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Introduction
In this paper we consider the following problem

{ ,

1

2

( ),
, 0µ λ∗ ∗− −

∈
= + ≠






a

p N

p b pL u N
u

h y u u g in y 	            (1.1)

Where ( ) ( )2 1 2
, 1< <k, pµ µ− − − + −= − ∇ ∇ −pa p p a p

aL w div y w w y w w  with k and 
N are integers such that 1≥ +N p  and k belongs to { }3,., 1−N  and
where each point x in 



N is written as a pair 

h is a bounded positive function on 


k  and λ  is real parameter. µ
′  is 

the dual of ,µ  where µ  and ( )1  p N  will be defined later. 

Some results are already available for (1.1) in the case k=N  and 
p=2,  Example [1,2] and the references therein. Wang and Zhou 
[1,2] proved that there exist at least two solutions for (1.1) with 

( )( )2
0,a=0,0 2 / 2µ µ< ≤ = −N N  and 1,≡h  under certain conditions 

on g. Bouchekif and Matallah [3] showed the existence of two 
solutions of (1.1) under certain conditions on functions g and h; when 

( ) ( )0,0 $,$ 0, , 2 / 2µ µ λ ∗< ≤ ∈ Λ −∞ < < −N a N  and 1≤ < +a b a  with ∗Λ
a positive constant. Concerning existence results in the case k<N  and 
p=2,  [4,5].  Musina [5] considered (1.1) with -a/2  instead of a and 

0,λ =  also (1.1) with a=0, b=0, 0,λ =  with 1≡h  and 2 .≠ −a k  She
established the existence of a ground state solution when 2 < ≤k N  and 

( )( )2
,0 2 / 2µ µ< < = − +a k k a  for (1.1) with -a/2 instead of a and 0.λ =

She also showed that (1.1) with a=0,b=0, 0λ =  does not admit ground 
state solutions. Badiale et al. [6] studied (1.1) with a=0,b=0, 0λ = c  and 

1.≡h  They proved the existence of at least a nonzero nonnegative weak 
solution u, satisfying ( ) ( ), ,=u y z u y z  when 2 ≤ <k N  and 0.µ <
Bouchekif and El Mokhtar [7] proved that (1.1) admits two distinct 
solutions when ( )2 $,$ 2 / 2< ≤ = − −k N b N p N  with 0,(2, 2 ,,µ µ∗ ∈ < kp  
and ( )0,λ ∗∈ Λ  where ∗Λ  is a positive constant. Terracini [8] proved 
that there is no positive solutions of (1.1) with b=0, 0λ =  when 0,≠a  

1≡h  and 0.µ <  The regular problem corresponding to 0µ= = =a b  
and 1h ≡  has been considered on a regular bounded domain by 
Tarantello [9]. She proved that, for ( )1 ,−∈ Ωg H  the dual of ( )1

0 ,ΩH
not identically zero and satisfying a suitable condition, the problem 
considered admits two distinct solutions. For instance,  Xuan studied 
the multiple weak solutions for p-Laplace equation with singularity 
and cylindrical symmetry in bounded domains [10]. However, they 
only considered the equation with sole critical Hardy-Sobolev term. 

Before formulating our results, we give some definitions and 
notation. We denote by { }1 1 ( \ 0 )−= ×  p p k N k  and { }( \ 0 ),µ µ

−= ×   k N k  
the closure of { }( )0 \ 0∞ −× 

k N kC  with respect to the norms. 

