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Introduction
Modeling the propagation and shoaling transformation of solitary 

waves in shallow water regions is practically important to the study of 
impacts of nonlinear waves on coastal environments. Especially, the 
prediction of wave run up caused by a solitary wave like tsunami plays 
critical role in the planning of coastal protection. Therefore, studies of 
solitary waves experimentally and numerically have been performed 
to characterize the tsunami wave movement towards the coastal 
regions. In the 1870’s, Boussinesq and Rayleigh described solitary 
waves mathematically with the so-called Bousinessq equations (BE) 
[1]. Madsen et al. [2] developed a new form of BE to improve the linear 
dispersion characteristics of the BE in deeper water. Later, Madsen 
and Sorensen [3] generalized this new form of the BE for mild sloped 
bottom in order to model shoaling of waves from deep to shallow 
water. Introducing the layer-mean velocity potential, Wu [4] developed 
a set of generalized BE for modeling nonlinear shallow water waves. 
Nwogu [5] also derived a different form of BE to approximate wave 
propagation at much deeper environment. The finite difference (FD) 
schemes have been extensively used to discretize the nonlinear wave 
equations [2,6-8]. While modeling complex geometries, finite element 
(FE) method allows the computational meshes matched closely to the 
flow domain and obtain more accurate results. Zhong and Wang [9] 
stated that spurious oscillations adversely affect the numerical results 
when convection dominates in wave propagation. It was known that 
the Godunov [10] type finite volume (FV) schemes have the superiority 
in capturing flow discontinuities or oscillations in regular or irregular 
domains [11-13]. Therefore, application of FV numerical method to 
discretize BE has attracted researchers’ attention. The combined FV-
FD schemes were developed [14-17] to discretize the BE, where the 
FV method was applied to discretize the conservative parts and the FD 
scheme to discretize the dispersive terms and source terms. Stansby 
[14] modeled solitary wave run-up cases using FV-FD hybrid scheme.
Erduran et al. [15] tested the hybrid scheme by simulating propagation 
of sinusoidal waves in deep and shallow water and their propagation
over a submerged bar. Modeling propagation of regular waves and
random waves along a sloping bottom was performed by Shiachet and
Mingham [16]. Investigation of wave propagation, shoaling and runup 

using a finite volume solver of the Boussinesq equations was performed 
recently by Kazolea et al. [18]. Zhong and Wang [9] pointed out that 
the researchers had concentrated more on modeling monochromatic 
deep water waves, but nonlinear shallow-water waves such as solitary 
waves and their diffraction and refraction in domains with variable 
bottom topography had not been studied extensively. Therefore, this 
paper focuses on modeling cases of solitary wave transformation by 
discretizing the improved form of BE with a developed finite volume-
finite difference solver. Nonlinear wave-wave interaction can be tested 
by simulating the collision of two solitary waves. During the collision 
of two solitary waves, waves behave like interacting elementary 
particles such as electrons or protons [19]. Byatt-Smith [20] derived 
a formulation showing that the peak of the interaction after head-on 
collision of two equal-amplitude waves is greater than twice of the initial 
wave amplitude. Yih and Wu [21] derived a corrected version of BE for 
long water waves and proposed a general solution for the interaction 
of solitary waves. Hammack et al., [22] investigated both the following 
and counter propagating (head-on) collisions by numerically solving 
Euler’s equations. As solitary waves approximately resemble steep 
waves on beaches, the shoaling and runup of solitary waves on a sloping 
bottom is a main concern in coastal regions [23]. Shoaling process 
can be calculated up to the breaking point based on weakly nonlinear 
wave theories [23]. The bed slope gradient of the cells becomes more 
important while discretizing flow equations on a computational slope 
with variable bottom topography. Centered discretization of slope 
term fails when the waves with sharp wave front propagate on non-
flat bed. Zhou et al. [24] suggested the surface gradient method (SGM) 
to overcome this difficulty. In the SGM, the reconstruction of water 
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Abstract
This paper presents a mixed finite volume and finite difference solver with results showing the solitary wave 

interactions and shoaling process by solving a set of conservative forms of Boussinesq equations. A second order 
accurate finite volume scheme is applied to the conservative terms of the governing equations while up to the second 
order finite difference formulations are used to discretize the dispersive source terms with higher order derivatives. 
The limiters and surface gradient method are implemented in the model to remove the unwanted spurious oscillations 
and preserve the still water condition without introducing errors at the interfaces. The performance of the present 
numerical solver is tested with results of head on collisions and shoaling of solitary waves compared against those 
from finite element models that were developed based on fully nonlinear weakly dispersive and weakly nonlinear 
weakly dispersive forms of the Boussinesq equations as well as analytical solutions and experimental observations.

