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Introduction
This work gives a possible mathematical formulation of intentional 

brain dynamics following Freeman’s half century-long dynamic 
systems approach [1-3] and the electrical behavior of the brain. In 1980 
an artificial neural network was built that works but has high precision 
components, slow unstable learning, it is non-adaptive and needs an 
external control. Now we want low precision components, fast stable 
learning, adapt to environment and autonomous. How can we get 
this? We can make dynamical components, add feedback (positive 
and negative) and close the loop with the outside world. The ordinary 
differential equations or ODEs to control the neural dynamic are a 
stiff and nonlinear system. Why not just program this on a computer? 
We know that stiff and nonlinear dynamical systems are inefficient 
on a digital computer. An example is the IBM Blue Gene project with 
4096 CPUs and 1000 Terabytes RAM, which, to simulate the Mouse 
cortex uses 8 106 neurons, 2 1010 synapses 109 Hz, 40 Kilowatts and 
digital. The brain uses 1010 neurons, 1014 synapses 10 Hz and 20 watts. 
Analogue system is more efficient than the digital system by many 
orders of magnitude. Snider [4] suggests to use analogue electrical 
circuit denoted CrossNet or neuromorphic com-puting with memristor 
[5-7] to solve the problem of the neural computation. Let’s recall that 
for Turing the physical device is not computable by a Turing machine, 
which is the theoretical version of the digital computer. Carved [8] 
suggests that the physics or analogue computer is more efficient to 
solve the neural network problem. In fact, for analogue system we 
do not have algorithms to program the neurons. Rather, the digital 
program is substituted by the dynamics in the analogue computer. We 
can program the Cross Net Takashi Kohno, Rinzel electrical system 
as it was used by Snider to compute the parameters useful to generate 
the desired trajectories to solve problems. Physical description of the 
intentionality [3,4] is beyond any algorithmic or digital computation. 
To clarify better the new computation paradigm, we can refer the 
following principle: “Animals and humans use their finite brains to 
comprehend and adapt to infinitely complex environment.” 

To comprehend and adapt means to change the internal brain 
parameters (conductance of the synapse) to mimic the external 
transformation by suitable use of the sensors and effectors. The paper is 
divided in different parts. The first part of the paper shows the connection 
between neural network and electronic network. The second part 
explains the possibility by sensor voltages to produce wanted change 
in the brain currents. The third part explains how currents generate 
wanted effects on the muscle or other external element and the last part 
is the change of the internal impedance network or memory to control 
currents by fixed value of the sensor voltages. We take electrical power 
of the brain as metric geometry in the current or voltage space. Fixed 
the power, we can generate in the wanted transformed reference the 
straight line or geodesic that gives the best or minimum path in time of 
the point in the current or voltage space. Than we explain how intention 
(Freeman) can be introduced in the electronic model of the brain. After 
we take care of the Karl Pribram holographic model [9,10] of the brain 
according to the electronic model. So transmission, reflection waves 
can be modelled by the impedance matrix. The last part studies the 
connection between electronic brain model and mechanical sys-tem as 
pendulum and double pendulum.

Neuromorphic Computing by Neural Network
Biological information processing systems operate on completely 

different principles from those with which most engineers are familiar 
[11]. For many problems, particularly those in which the input data 
are ill-conditioned and the computation can be specified in a relative 
manner, biological solutions are many orders of magnitude more 
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Abstract
Neurons as active unities are connected one with the others by synapses in an electronic way. We argue 

