secondly, we prove that the scheme is unconditionally stable and convergent with the accuracy of O(z?
+ h?). Furthermore, we apply an extrapolation method to improve the convergence order, which can be O(t* + h*). Finally,
two numerical examples are given to show the effectiveness of the numerical method, and the results are in excellent

Keywords: Finite volume method; Riemann-Liouville fractional
derivative; Fractional advection-dispersion equation; Crank-Nicolson
scheme; Extrapolation method

Introduction

The fractional advection-dispersion equation (FADE) is a
generalization of the classical advection-dispersion equation (ADE).
It provides a useful description of transport dynamics in complex
systems which are governed by anomalous diffusion and non-
exponential relaxation [1]. The FADE was firstly proposed by Chaves
[2] to investigate the mechanism of super diffusion and with the goal
of having a model able to generate the L evy distribution and was
later generalized by Benson et al. [3,4] and has since been treated by
numerous authors. Many numerical methods have been proposed for
solving the FADE.

Meerschaert and Tadjeran [5] developed practical numerical
methods to solve the one-dimensional space FADE with variable
coeflicients. Liu etal. [6] transformed the space fractional Fokker-Planck
equation into a system of ordinary differential equations (method of
lines), which was then solved using backward differentiation formulas.
Liu et al. [7] proposed an implicit difference method (IDM) and an
explicit difference method (EDM) to solve a space-time FADE. Liu et al.
[8] presented a random walk model for approximating a L’ evy-Feller
advection-dispersion process and proposed an explicit finite difference
approximation (EFDA). Momani and Odibat [9] developed two reliable
algorithms; the Adomian decomposition method and variational
iteration method, to construct numerical solutions of the space-time
FADE in the form of a rapidly convergent series with easily computable
components. Zhuang et al. [10] discussed a variable-order FADE with
a nonlinear source term on a finite domain. Wang et al. [11] developed
a fast characteristic finite difference method for the efficient solution of
space-fractional transient ADE in one space dimension, which require
less storage and computation cost while retaining the same accuracy
and approximation property. Shen et al. [12] presented an explicit
difference approximation and an implicit difference approximation for
a space-time Riesz-Caputo FADE with initial and boundary conditions.
Chen et al. [13] considered the variable-order Galilei ADE with a
nonlinear source term. Sousa [14] developed a numerical method for
fractional advection diffusion problems with source terms by using a
Lax-Wendroff-type time discretization procedure, which was explicit

and second order accurate. Zhang [15] proposed a novel numerical
scheme for solving the space fractional Fokker-Planck equation with
the help of the Pad’e approximation. In addition, finite element
method, finite volume method, meshless method and spectral method
are also employed to approximate the FADE [16-25].

In this paper, we consider the following space FADE with constant
coeflicients and a source term on the interval [a, b] [19,20]:

Ou(x,t)
ot

%%:KO[epfu(x,m(l—e)xD,,ﬂu(x,t)}_f(x,z) (1)

subject to the initial condition:

u(x,O)zqo(x), a<x<bh 2)
and the zero Dirichlet boundary conditions:

u(a,0)=0,u(bh,1)=0, 0<t<T (3)

where 1<f<2 and 0 < 0 < 1. The variable u(x, t) represents the
concentration; V>0 and K >0 are the drift and the anomalous
diffusion coefficients respectively; 0 is the skewness; f(x, t) is a source
(or absorbent) term. The left and right Riemann-Liouville fractional
derivatives of B order on the finite domain [a, b] are defined as

2 ex -8
Plulsn)=p e[ (-8 s )
Dluni) =t ) ulenis )

Applying the finite volume method to solve fractional diffusion

*Corresponding author: Liu F, School of Mathematical Sciences, Queensland
University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, Tel:
+61731381329; E-mail: f.liu@qut.edu.au

Received November 14, 2015; Accepted December 14, 2015; Published
December 18, 2015

Citation: Fenga L, Zhuangb P, Liu F, Turnera | (2015) High-order Accurate
Numerical Methods for Solving the Space Fractional Advection-dispersion
Equation. J Appl Computat Math 4: 279. doi:10.4172/2168-9679.1000279

Copyright: © 2015 Fenga L, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal

Volume 4 + Issue 6 *+ 1000279



Citation: Fenga L, Zhuangb P, Liu F, Turnera | (2015) High-order Accurate Numerical Methods for Solving the Space Fractional Advection-dispersion
Equation. J Appl Computat Math 4: 279. doi:10.4172/2168-9679.1000279

equation (FDE) has received less attention. Except Hejazi et al., Zhang
et al., Hejazi et al. [19-21] and Liu et al., Yang et al., Feng et al. [26-
28], to our knowledge, there are no other reports in the literature
about utilizing the finite volume method for the FDE. Finite volume
method for Eq.(1) was first proposed by Zhang et al. [20] based on the
Riemann-Liouville definition for the fractional derivative, but without
theoretical analysis. Hejazi et al. [19] derived the finite volume method
for Eq.(1) by utilizing fractionally-shifted Grunwald formulae for the
fractional derivative and proved the stability and convergence of the
scheme, however, whose accuracy is O(t + h).