Modeling Interactions and Shoaling of Solitary Waves Using a Hybrid 
Finite Volume and Finite Difference Solver
Burak Turan1 and Keh-Han Wang2*
1Emek 4, Cad No: 158/4, Cankaya, Ankara, Turkey
2Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679



Citation: Wang KH, Turan B (2014) Modeling Interactions and Shoaling of Solitary Waves Using a Hybrid Finite Volume and Finite Difference Solver. 
J Appl Computat Math 3: 173 doi:10.4172/2168-9679.1000173

Page 2 of 8

Volume 3 • Issue 5 • 1000173
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

surface level rather than water depth is implemented to get rid of the 
spurious waves and preserve the still water condition without creating 
errors at the interfaces. A combined finite volume and finite difference 
model by solving the Madsen et al., [3] BE with a second order accurate 
FV scheme applied to the conservative terms and FD scheme on the 
dispersive source terms is developed in this study to model propagation 
of solitary waves, head-on collisions of solitary waves, and solitary wave 
shoaling over a submerged shoal. The SGM proposed by Zhou et al. [24] 
is included in the present study to overcome numerical errors during 
propagation of waves along variable topography. Zhong and Wang 
[9,25] developed finite element solvers to discretize fully nonlinear 
weakly dispersive (FNWD) and weakly nonlinear weakly dispersive 
(WNWD) forms of the BE. The results obtained from the present FV-
FD model are compared with those from the FE solvers developed by 
Zhong and Wang [9,25] and other published solutions.

Governing Equations
The one-dimensional (1-D) Boussinesq equations proposed by 

Madsen et al., [3] for waves propagating over regions of shallow water 
depth (Figure 1) are expressed as 

( ) 0uh
t x
ζ∂ ∂
+ =

∂ ∂
 				                 (1)

2( ) ( ) 0fx
uh u h gh D ghS
t x x

ζ∂ ∂ ∂
+ + + + =

∂ ∂ ∂
                                    (2)

where

ζ=free-surface elevation measured from the still water surface level,

h=water depth measured from the bottom of the channel to the 
water surface level,

u=velocity in x direction,

Sfx=friction slope in x direction, and

D = dispersive term, which is given as
3 3 2 2

2 3
2 3 2

1 1( ) ( ) ( ) ( 2 )
3 3

q H qD B H BgH H BgH
x t x x x t x
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    (3)

where h=H+ ζ , q=uh, and B=dispersion coefficient. As suggested by 
Madsen and Sorensen [3], B=1/15. Replacing the derivatives of free-
surface elevation ζ with the derivatives of water depth h, we have from 
Eqs. (1) and (2) the revised Boussinesq equations (BE) as 

0h uh
t x

∂ ∂
+ =

∂ ∂
					                    (4)

2 21( ) ( )
2 ox fx

uh u h gh D gh S S
t x

∂ ∂
+ + + = −

∂ ∂
	                 (5)

Hybrid Finite Volume and Finite Difference 
Formulations

The time and spatial discretization using a predictor-corrector type 
scheme for the 1-D BE on a small section of the computational domain 
defined in Figure 2 is given as

n n
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i i i

F - Ft tU = U - [ ]+ S
2 x 2
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		                 (6)
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U = vector of 1-D conserved variables,

F=vector of 1-D flux function,

S=vector of 1-D source terms.

D=dispersive term,

Superscript n, p, and n+1=variables at n time level, predictor level 
and n+1 time level,

Sox=the bottom slope of the channel in x direction, −∂z / ∂x,

Sfx=friction slope in x direction,

z=bottom elevation,

Δx, Δt=mesh size and time step,

and n=Manning’s roughness coefficient.