that brain is not comparable with digital computer with algorithms because intention as software is introduced as 
transformation in the neural states without any digital reduction. Any electronic system has voltages and currents 
sources and complex interconnected impedances. By electronic system and neural network we have different 
possibilities to introduce Freeman intentional transformation in the brain. One is to use source voltages (sensor) to 
generate wanted behavior of currents (internal flows of the signals) with the same impedance network. We can also 
reverse the process: given the behavior of the currents we generate wanted voltages transformation (effectors as 
muscles) with the same impedance. Another possibility is to change the impedance network (memory) to generate 
wanted internal current. When intention is transformation of references, geometry changes and also the form of 
straight line (geodesic). Special reference and geometry can be modeled by the electrical power as metric. Different 
types of brain geometries as hyperbolic geometry of waves and elliptic geometry of stable states are discussed with 
examples. Because we have waves in brain, Karl Pribram created holographic model of brain that by scattering 
and transmitted matrix can be joined to electronic model. Mechanical system metrics are implemented in the neural 
network as electronic network.
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effective than those we have been able to implement using digital 
methods. This advantage can be attributed principally to the use 
of elementary physical phenomena as computational primitives, 
and to the representation of information by the relative values of 
analog signals, rather than by the absolute values of digital signals. 
This approach requires adaptive techniques to mitigate the effects 
of component differences. This kind of adaptation leads naturally to 
systems that learn about their environment. Large-scale adaptive 
analog systems are more robust to component degradation and failure 
than are more conventional systems, and they use far less power. For 
this reason, adaptive analog technology can be expected to utilize the 
full potential of wafer scale silicon fabrication. There is a myth that the 
nervous system is slow, is built out of slimy stuff, uses ions instead of 
electrons, and is therefore ineffective. When the Whirlwind computer 
was first built back at M.I.T., they made a movie about it, which was 
called "Faster than Thought." The Whirlwind did less computation 
than your wristwatch. We have evolved by a factor of about 10 million 
in the cost of computation since the Whirlwind. Yet we still cannot 
begin to do the simplest computations that can be done by the brains 
of insects, let alone handle the tasks routinely performed by the brains 
of humans. So we have finally come to the point where we can see what 
is difficult and what is easy. Multiplying numbers to balance a bank 
account is not that difficult. What is difficult is processing the poorly 
conditioned sensory information that comes in through the lens of an 
eye or through the eardrum. A typical microprocessor does about 10 
million operations and uses about 1 W. In round numbers, it cost about 
l0-7 J to do one operation, the way we do it today, on a single chip. If 
we go off the chip to the box level, a whole computer uses about 10-5 J 
/operation. A whole computer is thus about two orders of magnitude 
less efficient than is a single chip. Back in the late 1960's we analyzed 
what would limit the electronic device technology as we know it; 
those calculations have held up quite well to the present. The standard 
integrated circuit fabrication processes available today allow us to build 
transistors that have minimum dimensions of about 1 (10-6 m). By ten 
years from now, we will have reduced these dimensions by another 
factor of 10, and we will be getting close to the fundamental physical 
limits: if we make the devices any smaller, they will stop working. It is 
conceivable that a whole new class of devices will be invented-devices 
that are not subject to the same limitations. But certainly the ones we 
have thought of up to now-including the superconducting ones-will 
not make our circuits more than about two orders of magnitude more 
dense than those we have today. The factor of 100 in density translates 
rather directly into a similar factor in computation efficiency. So the 
ultimate silicon technology that we can envision today will dissipate 
on the order of 10-9 J of energy for each operation at the single chip 
level, and will consume a factor of 100-1000 more energy at the box 
level. We can compare these numbers to the energy requirements of 
computing in the brain. There are about 1016 synapses in the brain. A 
nerve pulse arrives at each synapse about ten times/s, on average. So 
in rough numbers, the brain accomplishes 1016 complex operations/s. 
The power dissipation of the brain is a few watts, so each operation 
costs only 10-16 J. The brain is a factor of 1 billion more efficient than 
our present digital technology, and a factor of 10 million more efficient 
than the best digital technology that we can imagine.

From the first integrated circuit in 1959 until today, the cost of 
computation has improved by a factor about 1 million. We can count 
on an additional factor of 100 before fundamental limitations are 
encountered. At that point, a state-of-the-art digital system will still 
require 10 MW to process information at the rate that it is processed 
by a single human brain. The unavoidable conclusion, which I 

reached about ten years ago, is that we have something fundamental 
to learn from the brain about a new and much more effective form 
of computation. Even the simplest brains of the simplest animals are 
awesome computational instruments. They do computations we do 
not know how to do, in ways we do not understand. We might think 
that this big disparity in the effectiveness of computation has to do 
with the fact that, down at the device level, the nerve membrane is 
actually working with single molecules. Perhaps manipulating single 
molecules is fundamentally more efficient than is using the continuum 
physics with which we build transistors. If that conjecture were true, we 
would have no hope that our silicon technology would ever compete 
with the nervous system. In fact, however, the conjecture is false. 
Nerve membranes use populations of channels, rather than individual 
channels, to change their conductance, in much the same way that 
transistors use populations of electrons rather than single electrons. It 
is certainly true that a single channel can exhibit much more complex 
behaviors than can a single electron in the active region of a transistor, 
but these channels are used in large populations, not in isolation.

We can compare the two technologies by asking how much energy 
is dissipated in charging up the gate of a transistor from a 0 to a 1. We 
might imagine that a transistor would compute a function that is loosely 
comparable to synaptic operation. In today’s technology, it takes about 
10-13 j to charge up the gate of a single minimum-size transistor. In ten 
years, the number will be about 10-15 j within shooting range of the kind 
of efficiency realized by nervous systems. So the disparity between the 
efficiency of computation in the nervous system and that in a computer 
is primarily attributable not to the individual device requirements, but 
rather to the way the devices are used in the system. 

Where did all the energy go? There is a factor of 1 million 
unaccounted for between what it costs to make a transistor work 
and what is required to do an operation the way we do it in a digital 
computer. There are two primary causes of energy waste in the digital 
systems we build today.

1) We lose a factor of about 100 because, the way we build digital 
hardware, the capacitance of the gate is only a very small fraction of 
capacitance of the node. The node is mostly wire, so we spend most of 
our energy charging up the wires and not the gate.

2) We use far more than one transistor to do an operation; in a 
typical implementation, we switch about 10 000 transistors to do one 
operation. So altogether it costs 1 million times as much energy to make 
what we call an operation in a digital machine as it costs to operate a 
single transistor. I do not believe that there is any magic in the nervous 
system that there is a mysterious fluid in there that is not defined, some 
phenomenon that is orders of magnitude more effective than anything 
we can ever imagine. 

There is nothing that is done in the nervous system that we cannot 
emulate with electronics if we understand the principles of neural 
information processing. 