( )1/
, ,0

−= ∇∫


N

ppa p
a pu y u dx

and
( )( )( )1/1

, , ,µ µ− − += ∇ −∫


N

ppa p p a p
a pu y u y u dx

respectively, with ( )( )( ), , 1 /µ µ< = − +
p

a k p k p a p  for ( )1 .≠ +k p a

From the Hardy-Sobolev-Mazfiya inequality, it is easy to see that 
the norm , ,µa pu  is equivalent to , ,0 .a pu

Since our approach is variational, we define the functional , , ,λ µa bI  

on µ  by ( ) ( ) ( ) ( ), , , , ,: 1 / 1 / .λ µ µ λ∗ ∗−
∗= = − −∫ ∫



 N
p p b pN

a b a pI u I u p u p h y u dx gudx  We

say that µ∈u  is a weak solution of the problem ( )  if it satisfies 
( ) ( )( )1 2, 0,  for .µµ λ∗ ∗− − + − −′ = ∇ ∇ − − − = ∈∫



N
pa p a p b pI u v y u v y uv h y u uv gv dx v

Here .,.  denotes the product in the duality , .µ µ
′   

Throughout this work, we consider the following assumptions: 

(G) There exist 0 0ν >  and 0 0δ >  such that ( ) 0,ν≥g x for all x
in ( )00,2 .δB  

( ) ( ) ( ) ( )0 0
0

lim lim 0, , .
→ →∞

= = > ≥ ∈k
y y

H h y h y h h y h y  

Here, B(a,r)  denotes the ball centered at a with radius r. 

Under some sufficient conditions on coefficients of equation of 
(1.1), we split   in two disjoint subsets +  and ,−  thus we 
consider the minimization problems on +  and −  respectively. 

Remark 1: Note that all solutions of our problem (1.1) are 
nontrivial.
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We shall state our main results: 

Theorem 1:  Assume that ( ) , ,3 1, 1 / ,%0 µ µ≤ ≤ − − < < − ≤ < a k pk N a k p p  
and (G) holds, then there exists 1 0Λ >  such that the problem (1.1), has 
at least one nontrivial solution on µ  for all ( )10, .λ∈ Λ

Theorem 2: In addition to the assumptions of the Theorem 1, if (H) 
holds, then there exists 2 0Λ >  such that the problem (1.1), has at least 
two nontrivial solutions on µ  for all ( )3 1 20 min , .λ< < Λ = Λ Λ  

This paper is organized as follows. In Section 2, we give some 
preliminaries. Section 3 and 4 are devoted to the proofs of Theorems 
1 and 2. 

Preliminaries
We list here a few integral inequalities. The first one that we need is 

the Hardy inequality with cylindrical weights [5]. It states that

( )1
, , ,  for all ,µµ − + −≤ ∇ ∈∫ ∫

 

N N
p a pa pp

a k p y v dx y v dx v  

The starting point for studying (1:1), is the Hardy-Sobolev-Mazfiya 
inequality that is particular to the cylindrical case k<N  and that was 
proved by Mazfiya in [4]. It states that there exists positive constant 

, ∗a pC  such that 

( ) ( )( )/2 1
, ,µ

∗
∗ ∗

∗

− − − +≤ ∇ −∫ ∫
 

N N

p pp b pa p p a p
a pC y v dx y v y v dx

for any { }( )( \ 0 ).∞ −∈ × 

k N k
cv C  

Proposition 1: The value [4] 

( )
{ }

( )( )
( )

1

, , /\ 0
, inf ,

µ
µ µ

µ

∗ ∗ ∗
∗ ∗

− − +

∗
∈ −

∇ −
= =

∫

∫







N

N

pa p p a p

p p p pv p b p

y v y v dx
S S k p

y v dx
 (2.1)

is achieved on ,µ  for ≤ <p k N  and , ,%µ µ≤ a k p  

Definition 1: Let ,∈c E  a Banach space and ( )1 , .∈ I C E  

(i) ( )n nu  is a Palais-Smale sequence at level c ( in short (PS)c) in 
E for I if 

( ) ( ) ( ) ( )1  and 1 ,′= + =n n n nI u c o I u o  

where ( )1 0→no  as .→∞n  

(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence 
in E for I has a convergent subsequence. 

Nehari manifold 

It is well known that I is of class C1 in µ and the solutions of 
(1.1) are the critical points of I which is not bounded below on .µ  
Consider the following Nehari manifold

{ } ( ){ \ 0 : , 0 ,}µ
′= ∈ = u I u u  

Thus, u∈  if and only if 

, , 0.µ λ∗ ∗−− − =∫ ∫
 

N N
p p b p
a pu h y u dx gudx 		                 (2.2)

Note that N contains every nontrivial solution of the problem (1.1) 
Moreover, we have the following results.