Inspired by the shifted Grunwald difference operators proposed by
Tadjeran et al. [29] and multi-step method, Tian et al. [30] presented
the weighted and shifted Grunwald difference (WSGD) operators,
which was of second-order accuracy; however, they only prove the
case of 1<a<2. In this paper, firstly we modify the WSGD operators
to satisfy the case of 0<a<l. Then, based on the modified weighted
shifted Grunwald difference operators to approximate the Riemann -
Liouville fractional derivatives, we derive the Crank - Nicolson scheme
and finite volume method for Eq.(1) with accuracy of order O(t *+h?);
we then establish its stability and convergence. Moreover, we apply
the extrapolation method to improve the convergence order, which is
relatively new and can be O(t* + h*).

The outline of the paper is as follows. In Section 2, we modify
the WSGD operators and give some lemmas and the second-order
approximation for the Riemann-Liouville fractional derivatives. In
Section 3, we present the finite volume method for the FADE and
derive the Crank-Nicolson scheme. We proceed with the proof of the
stability and convergence of the Crank-Nicolson scheme in Section 4
and apply the extrapolation method in Section 5. In order to verify our
theoretical analysis, two numerical examples are carried out and the
results are compared with the exact solution in Section 6. Finally, some
conclusions are drawn in Section 7.

The Second-Order Approximation for the Riemann-
Liouville Fractional Derivative

In the following, we suppose the symbol C ia a generic positive
constant, which may take different values at different places. Firstly,
in the interval [a, b], we take the mesh points x=a + ih, i=0, 1, - - -, m,
and t =nt, n=0, 1, - - -, N, where h=(b - a)/M, =T/ N, i.e., h and t are
the uniform spatial step size and temporal step size. Now, we give some
definitions about the fractional derivative.

Definition 1: Riemann-Liouville fractional derivatives [31].
The y (n — 1<y<n) order left and right Riemann-Liouville fractional
derivatives of function v(x) on [a, b] are given by:

T NSO ©

PPN G ) S A LR 7
x bv(x)_l—(n_}/) " J.Y(g x) v(é:)dé ( )

Definition 2: The y (n — 1<y<n) order left and right Grunwald-
Letnikov fractional derivatives of function v(x) on [a, b] are given by

[19], +-a
=

e

Ax

Dpv(x)=lim—— 37 (=) | v(x— ),
A j
(=] y
D . 1 J ,
Div(x)=lim 3 (1) (x+ jx)
Jj=0 j

Page 2 of 8
Definition 3:
[y
Dyv(x)z— (—1)] v(x—jh)
hy =0 j
b—x
1 {/1 . }/
Dv(x)x— > (-1) v(x+ jh)
hy = j
Generally the standard Grunwald - Letnikov difference

formula is applied to approximate the Riemann-Liouville fractional
derivative [19]. Meerschaert and Tadjeran [5] showed that the
standard Grunwald-Letnikov difference formula was often unstable
for time dependent problems and they proposed the shifted Grunwald
difference operators:

h[} zg(r) (
1
B v(x)=—

hy i=

whose accuracies are first order, i.e.,

k=p)h),

g(” (x+(k+p)h)a

A7 v(x)=_.D v(x)+O(h) (8)
B; v(x)= DL v(x)+O(h) 9)

(7
where p is an integer and &¢ =(-1)" ( kj In fact, the coefficients g!”’

are the coeflicients of the power series of function (1 - z)'.

(12 =3(- [ W

k=0
for all |z| < 1, and they can be evaluated recursively
1 o0 [ 17 | 0
g/ =1,g,; 1- p g/ k=1,2,.

Tadjeran et al. [29] prove Eq.(8) under the additional hypotheses
that 1<y<2 and p is an integer. In fact, with very minor modifications,
their proof holds for the more general case. Based on this point, Hejazi
et al. [19] prove Eq.(8) and Eq.(9) hold for 0<y<1 and p ia a positive
real number.