Now we are stuck with an artifact, so we must try to reverse engineer 
it. Let us consider the primitive operations and representations in the 
nervous system, and contrast them with their counterparts in a digital 
system. As we think back, many of us remember being confused when 
we were first learning about digital design. First, we decide on the 
information representation. There is only one kind of information, and 
that is the bit: It is either a 1 or a 0. We also decide the elementary 
operations we allow, usually AND, OR, and NOT or their equivalents. 
We start by confining ourselves to an incredibly impoverished world, 
and out of that, we try to build something that makes sense. The 
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miracle is that we can do it! But we pay the factor of 104 for taking 
all the beautiful physics that is built into those transistors, mashing it 
down into a 1 or a 0, and then painfully building it back up, with AND 
and OR gates to reinvent the multiply. We then string together those 
multiplications and additions to get more complex operations those 
that are useful in a system we wish to build. What kind of computation 
primitives are implemented by the device physics we have available in 
nervous tissue or in a silicon integrated circuit? In both cases, the state 
variables are represented by an electrical charge.

We do basic aggregation of information using the conservation of 
change. We can dump current onto an electrical node at any location, 
and it all ends up as charge on the node. Kirchhoff’s law implements 
a distributed addition, and the capacitance of the node integrates the 
current into the node with respect to time.

In nervous tissue, ions are in thermal equilibrium with their 
surroundings, and hence their energies are Boltzmann distributed. This 
distribution, together with the presence of energy barriers, computes 
a current that is an exponential function of the barrier energy. If we 
modulate the barrier with an applied voltage, the current will be an 
exponential function of that voltage. The principle is used to create 
active devices (those that produce gain or amplification in signal 
level), both in the nervous system and in electronics. In addition to 
providing gain, an individual transistor computes a complex nonlinear 
function of its control and channel voltages. That function is not 
directly comparable to the functions that synapses evaluate using their 
presynaptic and postsynaptic potentials, but a few transistors can be 
connected strategically to compute remarkably competent synaptic 
functions. Most important, the nervous system contains mechanisms 
for long-term learning and memory. All higher animals undergo 
permanent changes in their brains as a result of life experiences. A 
silicon retina that does a rudimentary form of learning and long term 
memory. The ability to learn and retain analog information for long 
periods is thus a natural consequence of the structures created by 
modern silicon processing technology. The fact that we can build devices 
that implement the same basic operations as those the nervous system 
uses leads to the inevitable conclusion that we should be able to build 
entire systems based on the organizing principles used by the nervous 
system. We will refer to these systems generically as neurornorphic 
systems. We start by letting the device physics define our elementary 
operations. These functions provide a rich set of computational 
primitives, each a direct result of fundamental physical principles. 
They are not the operations out of which we are accustomed to building 
computers, but in many ways, they are much more interesting. They 
are more interesting than AND and OR. They are more interesting 
than multiplication and addition. But they are very different. If we try 
to fight them, to turn them into something with which we are familiar, 
we end up making a mess. So the real trick is to invent a representation 
that takes advantage of the inherent capabilities of the medium, such 
as the abilities to generate exponentials, to do integration with respect 
to time, and to implement a zero-cost addition using Kirchhoff’s law. 
These are powerful primitives; using the nervous system as a guide, 
we will attempt to find a natural way to integrate them into an overall 
system-design strategy.

Neural System as a Complex Electrical Circuit 
In opposition to actual digital sequential computers where 

computations are carried out by a single complex processor there are 
Cellular Neural/Non-linear Networks (CNN) [12] which are analog 
parallel machines with a high number of simple processors, which 
are disposed in a regular array, and each processor is connected to 

the other processors in a reduced neighborhood. One of these analog 
processors is represented by the electrical activity of the synapse given 
by the electrical circuit (Figure 1).

The impedance matrix is
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The geodesic trajectory [9] of the synapse activity is controlled 
by the relation power = iTZi where Z is the impedance matrix in the 
currents space. In an extensive form we have
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Brain as an Electronic System	  
For the electrical circuit that simulates membrane electrical circuit 

(Figure 2).

For the Hindmarsh – Rose [13,14] model of neuron we have
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Figure 1: Electrical circuit of the synapse.

Figure 2: Membrane electrical circuit.
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Because the brain is a complex electrical circuit with capacity and 
nonlinear resistors, a network of neurons or an electronic network is a 
general transformation or MIMO (Figure 3).

We know that in any electronic system the voltages and currents 
are related in this way
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where the voltages are the control variables and the currents are the 
controlled elements [5,6]. The Jacobian matrix is
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where Y is the dynamic admittances in one point of the system voltage 
current function. For one dimension the current voltage relation is 
written in this form i=f(v) that in electronics is denoted characteristic 
function. In Figures 4 and 5 we show two different cases of characteristic 
function in one dimension [15]. Figure 3: Electronic model of neuron.

Figure 4: An approximation of the potassium and sodium ion components 
of a so-called "whole cell" I–V curve of a neuron.