Lemma 1: The functional I is coercive and bounded from below 
on .

Proof: If ,∈u  then by (2.2) and the Holder inequality, we 

deduce that

( ) ( )( ) ( )( )

( )( ) ( )( )
, ,

, , , ,

0

/ 1 1/

/ 1 1/

,

µ

µµ µ

λ

λ

λ

∗ ∗ ∗

′
∗ ∗ ∗

= − − −

≥ − − −

≥ −

∫




N
p
a p

p
a p a p

p

I u p p p p u p gudx

p p p p u p u g

C

               (2.3)

where 

( ) ( ) ( )0 0: 1 / 0.
µ µ
′ ′∗ ∗ ∗

 = = − − >   
ppC C g p p p p p g

Thus, I is coercive and bounded from below on N

Define 

( ) ( ), .λ
′Ψ =u I u u  

Then, for ∈u  

( )

( )

( ) ( )

, ,

p
a,p,

, ,

,

= u - p -1

1 .

λ µ

µ

µ

λ

λ

∗ ∗

∗ ∗

−′
∗

−
∗

∗ ∗

Ψ = − −

= − − −

∫ ∫
∫

∫









N N

N

N

p p b p
a p

p b p

p
a p

u u p u p h y u dx gudx

h y u dx

p gudx p p u

            

(2.4)

Now, we split   in three parts:

( ) ( )0:  , 0 , { , 0}} :{ λ λ
+ ′ ′= ∈ Ψ > = ∈ Ψ =   u u u u u u

and ( ){ }:  ., 0λ
− ′= ∈ Ψ < u u u  

We have the following results. 

Lemma 2: Suppose that there exists a local minimizer 0u  for I on 
  and 0

0 .∉u  Then, ( )0 0′ =I u  in .µ
′  

Proof: If u0 is a local minimizer for I on N, then there exists θ ∈  

such that ( ) ( )0 0, ,λϕ θ ϕ′ = ΨvI u u  for any .µϕ ∈

If 0,θ = then the lemma is proved. If not, taking 0ϕ ≡ u  and using 
the assumption 0 ,∈u  we deduce ( ) ( )0 0 0 00 , , .λθ′ ′= = ΨI u u u u  

Thus,

( )0 0, 0,λ
′Ψ =u u  

which contradicts the fact that 0
0 .u ∉  

Let be 

( )( ) ( ) ( ) ( )
( )/ 11 / 1

1 0 ,1 .
µ

µ

∗ ∗
∗ ∗

′
∗

− −− − − −
∗ ∗

 Λ = − −   

p p p pp p p
pp p p h S g                     (2.5)

Lemma 3: We have 0 = ∅  for all ( )10, .λ ∈ Λ

Proof: Let us reason by contradiction. 

Suppose 0 ≠ ∅  for some ( )10, .λ ∈ Λ  Then, by (2.4) and for 
0 ,∈u  we have 

( )

( ) ( )( )
, ,

1

= p -1 / p -p .

µ

λ

∗ ∗−
∗

∗ ∗

= − ∫

∫




N

p p b pN
a p

u p h y u dx

gudx
 		                (2.6)

Moreover, by (G), the Holder inequality and the Sobolev embedding 
theorem, we obtain 

( )( ) ( )
( )

( ) ( )
1//1

0 , , ,
[  / 1 1 / )].( 

µ
µ µ

λ
∗

∗

′
∗

−
−

∗ ∗ ∗
 − ≤ ≤ − −   

p pp p

p a p
h S p u p g p p (2.7)
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This implies that 1,λ ≥ Λ  which is a contradiction with the fact 
that ( )10, .λ ∈ Λ  

Thus + −= ∪    for ( )10, .λ ∈ Λ  

Define 

( ) ( ) ( )inf ,  inf  and inf .
+ −

+ −

∈ ∈ ∈
= = =

  u u u
c I u c I u c I u  

For the sequel, we need the following Lemma. 