Lemma 1: Let a and p be positive numbers, and suppose that v(x)
€ Cll+n+2®) 1 € N* and all derivatives of v(x) up to order [a] + n
+ 2 belong to L'(R). Then if a=-e0 and b=+c0 in Eq. (6) and Eq.(7)
respectively, there exist constants P independent of h, f, x such that
[19],
n-1

A7 v(x)= D" v(x)+;c,'pﬁan”v(x)hl +O(h")

h,p

and
n-1

By v(x)= Dy v(x)+ Y ¢, , Dy 'v(x)h' +O(h")
=1

uniformly for x € R, where ¢, p=1, ¢, p=p - a/2.

Lemma 2: Supposing that 0<a<1, the coefficients g(* satisfy [7,19],

ala-1
el =1,g"=-a<0,g\" = 7(2 )<0,
28" <y <gy" <+ <0,
(3)limg,f '=0,

(4)Zg‘“‘—0,§m:g;“" >0,m>1.

k=0
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Inspired by the shifted Grunwald difference operators and multi- ) A PRI, ™
step method, Tian et al. [30] derive the WSGD operators: & V[x' %] ;;g v(x‘“)+h7 AZ:, IR v(‘ l)h +Or)
y—2q 2p—y 1w, .
/1pq (x)*z( )A}}J/p (x)"'m/lhy,qv(x)’ 7h7k OWL )v(xH,{)fcz Dty xH% h+0(h) (11)
y—2q 2p—y and
v(x)=—"——"B] ,v(x)+————B; v(x)-
Dhra 0550y 20p-q) ; A, 2 o
Lemma 3: Supposing that 1<y<2, let v(x) € L\(R), _,, D] v(x) “va[x,,%jz;?;w‘ V(xf*k)_czaD«r V(x,.,%jh +0(h ) (12)
and , D, v(x) and their Fourier transforms belong to L'(R), then the i
WSGD operators satisfy [30], ‘,D,:’v[x‘ 1]:}7 WL”)V(X,H.,I)chD,j”ZV[x 1 th +O(h3) (13)
' k=0 Ly
v(x)=_ D/v(x)+O(h*) >
1Dy g v(X) V(x)+O(h7) where
Dy, ,v(x)= DL v(x)+O(h*)
p.q W[()a):l+a (()a)’w,((a):1+a (()a)+1 (lgk 1,k>1 (14)
uniformly for x € R, where p, q are integers and p # q. 2 2 2

Tian et al. prove Lemma 3 under the additional hypotheses that Now, we discuss the properties of the coefficients w(*), k=0, 1, 2.

1<y<2 and p, q are integers. In fact, with very minor modifications, Lemma 5: Supposing that 0<a<1, the coefficients W sat1sfy
their proof holds for the more general case. Similar to Lemma 1, we
can conclude that Lemma 3 holds for 0<y<1 and p, q are positive real (I l+a Ol 1-2a-a® ) ) a(a-1)(a+3) <0
numbers as well. L T 0T ’
2 4
(@) (@)
Lemma 4: Let 0<a<1 and p, q be positive numbers, and suppose @w, <" <wT<<0,
that v(x) € C*"*2(R), n € N* and all derivatives of v(x) up to order [a] @)W+l — (@ >0,
+ n + 2 belong to L'(R). Then if a=- co and b=+ o in Eq.(6) and Eq.(7) I % @)
respectively, there exist constants cl independent of h, f, x such that ) ; W =0’; W >0,m21,
(5)lim w® =0.

v(x)= D“v(x)+2c, DX v(x)h' +O(h")