Figure 5: MOSFET drain current vs. drain-to-source voltage for several 
values of the overdrive voltage, VGS -Vth; the boundary between linear 
(ohmic) and saturation (active) modes is indicated by the upward curving 
parabola.
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We remark that

I = YV So V = Y-1 I = ZI

where Z is the multi - port impedance. Given the admittance matrix 
Y the diagonal elements are the self-admittance for any element of the 
N ports and the cross admittance in non-diagonal admittance is the 
mutual admittance for which we have a transfer of the power between 
ports. The transfer power is the bond between ports. For example 
given the electrical circuit in Figure 6 we have three currents and three 
voltages one for any resistance. The three currents are not independent, 
in fact we have
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where

( )1,1 1,2 1 3 3
( )2,1 2,2 3 2 3

   
   
     

+
= =

+

Z Z R R R
Z

Z Z R R R

( )1,1 1,2 2 3 3 11
( ) 1 2 1 3 2 32,1 2,2 3 1 3

   
   
     

+ −−= = =
+ +− +

Y Y R R R
Y Z R R R R R RY Y R R R

And
1 1

1 3 3 1 3 31 1 1 1

3 2 3 2 2 2 3 2 3 2

 
 
 
 
 
 
 

− −+ +          
          = = =

+ +                    

T TR R R R R RE E E E
TP i E

R R R E E E R R R E

Control of wanted transformation for currents and voltage

Given the relation between the current and voltages sources in the 
neural network as electrical circuit, we want to show how is possible to 
change the voltages sources to have wanted currents in the brain. For 
reverse how are the suitable currents to generate wanted sources. In the 
brain system the first problem is to adapt the sensor system to generate 
wanted behavior in the brain, the second is to adapt brain internal 
currents to fixed external sources of voltage.

1 3 31 1

2 3 2 3 2

+    
    =

+        

R R Re i

e R R R i

or

e = Ri

And the reverse
1

1 3 31 1

2 3 2 3 2

−
+    

    =
+        

R R Ri e

i R R R e

or

e = R-1i

In the electrical circuit we have different types of control. The first 
type is to control current by voltages sources with the same impedance. 
If this is the wanted transformation of the current

1 11 12 1

2 21 22 2

     
     =
          

I t t i

I t t i

or

I=Ti

the change of the voltages e to have wanted change of current is
1(  ),  −= =E R T i i R e

so
1−=E RTR e

In fact we have
1 1 1 1( )  − − − −= = = =I R E R RTR e TR e T i

The second type is to change the current to have wanted change of 
the voltages with the same impedance.

 

 

 

 

E1 E2 

R1 R2 

R3 

Figure 6: Two-port system.
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1 11 12 1

2 21 22 2

     
     =
          

E q q e

E q q e

or

E = qe

1( ),−= =I R Qe e Ri

So
1  −=I R QR i

And E is the set of voltages generators that change the current from

 i  to  T i = I

In the third type, we change the internal parameters of the brain or 
impedances in such a way that with the same voltages sources we have 
the wanted change of the current. In fact

1 1( ) ( )
1'

=
− −= =
−=

e Ri

e R T T i RT Ti

R RT

 and

1−-1 -1 -1I =(R') e=(RT ) e=TR e=Ti

In the fourth we change the internal parameters of the brain or 
impedance in such a way that with the same current we have the 
wanted change of the voltages.

1
1 1 1 1( ) ( )

1 1 1( ')

− =
− − − −= =
− − −=

R e i
R T Te R T Te i
R R T

In fact we have

'= = =E R i TRi Te

Change of electrical circuit variables with the same power

Because the power is the metric of the brain as electrical circuit, we 
are interested to change the brain variables as current and voltages with 
the same metric or power. So we have

1,

'

−= =

=

=

Tp=i Ri i T I SI
T Tp I S RSI
TR S RS

With the new impedance we have

 
,

=
= =

T TE = R' I = S Ri S e
i SI e Ri

Reactive electrical elements in the electronic system

When the electrical circuit we adjoin capacitors and inductors, 
the relation between currents and voltages is given by impedances or 
admittances valuated by complex numbers. Now given the electrical 
circuit in Figure 7, we have the prototype relation between currents 
and voltages

R 0 0 0 0T 11 0 1 0
0 Z 0 0 0

1 0 1 0Le i1 10 0 R 0 0= 0 1 0 12e i2 20 1 0 10 0 0 Z 0
C1 1 1 1

0 0 0 0 R
3

   
   
      

 
    
    
    
    
    
        
 

That can be written in this way

1 3 31 1

3 2 32 2

+ +    
    =
 + +        

R R Z Re iL
R R R Ze i

C

or

e = Zi

And 1−=E ZTZ i . With the new potential sources we can change 
the current in a wanted way. For the power we have the expression

1, ,

'

−= = =

=

T T Tp= i Zi i T I SI p I S RZSI
TR S ZS

With the new impedance we have

,= =
=

i SI e Zi

T TE= R'I = S Zi S e

Pribram Wave Holographic and Electronic Model of 
Brain 

In the previous brain representation we consider the brain as an 
electronic circuit with currents, voltages, impedances and power as 
geometrical brain metric [9,16]. The aim of this chapter is to represent 
the electronic circuit as an optical mirror or an optical transmitter of 
energy. This image will be very useful to create a bridge from electronic 
parameters as impedances and optical property of the brain waves 
as scattering (reflection) and wave transmission from one point to 
another. In this way we can represent the experimental evidence of the 
signals movements into electronic internal properties. Now we begin 
to present this new type of brain image. Given two port system can be 
represented as in Figure 8. 

