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Introduction
Visceral leishmaniasis is a vector-borne disease of humans and 

other mammals. This disease is caused by parasites of the Leishmania 
donovani complex. There are two main forms of visceral leishmania: 
(1) zoonotic visceral leishmaniasis (ZVL), which affects mainly
young children and the domestic dog as its principal reservoir and
(2) anthroponotic visceral leishmaniasis (AVL), this affects people of
all ages, and infectious sand y transmit it from human to human via
biting [1]. Visceral leishmaniasis (Vl) is severe and fatal. The average
incubation period is 2-6 months; however it may vary from 10 days to
one year [2,3]. Some of the patients recovered from V l, develops Post
kala-Azar dermal leishmania with in the interval of 6 months to 3 years 
[4]. The vector latent period is assumed roughly to be 3 to 7 days [5,6].

No doubt leishmania control is challenging because the control of 
both sandflies and the reservoir is di cult. The failure rate of treatment 
is high due the two factors. Clinical structure of disease, the response of 
human immune system and the drug resistance acquired by the species 
[7].

Motivated from Hashim et al. [8] and Shillor et al. [9], the 
authors did not consider Homogenous population. We in our work 
have considered the homogenous mixing of the population. The 
Reproductive number so calculated, depends upon the densities of 
humans, reservoirs and vectors, which highlights the importance of 
homogenous mixing. Also we have applied new concept for calculating 
threshold condition, for disease free state as developed by Kamgang 
and Sallet [10].

In this paper, we present a mathematical model for the transmission 
dynamic of leishmaniasis. The model of 10 compartments includes 
2 exposed classes of human infected with visceral leishmaniasis and 
PKDL. These exposed classes were not considered previously in the 
models. We find positive invariant region and use next generation 
matrix method to find the basic reproduction number R0. Using upper 
bound matrix AI(X) of the matrix AI(X), of the infected classes, the 
threshold number is found. Comparing R0 and we find three values 
for R0. On the basis of these values, we discuss the dynamical behavior 
of the model. Finally we show the global stability of the disease free 
equilibrium, and the existence of endemic equilibrium.

Model Formulation
In this section we present the formulation of the model.

We divide the compartmental model of human, reservoir and 
vector populations into different classes. The human population 
consist of sub-classes, Sh; E1; I1; P2; R1; E12. Here Sh represent the class of 
susceptible human, E1 is the Vl infected class, E12 is the class recovered 
from Vl and exposed to PKDL. P2 is the human class with PKDL and R1 
is the human recovered class, I1 is the human class infectious with Vl,

The total human population Nh is

Nh = Sh + E1 + I1 + E12 + P2 + R1

The vector population is divided into two sub-classes Sv(t) and Iv(t), 
also the reservoir class is divided into Sr(t) and Ir(t).

Nv(t) = Sv(t) + Iv(t);  Nr(t) = Sr(t) + Ir(t):

After susceptible person, being bitten by infectious vector, he/she 
can't transmit leishmania virus immediately. We call this person as 
infected (exposed). When a susceptible vector Sv(t), bite the infectious 
person, the vector moves from susceptible compartment to the 
infectious compartment Iv(t) [11].

The interaction of human, reservoir and vector population is 
represented in the flowchart as shown in Figure 1.
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Figure 1: The interaction of human, reservoir and vector population.
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The dynamical system for human, reservoir and vector population 
is given by

.
1 2 1

.
1 2 1 1 1 1
.
12 1 1 1 3 12
.
2 3 12 2 1 2 2

1 1 1 2 1 2
.

.

.

.

( )

( )

( )

(1 ) ( )

( )
( ) ( )

.

λ µ

λ µ

γ δ µ

α γ µ

γ β δ µ
α γ γ β µ

λ µ

λ µ

λ µ

λ µ

 = Γ − +

 = − +

 = − + +



= − − +


= − + + +


= + + −

= Γ − −

= −

= Γ − −

= −





h h h h

h h h

h

h

h

h

r r r r r r

r r r r r

v v v v v v

v v v v v

S S

E S k E

I k E I

E I k E

P k E P
R I P R

S S S

I S I

S S S

I S I















                                                        (1)

The description of the parameters is given in Table 1. 

The terms of interaction λh, λr and λv are as under 2λ =
+
v

h
h r

Iab
N N

is the average rate of infection rate of human with Vl, from infectious 
sandfly.	

λr is the average rate of infection of susceptible reservoir by infected 
sandfly.

λ =
+
v

r
h r

Iab
N N

; b is transmission probability of V l to reservoir 

from sandfly.