/1 Psq
and Proof: Combining the definition of w(* and tge) properties of
g\®, it is easy to derive the value of (a),wfa) and W, . Whenk >2,
Dy, v(x)= D“v(x)+2c, DI v(x)h' +0(h") by Eq.(14) and Lemma 2.(2)
- _ _a=2 . 2p-a @ 4 o, 122 ),
uniformly for x € R, where C/Jﬁ.achﬁiz,ac/.q*2(piq)¢;,p+2(p7q)cz.q and Wi 2 & > 8-
p#q. "
w* <0
Proof: The proof proceeds the same as Lemma 3, we will not repeat we have ’
it here. It is also noted that, this lemma is just a special case of Theorem Moreover,
4, in Kincaid and Cheney [32] with A=0, lI=m=2.
v132]w W) _ (a):1+a(g(a> g("’)) 1- (gm) _g@ ) i
Remark 1: Considering a well-defined function v(x) on the e Tk 2 ke ok 2 k k=
bounded interval [a, b], if v(a)=0 and v(b)=0, the function v(x) can be Recalling Lemma 2.(2), g\ < g'“, whenk > 1, we obtain when k > 2
zero extended for x<a and x>b. And then the a order left and right @ @
Riemann-Liouville fractional derivatives of v(x) at each point x can be Wi —w' >0
approximated by the modified WSGD operators with second order ie.,
accuracy.
] Q}N/ ( )<W(a)
L Dv(x) hz: 1)( (k- ))ﬂ 4 ()( (k )h) o) et
avx_ a p)h 2: 2 v(x—(k-q 4 , .
=0 (A= For the sum zwi‘” , recalling Lemma 2.(4), we have
D"v(x):ﬂ"n E§+Pg‘“‘v(x+(k—p)h)+ A [%}wgw'v(xﬂk—ﬂh)‘*O(hz) O (a) (@) < (@)
r = A = ’ ZW/( =Wy +sz
k=0 k
To evaluate the fractional derivatives at x + h/2 , we modify the
WSGD operators by adopting (p, q)=( 1/2 , —1/2 ) (the role of p and _lre wqi[Haf <a>+1—0‘ (a)j
. . &o 8k 8-t
q is symmetric). When (p, q) =(1/2, —1/2) and 0<a<1, the second- 2 o\ 2 2
order discrete approximations with error terms at x, . and x_, for _l+a
the Riemann-Liouville fractional derivatives on the domain [a, b] are: Z & + Zg ¢
3 ﬁ'l (a) @+2 2 3 0
D x Zg V(% ﬂzg & D v[x 1]/1 +0(1") “
[ A S ) St ) $
k=0
i+l
o () e D2 v[x l]hz +0r") (10) =0.
k=0 i+
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Page 4 of 8
(@ k22,3 Wi >0 >
Since w{"’ <0 when ;W* >0 form > 1. u(x,.,t)+u(xi_1,t) 2 5214()6,-_1/2,1) N
Recalling Lemma 2.(3), we obtain u (xH/Z,t): 5 _§ Py +O(h )
l+a 1- u(x,t)-&—u(x,ﬂ,t) h? 62u(x.+”2,t)
(@) _ (@ @ _ i i i 3
lim i =lim—= 5 & +lim 5 gk =0 u(xm/z,t): 5 oy e +0(h )
Finite Volume Method Thus
In this section, we utilize the finite volume method to approximate (5yt)=u(a0t) (o),

Eq.(1) and derive the Crank-Nicolson scheme. We begin by formulating
Eq.(1) in conservative form. Using Eqs (4) and (5) we have

a0 o T(2-p)ac s (x=gf 7 T(2-)ax s (g-x)”

We set a=p — 1, then 0<a<1. This allow us to write Eq.(15) as

a0 [0 (0 ) U]
' ( ( ’

Au(x,t u 0
(1), 2uls) o
ot ox "ox|T

0 0 pulen) . (-0) 0 pulé)
r(1-a)éx L (x-¢)" df'l"(l—a)é’x L (&-x)
By the definition of the Riemann-Liouville fractional derivatives,
we arrive at
Ou(x,t)

ot

df}—f(x 1)

V +K, —[HuDA" -(1-0), Du(x.0) ]+ £ (x.1) (16)

Comparing (16) with the general transport equation

8u(x,t) 8P(x t)
T ) "

we define the total flux as

P(x,0)=Vyu(x,t)+p(x,t)>

with advective component V u(x, t) and diffusive component
p(x,t)z— Q)XD;’u(x,t)] (18)

A finite volume discretization is applied by integrating Eq.(17) over

K, [Hanu(x,t)—(l—

the i th control volume [x_, ,x,, .I:
", 6u(x, 2 6P x l 2
j b= j *d j Cf(xt)d

Interchanging the order of differentiation and integration on the
left, and performing the integration on the first term on the right, we
have

d (xan

i u(x,t)dx:—[P(xm/z,t)—P(xH/z,z)]+J‘:::f(x,t)dxa

which leads to the standard finite volume discretization

dui _P(%151) = P(%,1201) +7, (19)
dt h
— 1 K12 -1 Xiv1/2
where M=ZJ‘L u(x,t)dx and ﬁ:ZL, : £ (x,t)dx . By the standard

volume approximation, we get
- 1 Xis1/2
Ui :ZLH } u(x,l)dxzu(xi,t)+0(hz) ,

fl.:%I::':f(x,t)dx:f(x,.,t)+0(h2) :