In the electrical circuit the power is given by the generators and can 
be transmitted or reflected in accordance with the system impedance. For 
the electrical circuit we have the well-known impedance matrix for which

 
 

 
 
 
 
 
 
 

R1 R2 

R3 

L C 

Figure 7: Two port electrical system with reactive elements as capacitor 
C and inductor L.
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1,1 1,21 1

2 2,1 2,2 2

    
    
         

=
E i

E i

Z Z

Z Z

Given the currents as sources or inputs in channels 1 and 2 we 
compute the voltages E or outputs in channels 1 and 2 by parameters Z. 
The transmission matrix is

1,1 1,22 1

2 12,1 2,2

    
    
    
        

=
E E

i i

T T

T T

Given channel 1 with its voltage E1 and current i1 we compute by 
T the voltage and current transmitted in channel 2. The scattering or 
reflected matrix is

1,1 1,21 1

2 22,1 2,2

    
    
    
        

=
i E

E i

S S

S S

Given E1 by the matrix S we compute the reflected value i1. For i2 
we compute again with S the reflected value E2. Given the impedance 
matrix it is possible to compute the transmitted matrix as follows:

( )1,1 1 1,21 1,1 1,11 1,2 2 1,212
( )2 2,1 1 2,21 2,1 1,1 1 1,2 2 2,21

( )1,1 1,11 1,2 2 1,2 2 2,11 2,2 2 2

1,11 1,2 21

2 2,11 2,2 2

   
   
           

  
 
   

+ + +
= =

+ + +

+ + = + =

+
=

+

E i i E iE

i E i E i i

i i i i i

i iE

E i i

T T T Z Z T

T T T Z Z T

T Z Z T Z Z E

Z Z

Z Z

( )1,11 1,2 2,1 1 2,21
( )2,11 2,2 2,1 1 2,21

( )2,1 1,11 1,2 2 2,21 2

1,1 1,1 2,1

1,1 1,2 1,2 2,2

1,2 2,1
01,1 1,2 2,2

 
 
 

    











+ +
=

+ +

+ + =

=

+ =

=

+ =

i E i

i E i

i i i

Z Z T T

Z Z T T

T Z Z T i

So
T Z Z

T Z T Z

Z T I

Z Z T

For the circuit in Figure 5 we have 

( )1 3 3

3 2 3

3

( )1 3 3

1,1

1,1 1,2

2,1
02,2

+

+

+











=

+ =

=

+ =

R R

R R

R R

T R

T T R

R T I

R T

and 

3 1 2 1 3 2 4
1 3 1 32 1

12 11 3
3 3

 
 
    
    
    

       
 
  

+ +
+ +

=
+

−

R R R R R R R
R R R RE E

i iR R
R R

When we solve the system for the transfer matrix we have the 
relation between the transfer matrix and the impedance matrix. Now 
we can also find the relation between the scattering matrix and the 
impedance matrix in this way

1,1 1 1,2 21

2,1 1 2,2 22

1,1 1,1 1 1,2 2 1,2 2

2,1 1,1 1 1,2 2 2,2 2

2,1 1,1 1 1,2 2 2,2 2 2,1 1 2,2 2 2

1,1 1 1,2 21

2,1 1 2,2 22

1,1 1,1 1

( )
( )

( )

(

+  
= =   +   

+ + 
 + + 

+ + = + =

+  
= =   +   

S E S ii
S E S iE

S Z i Z i S i
S Z i Z i S i

S Z i Z i S i Z i Z i E

Z i Z iE
Z i Z iE

Z S E 1,2 2 1,2 2

2,1 1,1 1 1,2 2 2,2 2

1,1 1,1 1 1,2 2 2,2 2 1

2,1 1,1 2,1

2,1 1,2 2,2 2,2

1,1 1,1

1,1 1,2 2,2

)
( )

( )   

   

0

+ + 
 + + 

+ + =

=
 + =
 =
 + =

S i Z i
Z S E S i Z i

Z S E S i Z i E

S Z Z
S Z S Z

So
Z S I

Z S Z

In our example we have 

2

( )2,1 1 3 3
( )2,1 3 2,2 2 3

( )1 3 1,1
( ) 01 3 1,2 3+












+ =

+ = +

+ =

+ + =

S R R R

S R S R R

R R S I

R R S R R

And 

1 2 3
1 3 1 31 1

2 23 1 2 1 3 2 3
1 3 1 3

 
 
    
    
    

       
 
  

+
−

+ +
=

+ +
+ +

R R
R R R Ri E

E iR R R R R R R
R R R R

The relation between the transfer matrix and the scattering 

matrix is 

1,2 1,2 2,2

1,2 1,1 1,1 2,1

2,2 1,2

2,2 1,1 2,1 0

=
 + =
 =
 + =

T S S
T S T S

T S I
T S T

We can use the matrices also in the neuron shown in Figure 8. 
We connect impedance matrix Z with the transmission and scattering 
matrix by which we can study the propagation of the waves that we 
show in Figure 9. So in this way we establish a bridge between Pribram 
holographic model of the brain [9,10] and the electronic image of the 
brain that we study in this paper (Figure 9).