Lemma 4: (i) If ( )10, ,λ ∈ Λ  then one has 0.+≤ <c c  

(ii) If ( )3 1 20 min ,λ< < Λ = Λ Λ  then 1,
− >c C  where 

( )( )( ) ( ) ( ) ( )

( )( )( ) ( )

//
1 1 , ,

p/ p -p

, ) / 1(

- 1- 1/p p -1 g .

µ

µ

µ µλ

λ

∗ ∗∗
′

∗ ∗

∗
′

−−
∗ ∗ ∗

∗ ∗

= = − − +




p p pp p p
p pC C S g p p p p p S

Proof: (i) Let .+∈u  By (2.4), we have 

( ) , ,
1 / 1

µ
∗ ∗−

∗ −  >  ∫p p b pN
a p

p u h y u dx

and so 

( ) ( ) ( )( )
( ) ( )( ) ( )( )
( )( )

, ,

, ,

, ,

1 / 1 1/

1 / 1 1/ 1 / 1

/ ,

µ

µ

µ

∗ ∗−
∗

∗ ∗

∗ ∗

= − + −

 < − + − − = 

− −

∫p p b pN
a p

p

a p

p

a p

I u p u p h y u dx

p p p u

p p p p u

we conclude that 0.+≤ <c c

(ii) Let .−∈u  By (2.4), we get 

( ) , ,
1 / 1 .

µ
∗ ∗−

∗ −  <  ∫


N

p p b p

a p
p u h y u dx

Moreover, by Sobolev embedding theorem, we have 

( ) /

, ,
.µ µ

∗∗ ∗ ∗

∗

−− ≤∫


N

p pp b p p
p a

h y u dx S u  

This implies 

( ) ( ) ( ) ( )/1/
,, ,

1 ,  for all .µµ

∗ ∗∗

∗

−− − −
∗> − ∈   

p p p pp p
pa p

u p S u

By (2.3), we get 

( ) ( )( ) ( )( ), , , ,
/ 1 1 / .

µµ µ
λ ′∗ ∗ ∗≥ − − −



p

a p a p
I u p p p p u p u g

Thus, for all 

( )3 1 20 min , ,λ< < Λ = Λ Λ 			                (2.8)

with 

( )( ) ( )

( )

( ) ( )
/

1/

2 ,
0

1/ ,
1 1

µ

µ

∗

∗

∗
′

−

∗
∗ ∗

∗ ∗

 −
Λ = −  − −

 
 
   

p p p
p

p
ppp p p p S

p h p g

we have ( ) 1.≥I u C

For each ,µ∈u  we write 

( )
( )

( )1/

, ,
max 0.

1
µ

∗

∗ ∗

−

−
∗

 
 = = >
 − ∫



N

p p

a p
m p b p

u
t t u

p h y u dx

Lemma 5: Let ( )10, .λ ∈ Λ  For each ,µ∈u  one has the following:

(i) If ( ) 0,≤∫


N
g x udx  then there exists a unique − > mt t  such that 

− −∈t u  and ( ) ( )
0

sup .−

≥
=

t
I t u I tu

(ii) If ( ) 0,>∫


N
g x udx  then there exist unique +t  and −t  such that 

0< , , ,+ − + + − −< < ∈ ∈ mt t t t u t u  
( ) ( ) ( ) ( )

0 0
inf  and sup .+ −

≤ ≤ ≥
= =

mt t t
I t u I tu I t u I tu

Proof: With minor modifications, we refer to [11]. 