The flux P(x, t) has both advective and diffusive components. The
main feature of our method is the approximation of the diffusive flux
p(x,,,» t) by the modified weighted and shifted Grunwald difference
operators. For the advective flux, we discretize it by a standard
averaging scheme

) [Pl o) "2"("*""2’[)}0('«2)-

h B 2h xL o o’
By virtue of the mean value theorem, we know the term
{62“("1 ) 52“()"-12”)} is O(h), which leads to

ox’ ox’

h 2h

For the diffusive flux (18), we approximate it by Eqgs.(10 - 13),
yielding

() t) ) lsar) o

n—i+l

2ot )= i+1/22 —0"
etlorliont) K05 e ) 20 F (s 0)

k=0

i+l 1_gni
[ ZW(H) ( X i ) T kowéa)u(ka’t)j

+c,K,0h I:an”v(

Xi2 ) - uD:HzV(xH/z )}

(1 B)hI: sz(xwl/z)_xDz?ﬂV( :12):|+0(h )
By virtue of the mean value theorem, we obtain the terms
I: DI (x,,) aD.:sz(xﬁ]/Z):' and |:xDl?+2v(xi+l/2)_xD1[71+2v(xi—l/2 )]
are O(h), which leads to
Psath plst) (08 genfa ) 505 )

k=0

+%[% 3 wf”'u(x‘,,”, ,t)— 11;9 :Z;; w(k‘“u(ka ,t)]+0(hz) .

h =

Then Eq.(19) may be written as

6u(x,.,t) p(xz—l/zat)fp(xm/zvt) 2 - (20)
e ; +f(x.1)+0(h*)
Now we consider the discretization of time. It is easy to conclude that,
ou(x,,t u(x;,t, )—ul X1,
( i )t:t — ( ) ( 1)+0(T2)’
ot e T
and
p(XH zvt)fp( 412 ) 71 p(xlfl 2’t1,)’p(x;+1/ 25 n)
(Pt ), POl pbint], ()
1| P\ X2ty )= P\ Xis L
ikt 1, o)
Therefore, the Crank-Nicolson scheme of Eq.(20) at (x, t,_, ) gives

u (x,.,t” )—u (x,.,tn,] ) a Q,,+Q,,
T - 2h

Lt f(xt,,) O + 1)’

i+l m i
(a) ()
+K| 2 ” X, z ( Xitko n)

i 1@ "o
(a) ()
o 2.k u(xi—k’tn)_ Wy u(xi+k—]’tn)

a
k=0 h k=0
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and

FGut) =3[ £ (ot Vo (500,

Let ;" be the approximation solution of u(xi, tn), then we obtain

u' _Zan n-1 %Q;x—l_*_jfin—lz 1)

The boundary and initial conditions are discretized as
0
u; 7(0(x‘.),ug =0,u’ =0 (22)
n non P L n-12 pn-1/2 n-12 en-127|"
Define U= .oy, | F" =[5 7 30 100 T

(a)
Wlta) WO 0 0 0
@ @ : W w?
4= : ) W((]a) B 0
W,(,,a, )] W:,,u,)z . wl(a) WL ;1)2 w;g} W(()a)
and
0o % o0 0 0
2
Vo 0 W 0 0
2 2
(U 0 0 0
B= 2
0 0 0 (A
2
0 0 0 V, 0
2
Setting

T K, K,
Q:—Z[B+h—a”(9Al—(1—9)A2T)—h—£(6’A2—(I—H)AIT)}
L] e o(a-a)ra-0) (4 -41) |
then we can rewrite Eq.(21) in matrix form

(I+Q)U"=(1-Q)U" " +zF"" (23)

Theoretical Analysis
Stability

Here, we consider the stability of the scheme (23). For simplicity,
we just discuss the case of 6=1/2. To begin with, we give the following
theorem concerning the coefficients of matrix Q.

Theorem 1: Suppose that 0<a<1, K,>0, V >0. When 6=1/2 and

1

hS|:&(w;“' la)+wla)) > (24)
Y,

the coefficients Q, satisfy

m—1

joiil> 3

J=1j#i

Li=1,2,0,m=1 (25)

i.e., Qs strictly diagonally dominant.

Proof: When 0=1/2, it is easy to obtain

Page 5 of 8

K
S =) j>i+l
Ko (oo @\ Yoo s

Wy = +wy , j=i+l
Zh“( ) 2 /
Ko( (@ .