Scattering and transmitted signals in the brain. The input waves of 
the voltages and currents are similar to the light in the brain (Figure 10).

Each electronic system is a medium with N ports. Each port has 
one input and one reflected output. By the electronic circuit the N ports 

 

 

 
 
 
 
 
 

 
System Channel 1 Channel 2 

Figure 8: We divide the electrical circuit into two parts. One part is the 
external element and the other part is the internal element.

Figure 9: Neuron as an electronic system with four channels with their 
proper electrical parameters. For this neuron we can compute the 
impedance matrix, the transmission matrix and the scattering matrix.
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are connected in a complex way. So when on one port are impressed 
voltages, these can be transformed in the cur-rent as in the case of the 
antenna or can be scattered in other ports by the transfer process or 
a reflection process. So power can be dissipated and absorbed as an 
antenna by a non- linear resistor network. Inside the electronic system 
the power can be transmitted to the other ports or reflected (scattering).

A Simple example of scattering of an elementary electrical circuit

Now given the electronic circuit (Figure 11).

The power in the reference resistor (reflection) R1 is given by the 
expression

2 2( ) ,1 1 1 2
2 2( )2 2 1 2

= =
+

= =
+

EP R I Rrefl R R
EP R I Rload R R

and

2 2 22 1 2 1( )  
1 2 1 2 1 21

− −
= = =+ + +

dP R R R Rrefl E I S IR R R R R RdR

where S is the scattering coefficient. The behaviour of the power and S 
for R2=0.5 is  shown in Figure 12.

When R1 < R2 and R1 increases, the power in R1 ( reflection ) increases 
at the maxi-mum value and S>0. When R1>R2 and R1 increases, the 
power in the reference impedance decreases from the maximum value 
and S<0. The scatter S measures the variation of the reflected power 
when we change the value of the reference impedance R1. 

Geometry and Conceptual Part in Neural Network
The electrical power gives us the material aspect of intentionality. 

The other part of intentionality is the conceptual one which is given by 
the wanted transformation

( , ,....., )1 1 1 2
( , ,....., )2 2 1 2

.....
( , ,....., )1 2









=

=

=

x

x

x

x y y yp
x y y yp

x y y yq q p

where ( , ,..., )1 2x x xp  are the wanted variables and (y ,y ,...,y )n1 2  are 
the initial variables. We implement the wanted transformation into the 
current space in this way

( , ,....., )1 1 1 2
( , ,....., )2 2 1 2

.....
( , ,....., )1 2












=

=

=

i i I I I p
i i I I I p

i i I I Iq q p

where the current substitutes the variables x and y without changing 
the relation between x and y. With the Jacobian of the previous 
transformation we give a linear local form for the transformation 

1

1 1 1...
1 2

2 2 2...
1 2

... ... ... ...

...
1 2

−=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂=

∂ ∂ ∂
∂ ∂ ∂

T

i i i
I I I p

i i i
I I IS p

i i iq q q
I I I p

Given the reference electronic system where the power is

 ,
1  −= =

Tp= i Z i

i T I S I

With substitution of i we have

  

'  

=

=

T Tp I S Z S I
TZ S Z S

Figure 12: Power goes to the maximum value for R1=R2 and decreases. 
The scattering value when we change the resistor R1 always decreases.

Figure 10: Scattering and scattered waves of voltages and currents as 
light in the brain as the pribram holographic model.

 
 
 
 
 
 
 
 

R1 

R2   E 

Figure 11: Simple electrical circuit.
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The power p is invariant for the transformation S and can be 
compared with the metrics and the metric tensor g.

,2

,

,2 Z  
,

' Z 

= ∑

=

= = = = ∑

=

r sTs = p=i gi g i ir s
r s

g Z
r sT T Ts p I S S I I GI G L Ir s

r s
TR S S

And

 Z = =T TG S g S S S

The identity between the geometric metric tensor G and the 
electrical circuit metric Z is the fundamental equation that connects 
conceptual metric tensor G with the impedance metric of the electronic 
image of the brain. The metric tensor is the conceptual part of the brain 
and the impedance the physical part of the brain. In conclusion we have 
the fundamental coherence principle between conceptual and material 
parts given by the following expression

 , ,=G Zi j i j
With the fundamental equation we can compute the power 

quadratic form in the electronic image of the brain.

Example:

Let’s begin with an example. When the conceptual intention moves 
on a sphere given by the simple equation

 

2 2 2 2
1 2 3y y y r+ + =

in elliptic geometry for stable situation this geometry can be obtained 
by the quadratic form of the power given by resistors without capacitor 
and inductors (Figure 13).