Proof of theorem 1

For the proof we get, firstly, the following results:

Proposition 2: 

(i) If ( )10, ,λ ∈ Λ  [11] then there exists a minimizing sequence 
( )n n
u  in   such that 

( ) ( ) ( ) ( )1  and 1  in ,µ
′ ′= + = n n n nI u c o I u o 		               (3.1)

where ( )1  no  tends to 0 as n tends to .∞  

(ii) If ( )3 1 20 min , ,λ< < Λ = Λ Λ  then there exists a minimizing 
sequence ( )n n

u  in −  such that 

( ) ( )1−= +n nI u c o  and ( ) ( ) ( ) ( )1  and 1  in .µ
− ′ ′= + = n n n nI u c o I u o  

Now, taking as a starting point the work of Tarantello [9], we 
establish the existence of a local minimum for I on .+  

Proposition 3: If ( )10, ,λ ∈ Λ  then I has a minimizer 1
+∈u  and 

it satisfies 

(i) ( )1 0,+= = <I u c c  

(ii) 1u  is a nonnegative solution of (1.1)

Proof: (i) By Lemma 1, I is coercive and bounded below on .  We 
can assume that there exists 1 µ∈u  such that 

1  weakly in ,µ nu u 				                 (3.2)

( )1  weakly in , , ∗∗
−

 

p bp N
nu u L y  

1  a.e in .→ 

N
nu u  

Thus, by (3.1) and (3.2), u1 is a weak solution of (1.1) since c<0  
and ( )0 0.=I  Now, we show that un converges to u1 strongly in 

.µ  Suppose otherwise. Then 1 , , , ,
inflim

µ µ→∞
< na p a pn

u u  and we obtain 

( ) ( )( ) ( )( )
( )

1 1 1, ,
/ 1 1 /

fl .imin
µ

λ∗ ∗ ∗

→∞

≤ = − − −

< =

∫p N
a p

nn

c I u p p p p u p gu dx

I u c

We get a contradiction. Therefore, un converges to u1 strongly 
in .µ  Moreover, we have 1 .+∈u  If not, then by Lemma 
5, there are two numbers 0

+t  and 0 ,−t  uniquely defined so that 

0 1
+ +∈t u  and 0 1 .− −∈t u  In particular, we have 0 0 1< .+ − =t t  Since 

( ) ( ) +
0 0

2

1 12 t=t

d0and I tu 0,
dt+=

= >
t t

d I tu
dt

 there exists 0 0
+ − −< ≤t t t  such that 

( ) ( )0 1 1 .+ −<I t u I t u  By Lemma 5, ( ) ( ) ( ) ( )0 1 1 0 1 1 ,+ − −< < =I t u I t u I t u I u  which 
is a contradiction. 

Proof of theorem 2 

In this section, we establish the existence of a second nonnegative 
solution of (1.1). For this, we require the following Lemmas with 0C  
is given in (2.3). 
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Lemma 6: Assume that (G) holds and let ( ) µ⊂n n
u  be a ( )c

PS  

sequence for I for some ∈c  with nu u  in .µ  Then, ( ) 0′ =I u  
and ( ) 0 .λ≥ − pI u C  

Proof: It is easy to prove that ( ) 0,′ =I u  which implies that 

( ), 0,′ =I u u  and 2

, ,
.

µ
λ∗ ∗− = −∫ ∫

 

N N

p b p

a p
h y u dx u gudx  

Therefore, we get

( ) ( )( ) ( )( ), ,
/ 1 1 / .

µ
λ∗ ∗ ∗= − − − ∫



N

p

a p
I u p p p p u p gudx  

Using (2.3), we obtain that ( ) 0 .λ≥ − pI u C  

Lemma 7: Assume that (G) holds and for any (PS)c sequence with 
c is a real number such that .c cλ

∗<  Then, there exists a subsequence 
which converges strongly. 