;=1 TJ(WI( k W(() )), J=t

Ky (@@, e\ Yo s

W = w42, =i
yal Ve
KO (@) (@) P
W(vafjﬂivvx‘fj)' Jj<i-1

where r =— 1/2h<0. For a given i, we consider the sum

m-1 i-2 m-1
2 o =2lol+ X
1, j#i j=1 j=i+2

Ji=Lj

+lo

Q0

Q,‘j Qy U 1 ij+1

m m

m W)

+

K AL (0 ) 2
Z 2 Zh"(wz +wy )+2

(a) Y
2

2]/(1" (M —wf +n"”) L

Recalling Lemma 5.(2), Lemma 5.(3) and (24), we can drop the
absolute value

signs:

v, K,
)+2+21“

v,
(o ) Lo
- 2

—2

e B
’;“‘Q‘,‘:—rﬂ{ﬁ;(w{‘jj,l—w,‘i‘j)+ Ko 5 (i) i

i=

i-2 m-1

_ 2},"0{ (‘m/” wf")) Z(W,w}u 5”1)"’2( _W(a)+w(a))}

= jeiv2

rK i-2 +0
<= (W =)+ D (W =)+ 2w - )
20" | /= ferrtl
The two telescoping sums have the form

() (a) (a) (a)
(W3 - Wy )+(w5 -w, )+

which by virtue of Lemma 5.(5) equals — Wi

(@) (a)
Wi )+ (W —

. Thus we have

m—1

>

J=lj#i

gzi{ 2W;a)+2( (@) W(H)‘FW(H))}

0,|<-

BTN W@

2h° ()
:Q,i = Qz,i ’
due to Lemma 5.(1), i.e.,

m-1

J=lj#i

Qi/‘ <

Oil -

Thus, the proof is completed.

Remark 2: The condition (24) can be satisfied by using a sufficiently
small=spatial step h.

Corollary 1: Let A=c+di (i =J-1 ) be any eigenvalue of the matrix Q,
then the real part of \ satisfies

c>0. (26)

Proof: By the Gerschgorin’s circle theorem [30], we have

,—c—di‘Sr‘.: mil Ql., .
Then j=lj#i
(Q,-,- ) (d’) <r?
therefore,

‘Qii_c‘grr
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Using (25) and Q,>0, it is easy to derive (26).

Corollary 2: The matrix I + Q is strictly diagonally dominant.
Therefore, I + Q is invertible and Eq.(23) is solvable.

Theorem 2: The scheme (23) is unconditionally stable.

Proof: Since the eigenvalues of matrix Q satisfy Corollary 1, then
the eigenvalues of the matrix (I + Q) (I — Q) satisfy
1-4| [1-c—di
—|= <1
1+4] |l+c+di

Hence, the spectral radius of the matrix (I+ Q) (I — Q) is less than
one. Therefore, the scheme (23) is unconditionally stable.

Convergence

By Eq.(21), we notice that the local truncation error of the Crank-
Nicolson scheme gives,

R"=0(r*+7h’):
Theorem 3: Let u” be the exact solution vector of the problem (1 -
3), where u"=[u(x, t ), u(x,, t ), ..., u(x__,, t,)]". Then the numerical

solution U" unconditionally converges to the exact solution u® as h and
T tend to zero, and

HU” —u" (12+h2)-

Proof: Let ei" denote the error at grid points (x, t) and

) - Combining Eqgs.(19) to (21), yields

" n_
e =u—u(x,t

e’ ——@" e
2h
where

®n7Vo n n K 0 (@) g S (@) .n
T € —€, | T K, hTZWk Ciks1 ™ ZW Ciik

k=0

L+ +0(r + k)
2h

k=0

0 < m=i+1
(a (11) e
_K B z We e k €kl

Using the conditions (2), (3) and (22), we obtain the errors e’ =0
and ey =¢) =0fori=1,2,---,m-1andn=0, 1, - - -, N. We can write the
system in matrix-vector form

(I+Q)E"=(1-Q)E"" +0(c’+2h*) 1

or

E"=ME""+b

Where y=[1,1,-,1]" ,E"=[¢/,€},,e). ,] M=(1+Q) "' (1-0) and

b=0(* + th*)(I + Q) . By iterating and noting that E°=0, we obtain
E'=(M""'4+M" 7 +--+1)b.