2 1 2( )( )λ = + +
+v r

h r

a c I P cI
N N

, is the average rate of infection of sandfly 

with Vl strain from human or reservoir. Where c2 is the transmission 
probability of Vl from human in stage I1 and P2 to sandfly

Mathematical Analysis of the Model
In this section, we discuss invariant region, the disease free 

equilibrium point and reproductive number R0, of the system (1).

Invariant region 

We have assumed all the parameters as nonnegative. Since 
the model is concerned with living population, therefore the state 
variables are assumed to be nonnegative at t=0. The dynamic of overall 
population is given by the following differential equations.

1 1 2 2µ δ δ= Γ − − −

h h h hN N I P 	      		                 (2)

µ= Γ −

r r r rN N ,	  			                 (3)

µ= Γ −

v v v vN N .	  			                 (4)

If the human population is disease free, i.e. I1 = P2 = 0, then equation 
(2) reduces to the form;

µ= Γ −

h h h hN N .				                     (5)

Equilibrium in this case is

µ
Γ

=
u

h
h

h
N .                    				                 (6)

From equation (2) and the fact that 1 2 1 1 2 2( ) ( )δ δ δ δ+ ≥ +hN I p , 
we have

1 2( )µ δ δ µΓ − − + ≤ ≤ Γ −h h h h h h h hN N N N         		              (7)

The lower bond for equation (7) is given by

1 2( )µ δ δ= Γ − − +

h h h h hN N N .			                    (8)

The equilibrium of equation (8) is

1 2µ δ δ
Γ

=
+ +l

h
h

h
N .				                   (9)

With the initial condition	

Notation ���������� Value Resource
c2 Progression rate of VL in sand y(from human) 0.22 [14]
a Sandflies biting rate 0.2856 day-1 [14]

Γh Recruitment rate of human 0.0015875day-1 [15]

Γv Recruitment rate of sandfly 0.299 day-1 [16]

Γr Recruitment rate of reservoir 0.073 day-1 Assumed

Γh Natural mortality rate of human 0.00004 day-1 [16]

µv Natural mortality rate of Sandflies 0.189 day-1 [16]

µr Natural mortality rate of Reservoirs 0.000274 day-1 Assumed

2γ PKDL recovery rate after treatment 0.033 day-1 [17]

11 α− Developing PKDL rate after treatment 0.36 day-1 [17]

1β PKDL natural healing rate 0.00556 day-1 [17]

c Progression rate of Vl in sandfly (from reseroir) Variable Variable
b Progression rate of Vl in reservoir(from sandfly) Variable Variable

1γ Treatment rate of VL variable Assumed

1δ VL induced death rate 0.011 day-1 [18]

k2 1/k2 is Incubation period of vl 0.006555 day-1 [19]
k3 1/k3 is Incubation period of PKDL 0.004925925day-1 [2,20]

2δ PKDL induced death rate assumed Assumed

b2 Progression rate of VL in human (from sandfly) 0.0714 day-1 [21]

Table 1: Description of the parameters.
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Nh(0) =  N0.	           				                 (10)

If Nu, and Nl, denote the solution of equation (5) and equation (8), 
then any solution of equation (2), satisfy

Nl ≤ Nh ≤ Nu.					               (11)	

Consider the biological feasible region Ω given by:

10
1 1 2 1 12( , , , , , , , , , )  , ; ;[ ]

µ µ µ+
Γ ΓΓ

Ω = ∈ ≤ ≤ ≤h vr
h r r v v h r v

h r v
S E I P R E S I S I R N N N .

From equation (2), using standard comparison theorem, we have
( )( ) (0) 1( )µµ

µ
−− Γ

≤ + − h tt h
h h

h
N N e e .

So

µ
Γ

→ h
h

h
N   as →∞t .

Similarly

 and  [ ]
µ µ
Γ Γ

→ →v r
v r

v r
N N and →∞t .

Hence is positively invariant domain, and the model is 
epidemiologically and mathematically well posed.

Let us de ne a new region G as

{ ; ; ; }
µ µ

ΓΓ
= ∈Ω ≤ ≤ ≤ ≤

l u
vr

h h h r v
r v

G X N N N N N .

where

1 1 12 2 1( , , , , , , , , , )= T
h r r v vX S E I E P R S I S I .

Clearly G is the sub region of Ω. In light of equation (3), equation 
(4) and equation (11), it is reasonable to work on G instead of Ω.