To have more accurate solutions, the Roe [26] second-order 
scheme is used. Different from the first-order scheme using directly 
the values at cell centers, the conserved variables are first reconstructed 
at the left and right sides of cell edges using the limiters and surface 
gradient method. As depicted in Figure 2, the position immediately 
inside of each cell edge, which is being updated, is named as the left 
side (L) and outside as the right side (R). The flux vectors at the cell 
interfaces of cell i, Fi±1/ 2, can be discretized as

i±1/2 L i±1/2 R i±1/2 i±1/2
1F = [F(U ) +F(U ) -(|J| U) ]
2

∆ 	                 (8)
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Figure 1: Schematic diagram of wave propagation in a domain of uneven 
bottom.

Figure 2: A section of meshes used in FV-FD scheme and conserved variables 
at the left and right cell edges.
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Where J = Jacobian matrix and
2

m m
i±1/2 i±1/2

m=1 i±1/2

(|J| U) = | | W∆ λ∑ 		                                  (9)

In  Eq. (9), we have m m m m -1 m -1
i±1/2 i±1/2 i±1/2 i±1/2 i±1/2W = r and =(R U) (m=1,2), R =leftα α ∆  

eigenvector matrix, r = eigenvectors, and λ = averaged eigenvalues 
representing the speeds of characteristics. The average states of water 
depth, velocity, and eigenvectors are computed with the formulas 
shown below [26]
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where 1 2
i±1/2 i±1/2 i±1/2 i±1/2 i±1/2 i±1/2=u - gh and =u + ghλ λ . It should be noted 

that reconstruction of the water surface level rather than the water 
depth at the interface provides more accurate and stable calculations 
when the bottom is non-flat. The water surface levels η (η =h+z) at left 
and right sides of the interface are calculated by using the following 
equations [27,28]

i1/2 i
1=
2±η η ± ∆ηL

i
				               (11)

i 11/2 i 1
1=
2 ±± ±η η ± ∆ηR

i 				               (12)

where i∆η , i-1∆η , and i+1∆η  are respectively the limited gradients of 
cells i, i-1, and i+1.

 1/2±ηR
i  and 1/2±ηL

i are the constructed water surface elevation at 
the right and left sides of cell edges of i+1/2 and i-1/2. Similarly, the 
discharge q is reconstructed at the edges using the same formulations 
by replacing η by q. The Double Minmod (DB) limiter [27,29] is used 
and integrated in the present numerical solver to limit the oscillations. 
The values of i∆η is calculated as follows:

if i-1/2 i 1/2  0∆η ∆η >+
1 Sign( )min(i i 1/2 i-1/2 i 1/2 i-1/2 i 1/22
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Where

1/2 1− −∆η = η −ηi i i 		                                                    (14a)

1/2 1+ +∆η = η −ηi i i 				                (14b)

As described by van Leer [29] the Double Minmod algorithm in 
Eq. (13) limits the algebraic average of i-1/2∆η and i 1/2∆η +  to twice 
of the smaller one. In comparison with the Superbee limiter [29,30], 
Bradford and Sanders [28] indicated that the DM limiter yields a better 

performance than the Superbee. Once 1/2±ηL
i and 1/2±ηR

i  are determined, 

water depths at the edges (for example, at i+1/2) are computed using 

h 1/2 1/2 1/2
L L
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h 1/2 1/2 1/2
R R
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The bottom slope term in Eq. (5) is computed using 
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H -Hz H(ghS ) =gh (- ) =gh ( ) =gh
x x x
∂ ∂
∂ ∂ ∆

	              (16)

to preserve the balance between the flux and slope terms at stationary 
flow conditions. Including the finite difference schemes on the time 
and spatial discretization of the dispersive terms in Eq. (3) into the 
finite volume formulations of the conservative and source terms, 
the predictor formulation of the momentum equation (Eq. (6)) with 
unknown variable of q (q=uh) is given as

p p p
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In Eq. (18g), [2]
1/2

=
±
n

iF  the second row of the F vector at the edge 
i+1/2 and i-1/2, respectively. Similarly, the numerical expression for 
the corrector (Eq. (7)) can also be formulated to compute 1n

iq + .