Now, from Corollary 1, Corollary 2 and Theorem 2, we have p((I
+ Q) 1)<1 and p(M)<1. Therefore, we can choose a vector norm and
induced matrix norm || - || such that ||M||<1 and ||(I + Q) ~!||<1. Then
upon taking norms,

e

(=2l
S(1+1+---+1) ]

£n0(13+rh2):TO(12+h2)

Thus,
&

<C ( R ),
which completes the proof.
Improving the Order of Convergence

Here we use the Richardson extrapolation method (REM) to
improve the convergence order. Suppose that 7 f is the approximation
solution of function f(x) with an asymptotic expansion

f=Z,f +Ch*+O(h*), h—0,C, #0.

Then we have

f=Z,,f+C (h/2) +Oh).

Eliminating the middle terms C h* on the right, we find

f= M +0(h), (27)

which means the approximation order of f(x) has been improved from
O(h?) to O(h*). Moreover, we can improve the approximation order
of f(x) from O(h’) to O(h*). Suppose that G f is the approximation
solution of function f(x) with an asymptotic expansion

F=Gf+Ch +(h*), h—0,C, %0-

Then we have

=G f+Cy(h12)+O(h* ).
Eliminating the middle terms C2h3 on the right, we find

f =L“f7 =) +0(n*) (28)

According to Theorem 3, we know that the numerical method
converges at the rate of O(t* + h?). In order to improve the order of
convergence, we apply the numerical method on a (coarse) grid t=h
and then on a finer grid of size 1/2=h/2 and t/4=h/4. By applying the
Richardson extrapolation formulae (27) and (28) consecutively, the
convergence order can be improved from O(t? + h?) to O(t* + h*) [33].

Numerical Examples

In order to demonstrate the effectiveness of the finite volume
method, two examples are presented.

Example 1: At first, we consider the following space FADE

6u(x,t)+
ot

u(x,O):xé( 7x)6, 0<x<l1,

u(0,1)=0, u(1,£)=0, 0<r<T,

M =[6,0" “u(x,0)+(1-0), D" “u(x.1) |+ f (x.1),

where 0<a<1,

f'(x,l):—e"[x"(l—x)"+6x5(l—x)5(1—2x)]—e" [6P(x,l+a)+(l—6)P(l—x,l+0l)],
P(x.a)= (@) Lo 6I'(8) Ty 15I°9) e 201°(10)
r(7-a) r@é-a) ro-a) r10-a)
15111 Lo-a 6r(12) e ras) A2—a
) r(12-a) r(13-a)
and the exact solution is u(x, t)=x°(1 — x)% ~*.

Table 1 describes the L, error and convergence order of the Crank-
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8=02  a=0.1 a=0.5 a=0.9
1=h | |[E(h,7)ll, Order [[E(h,T)]l,  Order [E(h,T)II, Order
1/16 | 1.4643E-06 1.3445E-06 8.7375E-07

2.1494E-07 2.02
5.3505E-08 2.01

3.2644E-07 2.04
8.1135E-08 | 2.01

1/32 | 3.4234E-07 | 2.10
1/64 | 8.4533E-08 2.02

1/128 | 2.1079E-08 = 2.00 | 2.0269E-08 = 2.00 1.3361E-08 2.00
1/256 | 5.2665E-09 = 2.00 | 5.0679E-09 = 2.00 3.3393E-09 2.00
0=0.5 a=0.1 a=0.5 a=0.9

1=h |[E(h,7)]|, ' Order | ||E(h,T)]|2 Order |IE(h,T)||2 Order
1/16 | 1.5025E-06 1.3012E-06 8.6108E-07

1/32 | 3.4148E-07 | 2.14 | 3.2429E-07 @ 2.00 2.1280E-07 2.02
1/64 | 8.4264E-08 | 2.02 | 8.1517E-08  1.99 5.3079E-08 2.00

1/128 | 2.1007E-08 = 2.00 | 2.0474E-08 1.99  1.3268E-08 2.00
1/256 | 5.2486E-09 2.00 | 5.1327E-09 200 = 3.3175E-09 2.00
8=0.8  a=0.1 a=0.5 a=0.9
1=h  ||[E(h,1)]|, Order |[|E(h,7)||, Order IE(h,T)Il, Order
1/16 | 2.0424E-06 1.2834E-06 9.8391E-07