Disease free equilibrium 

The disease free equilibrium of the model (1) is given by:

0 ( ,0,0,0,0,0,, ,0)
µ µ
Γ Γ

= h r

h r
X ,

Reproductive number 

The number of secondary infections occurring in completely 
susceptible population by introducing an infectious individual to the 
population is called reproductive number R0 [12]. In order to find the 
basic reproductive number, we use next generation method for R0= 
(-FV-1), [13]. Where is spectral radius? And
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We can further simplify to get 0 = +a bR R R  where 
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The term R1 indicates that if sandfly is infectious and the reservoir 
is susceptible, the contact would result the transmission of Vl from 
sand y to reservoir. The term R2 indicates the transmission of Vl 
from reservoir to sand y. So the term Ra indicate the transmission of 
Vl between sandfly and reservoir. Similarly the term Rb indicates the 
transmission of Vl between human and sand fly. The term Ra and Rb 
both denote the transmission of visceral strains of leishmania. There is 
no term representing the transmission of PKDL because it is the silent 
complication of V l. When a susceptible vector bites human/reservoir 
infected with PKDL, the vector does not transmit PKDL but transmit 
Vl to the next victim. So R0 is biologically sensible.

Stability Analysis
In this section, we discuss the relation between additional threshold 

number and basic ξ reproductive number R0, to find the global stability 
of the disease free equilibrium, and existence of endemic equilibrium 
of the system (1).

Proposition: The disease free equilibrium is locally asymptotically 
stable if R0<1 and unstable if R0>1.

Proof: For the proof of this result verify the reference [13].

Global stability of the disease free equilibrium 

To find the global stability of the disease free equilibrium of the 
system (1), we state some definitions [9,10].

Definition 1: An m × m matrix, for m>2 is called irreducible if for 
any proper sub-set I of {1, 2,…,m}, ∃  , ∈p I  and ∉q I  such that 

( , ) 0≠p qA

Definition 2: The matrix M is said to be Metzler matrix if ( , ) 0≥p qA
for p q≠ .

Definition 3: The compact set ⊂ ΩM  is called stable for the 
dynamical system defined on Ω if for every trajectory initiated from a 
point in U is in W, for all t≥0. Here U and W are neighborhoods of M.

Definition 4: A compact set ⊂N D  is called an attractor for a 
dynamical system defined on D if there exist a nbhds X and Y of N such 
that for every point ∈X x , there exists a time tx,y>0, such that every 
trajectory initiated at x, belongs to Y for t>tx,y. The largest set X is called 
a bassin of attraction.

If X=D the set N is then called global attractor. A set N which is 
both stable and a global attractor is called globally asymptotically stable.

Theorem: The set G is globally asymptotically stable for the 
dynamical system (1) defined on Ω.



Citation: Muhammad Z, Ali R (2015) Zoonotic Visceral Leishmania: Modeling and Control. J Appl Computat Math 4: 238. doi:10.4172/2168-
9679.1000238

Page 4 of 6

Volume 4 • Issue 4 • 1000238
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Proof:  Let
0(0) =r rN N ,	  				                 (12)

0(0) =v vN N ,      				                   (13)

be initial conditions associated with equation (3) and equation (4). And 
for 0> , ( )B G  be defined as;

0 0( ) { ; ; ; }−= ∈Ω < < + − < < + − < < +
u u uh h r r r v v vB G X N N N N N N N N N       ,

where
1 1 12 2 1( , , , , , , , , , )= h r r v vX S E I E P R S I S I .

Since the collection { ( ), 0}>B G   is a complete neighborhood 
system of the compact set G. So X and Y as discussed in above 
definitions, also belong to this collection.

Consider an arbitrary 0> . The points , , ,
u u l ur v h hN N N N  are 

globally asymptotically stable equilibria of the dynamical system 
defined by equation (3), equation (4), equation (5), and equation (8) 
on (0, ∞).

For any initial point of the model (1), 0 0 0(0, ), (0, ), (0, )∈ ∞ ∈ ∞ ∈ ∞r vhN N N  
Hence there exists 0>t so that for any >t t we have

− < ≤ ≤ < +
l uh l h u hN N N N N  ,
− < <

l ur r rN N N  ,

− < < +
l uv v vN N N  ,

1 1 12( , , ,, , , , , ) ( )⇒ = ∈h r r v vX S E I E S I S I B G .

Thus G is global attractor.

Next to show that G is stable

On the basis of monotonicity of , , , l u r vN N N N , we have
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Thus we have shown that any solution of the model (1), starting 
from a point in ( )B G , remains in ( )B G . So G is stable. Thus G is 
globally asymptotically stable. Hence we can now study the system (1) 
on G, instead of Ω .