And we have the transformations (conceptual intention)

sin( )cos( )1
sin( )sin( )   2

cos( )3

α β

α β

α








=

=

=

x r

x r

x r

Let’s compute the geodesic in the space (x1, x2 , x3). So we have
22 2

2 31 2

22 2 2 2
2 2 23 31 1 2 2

( , )

sin

α β

α β α β α β α βα
α α α α α α

    = + +     
     

        = + + + + + = +                 

dxdx dxds
dt dt dt

dx dxdx dx dx dxd d d d d d d dr r
d dt d dt d dt d dt d dt d dt dt dt

for the fundamental equation Gij= Zij we have

2

2 2

0
0 sin ( )α

 
=  
  

r
z

r

When the new variables ,1 2α β= =q q  the currents are

2 21 2 2 2
11 2

2

, sin ( )

α

β

 
  

= +  
  
  

d
i dt power r r q
i d

dt

i i

We remark that the resistors are 

1
2 2 2 2 2, sin( ) sin( )1 2 α == =R r R r r q

And R2 is a function that we can realize by a memristor. For 
capacitor and inductor the currents can have imaginary values. In this 
case it is possible to represent hyperbolic geometry of waves as in the 
space time geometry 

2 2 2 2 2 2 2 2 2 2 2( ) ,

   
   
   
   
   
   
      

= + + − = = = + + +

Tx x
y y

s x y z c t s x y z ict
z z

ict ictWhere

i2 = -1 

with complex value for the currents ,we can have the virtual power p 

2 2 2 2 2 2 2 2( )1 2 3 4 1 2 3 4= + + + = + + −p I I I iI I I I I

as metric that represent the hyperbolic geometry of the waves.

Mechanical Geometry as Conceptual Intention in 
Neural Network 

To understand the meaning of geometry in the neural dynamical 
process, we study the mechanical dynamic transformation of the two 
dimensional space reference from ordinary Cartesian coordinates (x, y) 
into polar coordinates (r, α) by pendulum system [9,15]. 

Simple pendulum and change of variables

Given the simple pendulum in (Figure 14) the pendulum 
coordinates are

cos( )
sin( )

α
α

=
=

x r
y r

With the derivative properties we have

α
α α α

α
α α α

 
 

   
   
    

 
 
 
 

   
   
    

 
 

= + =

= + =

dr
dtdx dx dr dx d dx dx

dt dr dt d dt dr d d
dt
dr
dtdy dy dy dy dydr d

dt dr dt d dt dr d d
dt

Figure 13: Sphere where the green, red and blue lines are geodetic.
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Figure 14: Simple pendulum.
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and

  ,
α

α
α

 
  = =
  

     
     
     
     
     
     

    

=vx and V JWvy

dx dx dx dr
dt dr d dt
dy dy dy d

dtdt dr d

In a graphic way we have (Figure 15)

Where the Jacobian 
cos( ) sin( )
sin( ) cos( )

α α
α α

=
 
 
  

−
J

r
r

is the connection matrix

 and 
α α

= =

 
   
   
    
  

W

dr
vdt r
vd

dt
 also the reverse connection matrix

1

1 cos( ) sin( )cos( ) sin( )
1sin( ) cos( ) sin( ) cos( )

α αα α
α α α αα

    
                                

     

−−
= =

−

dx dxdr
r dt dtdt

r dy dyd rrdt dt dt
Now we compute the expression of the same intensity of velocity in 

the polar reference and in the Cartesian reference (Figure 16).

2 2 2
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α
α

α
α

α

                                          
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dx dx dr
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dt dt dr d dtTV V
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
 
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α α
α α

α α
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Kinetic energy T of the pendulum with r = constant 

2 2 2

2 2

1 1( ) ( )
2 2

1 ( )( ) , ,
2

α α

α

= =

= =

d dT m r mr
dt dt
dM r where M mr
dt

 

is the inertial moment for a point with mass m. We remember that the 
inertial momentum M in the polar coordinates substitutes the mass m 
in the Cartesian reference. The velocity in polar coordinates is

α= dv r
dt

In this example we show that the kinetic energy expression, as 
we know, changes with the change of the reference. Because the 
Lagrangiana is

1 2( )2
α= = dL T m r dt

and the momentum is

( )
α

α α
∂= =

∂
L dp mrd dt
dt

we have

22 ( ) ( )α α αα
α= = =d d dT v p r mr m rdt dt dt

Now given the general expression of the kinetic energy

22 ( ) ( )α α αα
α= = =d d dT v p r mr m rdt dt dt

we show that the kinetic energy and the metric for the change of 
reference is the scalar product of two variables : one is the velocity and 
the other is the kinetic momentum. The velocity can be considered 
as the flux and the momentum as the force. In the pendulum natural 
dynamics the energy is invariant, so the pendulum movement has a 
geodetic as trajectory. Now for the general form of kinetic energy

1 ,   ,,2
1( ), ,2

=

∂ = + =
∂

jiT g v v the momentum isi j
T jg g v pi j j i iiv

and
12 ( ), ,2

,2, , , ,

βα α
α α β β α

β βα α
α β β α α β α β

= = +

= = =

T v p v g g v

because
g g T v g v g v v

In this way we can give a more general interpretation of the kinetic 
momentum as dual variable of the velocity in classical mechanics.

Double pendulum 

The double pendulum can be the model of two interaction 
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Figure 15: Velocity in polar coordinates.
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Figure 16: Velocity ds/dt in the Cartesian coordinates.
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Figure 17: Double pendulum.