The finite volume algorithm as a portion of the present hybrid 
FV-FD solver includes the Roe’s second order scheme and an up to 
O(Δx2) DM limiter. Here, Δx is the grid size. For the dispersive term, 
the central differencing scheme, which is also accurate to the order of 
Δx2, is used in the solver. Therefore, with a decrease of Δx, converged 
solutions are obtained. As the present solver adopts the predictor-
corrector type solution procedure, Courant condition is utilized to 
control the stability of the numerical scheme. The condition in terms 
of the time step Δt is given as / (Max( u ))t x gh∆ ≤ ∆ ± . With the 
use of predictor-corrector scheme and the direct solution procedure of 
tri-diagonal matrix algorithm for Eq. (17), the present FV-FD solver is 
a cost-effective computational model for simulating propagation and 
transformation of nonlinear shallow-water waves.
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Simulations of 1-D FV-FD Solver
The FV-FD solver is tested for cases of head-on collision of two 

solitary waves with equal or different amplitudes. Comparisons of 
computed time-varying free-surface elevations are made with other 
published results and analytical solutions. The simulations for a solitary 
wave propagating over a domain of sloping bottom are also carried out 
to investigate the corresponding wave fission and shoaling process. 
The results of free-surface elevation are compared to the experimental 
measurements and other published numerical solutions. In all of the 
simulation cases, transmissive boundary conditions are used both at 
the upstream and downstream boundaries.

Head–on Collisions of Two Solitary Waves
The head-on collision of two solitary waves represents the process 

of two solitons colliding with each other. Similar incident wave 
conditions as given in Zhong and Wang [9,25] are used. In this test 
case, the interaction of two solitary waves with identical amplitude, i.e. 
a1=a2=0.1m, is investigated, where a1 and a2 are initial amplitudes of 
two propagating solitary waves. The length of the channel is 90 m (0 ≤ 
x ≤ 90 m) and the grid size Δx is set as 0.1 m. Zhong and Wang [9,25] 
developed two dimensional Boussinesq models. One solved the Fully 
Nonlinear Weakly Dispersive (FNWD) form of the BE and the other 
solved the Weakly Nonlinear Weakly Dispersive (WNWD) BE using 
the FE method. The present FV-FD model is simulated for head-on 
collision of two solitary waves and the results are compared with those 
computed using the models developed by Zhong and Wang [9,25]. 
The solitary waves are nonlinear shallow-water waves, so, nonlinear 
interaction results in the maximum amplitude during the collision to 
be greater than the sum of the two initial wave amplitudes. The peak 
wave amplitude during the collision process can be derived analytically 
and was given by Baytt-Smith [20] as 

1 2 1 2
1
2ca a a a a= + + 				                 (19)

where ac = peak wave amplitude during collision. The results obtained 
from the present solver are compared with those of WNWD and 
FNWD models by Zhong and Wang [9,25] in Figures 3a-3d. The plots 
include the time variation of the free-surface elevations before, during 
and after the collision. Initially, the peak of right-going solitary wave is 
located at x=25 m while the left-going solitary wave is situated at x=65 m 
(Figure 3a). As can be seen from Figure 3b-Figure 3d, the present solver 
produces similar results as those from the WNWD and FNWD models. 
At t=4.5 sec (Figure 3b), the encountering process of the two solitary 
waves and partially merged waves can be noticed. The amplitudes of 
the two collided waves continue increasing until they merge completely 
into a single solitary wave with a peak amplitude at t=6.14 sec (Figure 
3c). The formulation in Eq. (19) (Baytt-Smith [20]) gives 0.205 m as the 
analytical peak amplitude in this test case. The maximum amplitude 
after collision is predicted to be at 6.14 sec by all models and the value is 
0.2024 m obtained by the present solver, which is close to the analytical 
solution. There exists a small phase shift after the interaction of two 
solitary waves. As depicted in Figure 5d, the merged solitary waves 
are separated to recover back to their original amplitudes and shapes 
after colliding with each other. Overall, the results in terms of wave 
elevations and phases from the present solver agree reasonably well 
with the simulated solutions from the WNWD and FNWD models 
and the performance of the solver for capturing the process of head-on 
collision of two solitary waves is satisfactory. Head-on collision of two 
solitary waves with different amplitudes is also investigated to further 
the verification of the solver’s capability of simulating interaction of 
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nonlinear waves. The domain is the same as the one described above. 
The amplitudes of the solitary waves located at the left and right 
sides of the channel initially are 0.1 m and 0.06 m, respectively. The 
3D perspective view plot showing the evolution of free-surface levels 
in the entire spatial domain at different times is presented in Figure 
4 to provide the visual understanding of the head-on interaction of 
two solitary waves. According to the analytical formulation given in 
Eq. (19) the maximum amplitude during the collision of these two 
waves is calculated as 0.163 m. The peak amplitude and the occurrence 
time are predicted as 0.162 m and 6.2 sec, respectively by the present 
model. The predicted peak value is very close to the analytical solution. 
From Figure 4, we notice that after the interaction, the solitary wave 
with small amplitude continues to propagate towards the negative x 
direction while the larger amplitude wave moves towards the positive 
x direction with both waves preserving their original shapes and 
amplitudes after the collision. 