Theorem: Let a positive system be defined on set Ω ⊆ nR and let 
ε ⊂ Ω  be globally asymptotically stable. Let M be the largest invariant 
sub set ofε . Then M is globally asymptotically stable on Ω . Particularly 

if *{ }=M x where *x  is equilibrium point of the system with basin of 

attraction containingε . Then *x is GAS for the system onΩ .

Proof: For the proof of the theorem verify the reference [9] theorem 
(5). To prove the global stability of the disease free equilibrium, we use 
theorem (4.3) of [10].

For this let

1 1 1 12 2( , , , , , , , , , )= T
h v r r vX S R S S E I E P I I .

Now for global asymptotic stability of the disease free equilibrium 
of the system(1) on smaller set G, we decompose X as, Xs and XI of 
noninfected and infected, humans reservoirs and sandies, such that

1( , , , )= T
s h r vX S R S S ,

1 1 12 2( , , , , , )= T
I r vX E I E P I I .

So the model can now be written as

( )
( )

( )
= +

= + →  =


s S s S
X

I I I

X A X X E
X A X E

X A X X
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( ) 0 0 0

0 0 0
0 0 ( ) 0
0 0 0 ( )

µ λ
µ

µ λ
µ λ

− + 
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h h

h
S

r r

v v

A

1 1 1 2 1 2( , ( ) , , )γ α γ β= Γ + + Γ Γ T
S h r vE I P . 

And the matrix AI(X) is given by

2
1

2 2

2 3

3 4

2 2

0 0 0 0

0 0 0 0
0 0 0 0

( ) 0 0 0 0

0 0 0 0

0 0

µ

µ

 − + 
 −
 

− 
 = −
 
 − + 
 
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h
h r

I

r
r

h r

v v r
v

h r h r h r

ab Sa
N N

k a
d a

A X k a
abS

N N
ac S ac S acS

N N N N N N

We restrict the domain of the system (1) from G to G, to ensure the 

irre-ducibility of AI(X), such that { ; , 0}= ∈ ≠SG X X G X .

The set G  is positively invariant because only the initial point of 
any trajectory can have Xs = 0, Putting

. . . .
1 0= = = =h r vS R S S , in the system 

(1), we have 10,  0,  0,  0> > > >h r vS R S S .

So all of the diagonal entries of AI (X) are nonnegative, hence AI (X) 
is metzler and irreducible X G∀ ∈ .

Since diagonal entries of AS are negative. So we state the following 
result

Proposition:  Let 0
sX  be the non-infected class of the total 

population, then	

0 0 0 0 0
1( , , , ) ,,0, ,( )

µ µ µ
Γ ΓΓ

= = h vr
s h r v

h r v
X S R S S  

is globally asymptotically stable equilibrium point of the system (1) 
reduced to the sub-domain { ; 0}∈ =IX G X .

Corollary: The system (14) is globally asymptotically stable if there 

exist a matrix IA  such that

( ) ≤ ∈I IA X A X G .				                 (15)

and if	

( ) =I IA X A  for some ( , )= s IX X X  then 0=IX ,	              (16)

( ) 0α ≤IA 					                    (17)

Where α is stability modulus or the largest real part of the eigen 
values of IA
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Proof:

Since 

1 1
≤

+ +
lh r h rN N N N .

So the upper bond of ( )IA X  denoted by IA  is given by

0
2
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3 4
0

2

0 0 0
2 2

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0( )

0 0 0 0

0 0

µ

µ

 
 −
 +
 

− 
 − 
 − −=
 
 

− + 
 
 − + + + 

l

l

l l l

h
h r

I

r
r

h r

v v v
v

h r h r h r

ab S
a

N N

k a
d a
k aA X

ab S
N N

ac S ac S acS
N N N N N N

,

and

Clearly ( ) ( )≤I IA X A X  as 
1 1

≤
+ +

lh r h rN N N N  

And

( ) ( )=I IA X A X  only if; 0 0 0 0
1 1 , , ,= = = =h r r v vhS S R R S S S S

Thus H4 of theorem (4.3) holds [10], equivalently equation (15) and 
equation (16), hold.

To show that H5 or equation (18) holds, we state the following 
theorem.

Theorem: The metzler matrix satisfy the axiom 5; ( ) 0α ≤IH A  if 
the basic reproductive number R0 satisfy the inequality; 0 ξ≤R , where 
ξ, is the additional threshold number given by

2 2
2 2 1 2 2 32

2 2 2 1 2 31 2
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µ µ δ δξ

µ µ µ µ δ δ

+ + Γ Γ
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Γ + + + Γ
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h v r h h r

a b c d kk
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µ δ δ
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+
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h v r

v r h h r

a bc

Proof: We decompose the matrix IA  in the blocks such that

 
=  
 

I
L M

A
P Q

,	

where L, M, P,Q are 3 3×  sub-matrices. The matrix IA is stable if S and 
1−−Q PL M are metzler stable. Here S is metzler stable, because all its off 

diagonal entries are nonnegative, and all the eigen values are negative.