Here ( )( )( ) ( ) ( ) ( )//
0 , 0/ .λ µ λ∗ ∗∗

∗

−− −∗
∗ ∗= − −

p p pp p p p
pc p p p p h S C  

Proof: Using standard arguments, we get that ( )n n
u  is bounded in 

.µ  Thus, there exist a subsequence of ( )n n
u  which we still denote by 

( )n n
u  and µ∈u  such that 

 weakly in ,µ nu u  

( ) weakly in , .∗∗
−

 

p bp N
nu u L y

 a.e in .→ 

N
nu u  

Then, u is a weak solution of (1.1). Let n nv =u -u,  then by Brezis-

Lieb [12], we obtain ( ), , , , , ,
1

µ µ µ
= − +p p p

n n na p a p a p
v u u o 	              (4.1)

and

( )N N N

-p b p -p b p -p b p
n n nh y v dx= h y u dx- h y u dx+o 1 .∗ ∗ ∗ ∗ ∗ ∗∫ ∫ ∫

  

          (4.2)

On the other hand, by using the assumption (H), we obtain 

( ) 0lim lim .∗ ∗ ∗ ∗− −

→∞ →∞
=∫ ∫

 

N N

p b p p b p
n nn n

h x y v dx h y v dx  	            (4.3)

Since ( ) ( ) ( ) ( )1 , 1′= + =n n n nI u c o I u o  and by (4.1), (4.2), and (4.3) we 

can deduce that ( ) ( ) ( ) ( ), ,
1 / 1 / 1 ,

µ
∗ ∗−

∗− = − +∫


N

p p b p
n n na p

p v p h y v dx c I u o     (4.4)

( ), ,
1 .

µ
∗ ∗−− =∫



N

p p b p
n n na p

v h y v dx o  

Hence, we may assume that 

, ,
,  .

µ
∗ ∗−→ →∫



N

p p b p
n na p

v l h y v dx l  		             (4.5)

Sobolev inequality gives ( ),, ,
.µµ

∗ ∗

∗

−≥ ∫


N

p p b p
n p na p

v S h y v dx  

Combining this inequality with (4.5), we get ( ) /1
, 0 .µ

∗

∗

−−≥
p p

pl S l h  

Either 1=0 or ( ) ( ) ( ) ( )//
0 , .µ

∗ ∗∗

∗

−− −≥
p p pp p p

pl h S  Suppose that 

( ) ( ) ( ) ( )//
0 , .µ

∗ ∗∗

∗

−− −≥
p p pp p p

pl h S  

Then, from (4.4), (4.5) and Lemma 6, we get 

( )( ) ( )/ ,λ
∗

∗ ∗≥ − + ≥c p p p p l I u c  

which is a contradiction. Therefore, l = 0 and we conclude that un 
converges to u strongly in .µ  

Lemma 8: Assume that (G) and (H) hold. Then, there exist µ∈v  

and 0∗Λ >  such that for ( )0, ,λ ∗∈ Λ  one has 

( )
0

sup ,λ
∗

≥
<

t
I tv c  

where C0 is the positive constant given in (2.3). In particular, 

( ), for all 0, .λ λ− ∗
∗< ∈ Λc c  

Proof: Let εϕ  be such that 

( )
( ) ( )
( ) ( )
( ) ( )

0 0 0

 if 0 for all 

 if 0 for 

 if 0 for a l   l  

ε

ε ε

ε

ω

ϕ ω

ω

 ≥ ∈
= − > ∈

− ≤ ∈







N

N

N

x g x x

x x x g x x

x g x x

where εω  verifies (2.1). Then, we claim that there exists 0 0ε >  such 
that 

( ) ( ) ( )00for any 0, .ελ ϕ ε ε> ∈∫


N
g x x dx  		              (4.6)

In fact, if ( ) 0≥g x  or ( ) 0≤g x  for all ,∈Nx  (4.6) obviously 
holds. If there exists 0 ∈

Nx  such that ( )0 0,>g x  then by the continuity 
of ( ),g x  there exists 0η >  such that ( ) 0>g x  for all ( )0 , .η∈x B x  
Then by the definition of ( )0 ,εω −x x  it is easy to see that there exists an 

0ε  small enough such that ( ) ( ) ( )0 00, for any 0, .ελ ω ε ε− > ∈∫


N
g x x x dx

Now, we consider the following functions

( ) ( )  ( ) ( ) ( ), ,
 and / / .ε ε εµ

ϕ ϕ ϕ∗ ∗∗
−

∗= = − ∫


N

p p b ppp
a p

f t I t f t t p t p h y dx

Then, we get for all ( )10,λ ∈ Λ

( )0 0 .λ
∗= <f c  

By the continuity of f, there exists 0t >0  small enough such that 
( ) ( )0, for all 0, .λ