Shoaling of a Solitary Wave over a Sloping Bottom
At the process of a solitary wave propagating from a region of 

deeper water depth to that of shallower water depth, the main wave 
splits into a sequence of waves with decreasing amplitude [9,25,31,32]. 
This is commonly called the fission phenomena of a solitary wave. 
In this study, two cases of solitary wave shoaling over a sloping 
bottom are simulated with the developed FV-FD Boussinesq model. 
The computational domain and changes of water depth selected as 
the first test case for solitary wave shoaling study are similar to the 
center line condition of that used by Zhong and Wang [9,25]. The 
dimensionless domain boundaries are from -15 to 60 in x direction 
and the dimensionless undisturbed water depth varies from 1 to 0.271 
in the shallower water depth region. The water depth variation in 
dimensionless form (referenced to the deeper water depth) within the 
domain (also in dimensionless form) utilized is given

as 

1 15 8.335
1( ) 1 (8.335 ) 8.335 16.667

11.43
0.271 16.667 60

x

h x x x

x

− ≤ ≤
= + − ≤ ≤


≤ ≤

             (20)

The dimensionless wave elevations 0/ hζ are plotted along the x 
direction at different times in Figure 5 to show the shoaling process 
as a solitary wave propagates from a region of deeper water depth 
to a shallower water-depth region. Initially, a solitary wave with 
dimensionless amplitude of 0.08 is situated at x=0 (Figure 5a). As 
seen in Figure 5b when the wave enters the sloping bottom section, 
a wave with small amplitude is reflected back by the submerged shoal 
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model with theWNWD and FNWD models [25] at (a) t*=0, (b) t*=20, (c) t*=30, 
(d) t*=50, and(e) t*=70.
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to propagate towards the upstream boundary (Figures 5c-5d). After 
the solitary wave enters the submerged shoal region (e.g. at t*=20), 
the wave form begins to tilt forward. Here *

0 0/t gh t h=  and h0 is 
the water depth in the upstream domain. The fission characteristics 
are well observed by the transformation of the free surface elevations 
shown at t*=30, 50 and 70. As soon as the main wave propagates past 
the sloping bottom into the shallower water depth region (t*=30), the 
first secondary wave starts to separate from the leading wave. With the 
main wave traveling further downstream, additional secondary waves 
with smaller amplitudes are emerged behind the first secondary wave 
(Figures 5d and 5e). At t*=70, the interesting wave fission phenomenon 
reflected by the appearance of three secondary waves with decreasing 
wave amplitude following the main wave can be noticed. The amplitude 
of primary wave increases as it propagates in the shallower water depth 
region towards the downstream boundary. The present model results as 
shown in Figure 5 match reasonably well with those obtained by Zhong 
and Wang [25]. Although, a small phase lag is observed at t*=50 and 70 
when compared to the WNWD and the FNWD models. In general, the 
present model results especially the wave peaks fit better with FNWD 
solutions than the WNWD ones. This suggests the nonlinear effects of 
the present FV-FD model are similar to those in FNWD model. The 
shoaling process of a nonlinear solitary wave shows increased effect 
of nonlinearity while propagating into a region with shallower water 
depth. This case provides the numerical investigation in understanding 
the fission phenomena by presenting the deformation of the crest of 
the primary solitary waves and the formation of the secondary waves. 