Let	
1−= −Y Q PL M

Then IA is stable if Y is stable.

And Y is stable if ( ) 0≥det Y

This means that ( ) 0 α ≤IA only if

2 5 2 1 3 2 2 3 1 4 2 5 2 1 3 2 2 3 1 4
1 2 1 2 3 4 1 2 1 2 3 4

1 0, 1
µ µ µ µ µ µ µ µ

+ + − < ⇒ + + <
r v v v r v v v

n n k n n d k k n n n n k n n d k k n n
a a a a a a a a a a a a

,

where

0 0 0 002 2 2
1 2 3 4 5,   , ,       = = = = =

+ + + + +
l l l l l

h v v vr
h r h r h r h r h r

ab S ac S ac S acSabSn n n n n
N N N N N N N N N N

,

At the disease free equilibrium,	

0 0 0
1 1, ,

µ µ µ
Γ ΓΓ

= = = = = =h hr
r r h h

r h h
S S S S R R ,

1 2

1 2 3

( )
( )

µ µ δ δ
µ µ δ δ δ

Γ + Γ + +
+ =

+ + +l
h r r h

h r
r h

N N .

By putting these values in above equation, we have
2 2 2 2

1 2 2 2 1 2 2 32
2 2 2 2 2 2 3 41 2 1 2

( ) ( ) (1 ) 1
( ) ( )

[ ]µ δ δ µ δ δ µ

µ µ µ δ δ µ µ µ δ δ

+ + Γ Γ + + Γ Γ
+ + ≥

Γ + Γ + + Γ + Γ + +
h v r h r h v

v h r r h v h r r h

a bc a b c d kk
a a a a

We take this value as ξ. Thus H5 or equation(17) holds, if 1ξ ≥ . 
Also 0 ξ<R  . So using theorem (4.3) of [10], we claim the following 
result.

Theorem: If the parameters of the model satisfy the condition 
( ) 0α ≤IA , then the disease free equilibrium of the system (1) is 

globally asymptotically stable.

Simulation results of the model

In the Figure 2 below, we have reduced the treatment rate of both 
Vl infected and PKDL infected humans, in the sense that we have 
used drugs other than sodium stibogluconate (expensive medicine) or 
that the hospital is far away or that the case is not properly diagnosed 
leading to wrong treatment. No mass awareness program is lunched for 
vector control. Taking γ1=γ2=0:023, a=0:2856 (normal); and α1=0:064. 

 

Figure 2: Population behavior graph 1.

Figure 3: Population behavior graph 2.
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The graph shows that it takes long time to eradicate the diseases.

In Figure 3 we have increased the treatment rate for both Vl and 
PKDL and also a proper arrangement for vector control. Taking γ1=0:5, 
γ2=0:4, biting of sandfly a=0.1856 medicine effectiveness α1=0:74. The 
graph shows that with in short time the disease can be eradicated.

Conclusion
In this work a mathematical model of leishmania transmission 

was presented. The novelty of the model is, the homogenous mixing 
of human, reservoir and vector. The basic reproduction number R0 so 
calculated, depends upon the density of human, vectors and reservoirs, 
which highlights the importance of homogenous mixing. R0 is most 
sensitive to a; b and c and can have value greater than 1 (endemic state), 
if a; sand y biting rate, b; transmission probability of either strain in 
reservoir from sand y and c, transmission probability of either strain in 
sand y from reservoir, were not controlled. For this, different measures 
to control phlebotomine sandfies, like residual spraying of dwellings 
and animal shelters, insecticide treated nets; application of repellents/
insecticides to skin or to fabrics and impregnated dog collars may be 
taken. Sand y is susceptible to all the major insecticidal groups. In 
ZVL foci, where dogs are the unique domestic reservoir, a reduction 
in Leishmania transmission would be expected if we could combine 
an effective mass treatment of infected dogs with a protection of both 
healthy and infected dogs from the sand y bites. Since sand y can y up to 
the range of 1km, so leishmania transmission in dogs can be controlled, 
if they were kept away at least by 1km, from villages and cities. The 
disease can be controlled in human within a short time, however in 
reservoir class; the disease control takes long time. It is suggested to 
cull PCR+ dogs; this strategy gives imminent results in disease control.
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