2.4430E-07 2.01
6.1133E-08 2.00

1/32 | 4.9460E-07 | 2.05
1/64 | 1.2330E-07 | 2.00

3.2118E-07  2.00
8.0868E-08  1.99

1/128 | 3.0888E-08 2.00 | 2.0325E-08 = 1.99 1.5308E-08 2.00
1/256 | 7.7366E-09 | 2.00 | 5.0972E-09 = 2.00 3.8311E-09 2.00
Table 1: The error and convergence order for different a and 6.
=h a=0.1 a=0.5 a=0.9

|lE(h, 7)]l, Order [|E(h, 7)]], Order |1E(h, 1), Order
1/8 | 7.3032E-08 1.2766E-08 2.3311E-08
1/16 | 3.4313E-09 4.41 | 8.8236E-10  3.85 3.0979E-10 6.23
1/32 | 2.0569E-10 4.06 | 6.1021E-11 3.85 2.2932E-11 3.76

1.4286E-12 4.00
8.9184E-14 4.00

4.0824E-12 = 3.90
2.6629E-13 = 3.94

1/64 | 1.3658E-11 | 3.91
1/128  8.8210E-13 | 3.95

Table 2: The error and convergence order for EM with 6=0.8.

Nicolson scheme at t=1 with t=h, where a and 0 are corresponding
to three distinct values, respectively. It can be seen that the numerical
results are in excellent agreement with the exact solution.

What follow are the numerical results by applying the extrapolation
method (EM). Table 2 shows the error and convergence order of the
Crank-Nicolson scheme at t=1 with t=h, 6=0.8 for the different o by
applying Eq.(27) and (28) consecutively, whose accuracy can be O(t* +
h*). The results are very encouraging and show that the extrapolation
method is efficient and reliable.

Ou(x,t)
ot
u(x,0)=5(200-x), 0<x<400, (29)

u(0,1)=0, u(400,1)=0, 0</<T,

+Vw=K[€0Dimu(x,t)+(l—9)( Dl““u(x,t)}+f(x,t),
" \

where the &8(-) stands for the Dirac delta function. The Fourier
transform of the analytical solution to (29) on an infinite domain is
given by Benson et al. [4]:

ﬁ(k,t)zexp[@(ik)“” Kt+(1-6)(~ik)"" —ikVtJ ,

where 0<a<1. Provided our finite computational domain is sufficiently
large that no significant concentration reaches the boundaries
throughout the simulation, we may take the infinite domain solution
as our benchmark.

We first discuss the asymmetric dispersion (6=0) for different a

and the solutions at time t=100 with V=0, K=1 are plotted in Figure 1.
The numerical solutions were obtained by using =h=1/400, and they
agree well with the analytical solutions. The greater asymmetry in the
solution for smaller a is readily apparent and the solution for the non-
fractional case (a=1) exhibits no asymmetry at all.

Figure 2 displays the impact of the skewness 6 on the dispersion
with a=0.4, V=0 and K=1. It can be seen from the figure, when 0>0.5,
the dispersion is skewed forward; while when 6<0.5, the dispersion is
skewed backward. The numerical solutions were obtained by using
1=h=1/400, and again agree well with the analytical solution.

In Figure 3, we plots the analytical and numerical solutions at times
t=10, 20, 40, 80 with 6=0.4, a=0.4, V=0.5 and K=1. We see that the
transport process is biased to the right and at time t=80 a significant

I I —
160 180 200 220 240 260

Figure 1: Comparison of the benchmark and numerical solutions at time t=100
with V=0, K=1, 8=0 and varying a.

I I I I
160 180 200 220 240 260

Figure 2: Comparison of the benchmark and numerical solutions at time t=100
with V=0, K=1, a=0.4 and varying 6.

Figure 3: Comparison of the benchmark and numerical solutions at different
time with V=0.5, K=1, a=0.4 and 6=0.5.
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concentration has reached the right edge of the graphed region (though
not the computational domain, which extends to x=400).

Conclusions

In this paper, we have developed and demonstrated a second order
finite volume method for solving a class of space FADE. Firstly, based
on the modified WSGD operators to approximate the Riemann-Liouville
fractional derivatives, applying the finite volume method, we derive the
Crank-Nicolson scheme of the problem and rewrite it in matrix form.
Subsequently, we prove that the scheme is unconditionally stable and
convergent with the accuracy of O(t* + h?). Moreover, to improve the
convergence order, we employ the extrapolation method at both the time
step and space step. Finally, some numerical results are given to show the
stability, consistency and convergence of our computational approach.

This technique could be extending to two-dimensional or three-
dimensional problems with complex regions. In the future, we would
like to investigate finite volume method for the space FADE in high
dimensions.
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