Another case studied by Madsen and Mei [33] is also selected to test 
the model performance in simulating the shoaling of a solitary wave 
over a sloping bottom. A solitary wave with amplitude a=0.914 cm is 
simulated within a 6-m long domain including a 1:20 sloping bottom. 
The schematic diagram showing the domain and sloping bottom is 
given in Figure 6. Four gauging stations reported in Madsen and Mei 
[33] for the experimental measurements are marked as 1, 2, 3, and 4 in 
Figure 6. They are located respectively at x=150, 276.2, 365.1 and 451.46 
cm. The water depth changes from h0=7.62 cm at the upstream domain 
to h1=3.81cm at the downstream region. The crest of the wave is located 
at x=-80 cm, initially. Madsen and Mei [33] presented theoretical 
solutions and experimental observations for the time variation of the 
free-surface profiles. The results obtained from the present model are 
plotted in Figures 7a-7d to compare to the theoretical solutions and 
experimental data given by Madsen and Mei [33]. The numerical 
results of Yuan and Wu[32] using a finite-difference model are also 
included in Figure 7 for comparisons. In Figure 7a, the results at t=0 
correspond to the wave condition when the wave crest reaches the 

 

Wave  Crest initially
40.64     76.20 cm    88.90 cm          86.36 cm
cm

7.62 cm

1/20

3.81 cm

600.00 cm0.00 cm                                  200 cm        276.20  cm

1                        2                3                    4

Figure 6: Domain setup and gauging stations [33] considered for 
modelsimulations and measurement comparisons for a solitary wave 
propagating over asloping bottom.
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Figure 7: Comparisons of free-surface profiles among the theoretical, 
experimental results [33] numerical solutions by Yuan and Wu [32], and the 
present model solutions at gauging positions: (a) 1, (b) 2, (c) 3, (d) 4.
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position 1. In Figure 7, it is noticed that the numerical results including 
those from the present model are shown to have a better agreement 
with measured data than the simplified but theoretically predicted 
values. The present numerical model performs reasonably well when 
compared to the results from the experimental measurements and 
numerical solutions by Yuan and Wu [32] especially at the positions 1 
and 2. Both numerical models predict similar wave profiles and slightly 
overestimate the peak of the main wave at locations 3 (Figure 7(c)). At 
location 4, the results are presented in Figure 7d. The present numerical 
model can provide slightly better predictions than those from Yuan and 
Wu [32] when comparing to the measured data. The formation of a 
secondary wave as a result of the shoaling effect is clearly shown in 
Figures 7c and 7d. The present solver is again demonstrated to be able 
to model reasonably well on the propagation and shoaling of a solitary 
wave over a region with a sloping bottom. 

Conclusions
A one dimensional FV-FD free-surface flow solver is developed 

to simulate propagation of solitary waves in regions of different 
water depths and their head-on collisions. The extended Boussinesq 
equations by Madsen and Sorensen [3] are solved numerically by using 
the combined FV and FD methods, where FV is applied to discretize 
the conservative and source terms and FD is for the dispersive terms. 
Second order schemes and limiters are used to control unwanted small 
oscillations. The interaction of two solitary waves with equal-amplitude 
is simulated with the solver. The whole process of head-on collision 
including merging, interaction, and recovering back to their original 
shapes is presented with the plots showing the time variation of free-
surface profiles. The maximum amplitude of the waves after completely 
merging is found to be close to the analytical results. Also, comparisons 
of the present model results with those of WNWD and FNWD models 
developed by Zhong and Wang [25] suggest the good performance 
received by the present model. A solitary wave propagating over a 
sloping bottom is also simulated. The fission process is verified with the 
present solver after the solitary wave interacts with the variable bottom. 
As a solitary wave propagates over a sloping bottom and reaches the 
shallower water depth region, the main wave separates into a primary 
wave followed with a sequence of secondary waves with decreasing 
wave amplitudes. The wave profiles computed with the present solver 
at different times agree well with those obtained by Zhong and Wang 
[25]. Overall, the present FV-FD solver is demonstrated to be capable of 
modeling interactions of solitary waves and simulating fission process 
over domains of variable depth. 
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