Figure 18: Two neuron connections modelled by double pendulum.

oscillating neurons as we show in Figures 17 and 18. To model a chain 
or path of pendulums (neurons) we use two main transformations: 
one is the set of multidimensional rotations and the other is the set of 
geometric translations. For simplicity we use the two dimension image. 
Rotation 
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The simple pendulum is given by a simple rotation

cos( ) sin( ) 0 0
sin( ) cos( ) 0 1

0 0 1 1
sin( )1
cos( )1

11

α α
α α

α

α
 
 
 
 
 
 
  

  
  
  
  
  
     

 
 
 
 
 
 
  

−

= =

L

L x
L y

Behavior of the simple pendulum (Figure 19)

For the translation we have

1 0
0 1
0 0 1 1 1
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The translation is the transfer operator that moves from one 
pendulum to another (translation in the neurons is the connection 
from one neuron to another. With the two transformations we obtain 
the double pendulum coordinates of the masses m1 and m2.
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The behavior of the second pendulum (neuron) is the interference 
of the first pendulum (neuron) plus the conditioned value of the second 
pendulum that is equal to the first pendulum plus a new phase value β 
and with intensity L2. The second oscillator (neuron) behavior is shown 
in Figure 20.

The correlation of the first pendulum with the second or 
entanglement is shown in Figures 21 and 22.

For y we have

The kinetic energy (metric) of the double pendulum is

1 1( ) ( ) ( ) ( )2 2

( ) ( )( )

= =dA dA dB dBT TT M J M J
dt dt dt dt

dB dBT TJ MJ
dt dt

Where J is the Jacobian of the relation between A and B

Figure 19: Behaviour of simple pendulum.

Figure 20: Behaviour of the second pendulum.
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The kinetic energy as metric can be compared with electronic 
system in this way

1 ( )2

, ,

= =

= = =

T TT power i S ZS i

dBi S J Z M
dt
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,, ,
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=

m
m

M
m

m

We remark that the new mass matrix JT M J for the double pendulum 
is not diagonal but has cross elements that correlate variables. So the 
form of the kinetic energy is

Figure 21: Correlation between the variables x1 and x2.

Figure 22: Correlation between the variables y1 and y2.

2 2 2 21 1 2 2
1 1 2 2

1 ( ) ( ) ( ) ( )2= + ++ +dx dy dx dyT m m m m
dt dt dt dt

and 

1 2 2( ) ( ) 21,1 2,2 122
α β α β= + ++d d d dT g g g

dt dt dt dt

where

2
1,1 1 1

2 22 cos( ) ( )2,2 2 1 1 2 1 2 2
2cos( ) 21,2 2 1 2 2 2

β

β

=

= + + +

= +

g m L

g m L m m L L m

g m L L L m

where g1,2 is the entangled bond between the two connected 
pendulum in the double pendulum. When we join two oscillators in 
one double oscillator the metric in the geometric space of the velocity 
moves from flat geometry where the cross term in the metric tensor is 
equal to zero to space with curvature where the cross term

2cos( ) 22 1 2 2 2β +m L L L m

is different from zero. This means that there is dependence between 
the two oscillators (synchronization or entanglement between two 
neurons. The correlate double pendulum and two neurons system 
dynamics can generate this chaotic situation shown in Figure 23. 

Now for the previous chapter we can compute the mechanical 
momentum 

1( ), ,2
 

β
α α β β α

γα α
γ

= +

=

p g g v

v J v

where J is the Jacobian and the vγ the velocity in the Cartesian reference.

Conclusion
In this paper we present brain as an electronic system with voltages 

sources as sensors, currents as internal variables in the brain and 
electrical power as metric in non- Euclidean space of the currents. The 
tensor metric in the brain is given by the impedances of the neurons. 
With this model we give suitable control for currents, voltages. Given 
a wanted sensor or voltages transformation we search with the same 
impedances the internal possible values of the currents, at the reverse we 
control the sensor or voltages sources to have wanted internal currents 

Figure 23: Double pendulum and chaotic behavior.
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transformations. We also can change the impedances or internal brain 
parameters to have with the same sensor voltages the wanted internal 
currents or reverse with the same internal currents wanted sources 
or voltages transformation. At the last we fixed the power or metric 
value in the current space and we change the internal parameters of the 
brain as impedances to have wanted internal currents. We can make 
the same for the voltages sources or sensors. Because is very difficult to 
measure the impedance in the brain, we study the brain as an optical 
system with scattering matrix (reflection) and transfer creator matrix 
for electronic system as the brain. When we measure the scattering 
matrix or the transmit with simple calculus is possible to compute the 
impedances matrix. At the end we connect geometrical transformation 
and mathematical metric with brain structure that in this way can 
implement any type of wanted transformation in non- Euclidean space 
with curvature. Because brain control mechanical part of the body 
we show that with the geometric representation of the brain system 
we can implement in the brain any type of the complex mechanical 
movements. We create also examples. The aim of this paper is not 
to solve particular problems by the electrical image of the brain but 
only to give the conceptual and mathematical instruments for future 
applications in medicine, in robotics, in computation theory and other 
possible applications. Intention in this model is relate to the abstract 
mathematical theory of wanted transformations and mathematical 
geometric image as curvature that we want to implement in the brain 
physical system.
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