∗< ∈f t c t t

On the other hand, we have 

( ) ( )( )( ) ( ) ( ) ( )//
0 ,0

max / .µ
∗ ∗∗

∗

−− −
∗ ∗≥

= −

p p pp p p
pt

f t p p p p h S

Then, we obtain 

( ) ( )( )( ) ( ) ( ) ( )//
0 ,2 0

0
sup / .ε µ εϕ λ ϕ∗ ∗∗

∗

−− −
∗ ∗

≥
< − − ∫



N

p p pp p p

t
I t p p p p h S t g dx

Now, taking 0λ >  such that 

0 0 ,ελ ϕ λ− < −∫


N

pt g dx C  

and by (4.6), we get

( )( ) ( )1/ 1

0 0 00 / , for .λ ϕ ε ε < < <<  ∫


t C g

Set 

( )( ) ( )1/ 1

1 0 0min ,  / .εϕ
−

∗
  Λ = Λ    ∫



N

p

t C g

We deduce that 

( ) ( )
0

sup ,  for all 0, .ε λϕ λ ∗
≥

< ∈ Λ
t

I t c  

Now, we prove that 

( ),  for all 0, .λ λ− ∗
∗< ∈ Λc c

By (G) and the existence of ψ n  satisfying (2.1), we have 

0.λ ψ >∫


N ng dx
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Combining this with Lemma 5 and from the definition of −c  and 
(4.7), we obtain that there exists nt >0  such that ψ −∈n nt  and for all 

( )0, ,λ ∗∈ Λ  ( ) ( )
0

sup .λψ ψ− ∗

≥
≤ ≤ <n n n

t
c I t I t c

Now we establish the existence of a local minimum of I on .−

Proposition 4: There exists 4 0Λ >  such that for ( )40, ,λ ∈ Λ  the 
functional I has

a minimizer u2 in 
−  and satisfies.

(i) ( )2 ,−=I u c

(ii) u2 is a solution of (1.1) in ,µ  where { }4 3min , ∗Λ = Λ Λ  with 
3Λ  defined as in (2.8) and ∗Λ  defined as in the proof of Lemma 8. 

Proof: By Proposition 2 (ii), there exists a ( ) −c
PS  sequence for

( )I, n n
u  in −  for all ( )3 1 20 min , .λ< < Λ = Λ Λ  From Lemmas 7; 8 and 

4 (ii), for ( ) I0, ,λ ∗∈ Λ satisfies ( ) −c
PS  condition and 0.− >c  Then, we 

get that ( )n n
u  is bounded in .µ  Therefore, there exist a subsequence

of ( )n n
u still denoted by ( )n n

u and 2
−∈u such that un converges

to u2 strongly in µ  and ( )2
−=I u c  for all ( )40, .λ ∈ Λ  Finally, by

using the same arguments as in the proof of the Proposition 3, for all 
( )10, ,λ ∈ Λ  we have that u2 is a solution of (1.1).

Now, we complete the proof of Theorem 2. By Propositions 3 and 
4, we obtain that ( )  has two solutions u1 and u2 such that 1

+∈u
and 2 .−∈u  Since % ,+ −∩ =∅   this implies that u1 and u2 are 
distinct. 

Conclusion
 In our work, we have searched the critical points as the minimizers 

of the energy functional associated to the problem on the constraint 
defined by the Nehari manifold ,  which are solutions of our 

problem. Under some sufficient conditions on coefficients of equation 
of (1.1), we split   in two disjoint subsets +  and ,−  thus we
consider the minimization problems on +  and −  respectively. 
In the sections 3 and 4 we have proved the existence of at least two 
nontrivial solutions on µ  for all ( )3 1 20 min , .λ< < Λ = Λ Λ
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