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Abstract

We construct and study a differential infectivity model with chronological and infection age. The application
is done on hepatitis B in Cameroon. We prove the global stability of the disease free equilibrium when the basic
reproduction ratio R is less than one and the existence and uniqueness of an endemic equilibrium when R >1 .

Keywords: Nonlinear dynamical systems; Global stability; Lyapunov
methods; Differential infectivity models; HBV; Cameroon

A Simplified Model without Vertical Transmission and
With Control Measure

Hepatitis B is endemic in Africa [1-3] (see also the references
cited therein) and some models have been constructed in order to
understand it’s dynamic with ODE deterministic (with delay or not)
or stochastic processes [2,4-8] or partial differential equations [9,10].

Studies like [9-13] recognized the importance of the age factor in
the dynamics of infectious diseases like hepatitis B [10]. Moreover some
studies like [4,14] obtained results with ODEs with discrete age(s) that
could be generalized with continuous age assumption more realistic
and relevant.

We introduce then a model with differential infectivity and
chronological or infection ages. We denote by s (t,a) the density of
susceptible at time t with chronological aged a. We denote by i (t,1) the
density of infective that will develop acute disease at time t contaminated
since a time and e (t,7) the density of infective that will not develop
acute disease (asymptomatic carrier) at time t contaminated since a
time 1. The model we shall consider reads as follows:

0,+0,)s(t,a) =—us(t,a)—A(t)s(t,a), t>0,a>0,
s(t,0)=A,
©,+0,)i(t,t)y=—(u+y)i(t,7),t>0,7>0,
©,+0,)e(t,r)=—(u+y,)e(t,r),t>0,7>0,

(1.1)

i(t,0) = l(t)T pa)s(t,a)da, e(t,0)=A(0] (1= p(a))s(t,a)da

Here A >0 is some constant entering in flux, p>0 is the natural
death rate, y, is the additional death rate due to the disease, a>p(a)
€ [0,1] is the proportion of individuals going to the acute infective
class while 1-p(a) is the proportion to not develop the acute disease
when infection occurs. Finally, it remains to model A (£,a), the force of
infection, those general form can be written in the form

0= [ (B@i)+ B (2)e(t.))dz
Finally this model is supplemented together with some initial data
5(0,.) =5,(.) € L, (0,0)

i(0,.) =1,(.), e(0,.) =¢,(.) with (i,,e,)e L., (0,00)

The above model takes into account the chronological age of
susceptible. This parameter has strong implication in the dynamics of

(1.2)

infection. Indeed, depending on the age at which susceptible enters the
infective's classes, the disease will develop indifferent way. For hepatitis
B virus (HBV), young infections lead to chronic infection while older
infection leads to acute disease.

In the above model, we do not take into account possible vertical
transmission and we do not consider any control strategy such
vaccination campaign. It seems to be relevant together the assumption
of WHO [3] that consider that vertical transmission of the disease does
occur in sub-saharian Africa, but its influence of the dynamics of the
disease is rather small because the proportion of chronic infections
acquired prenatally is low. Under the above assumption, we assume that
the chronological age for the infective classes do not play an important
role. But the time since infection is a relevant biological variable
because of the possibility to have a long latent period (especially for the
asymptomatic carrier class, until several years).

The work is organized as follows. In Section 2, we prove the
wellposedness of the PDE (1.1-1.2), derive preliminary results useful
to study the long term behavior of the model. Sections 3, 4, and 5 is
devoted to the uniqueness of endemic equilibrium when the biological
basic reproduction rate R, is greater than 1 and study the global
asymptotically stability of the disease free equilibrium if 1>R . Finally
Section 6 presents discussion.

Abstract Cauchy Problem Reformulation
Mathematical assumptions

We assume that:

a) 7(0)=y,>0,7,(r)=0

b) The function pel”(0,0) with p(a)€[0,1] ae. and not
identically 0 and 1.

¢) Function £, 8, € L7 (0,).
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Abstract Cauchy problem =
The aim of this section is to deal with (1.1). To do so, we consider o (a)= e Armag o J‘“e—uw)(a—s)l// (s)ds
the Banach spaces ! o !
—(A Na a2 N a—s
X =R*xL(0,), X,={0,,}xL'(0,0)", Py(a)=e H g, 4 [ Iy (s)ds
a, 0, (a) = g Frra a, + ‘[: e—wwm(a—s)% (s)ds
@,
o 3 Moreover we have for each A>-p
3 1
endowed the norm " B Z (AR AV (A-A)'X, C X, (2.4)
1 i=
w Proof: Let x=(@,a,,a,y,V,,w,) €X and A>—-u be
2 given. Then the equation
Y3y

as well as the non-densely defined linear operator 4:D(4d)c X - X
defined by

D(4)={0,’}x W (0,0)°

together with
0 -¢,(0)
0 -¢,(0)
) 0 _ —¢,(0)
? ~¢(a)— g (a) ’
?, —0,(0) = (u+7,) ¢y (1)
2 —0y(0) = (1 +7,)9,(7)

as well as the nonlinear map F : X, »X defined by

0 A
[ p@ @ (@)daf " (B(D)p.(0)+ B.()p (7)) dr
o | | [ a- panp@daf (B@)p0)+ B0 () dr
[ (B @)+ B.(D)e:(2) d

Let us notice that p(4)= X,

Now by identifying (s (t, .), I (t, .), e(t, .)) in (1.1) together with
u(t) = (0, 0, 0, s(t, .), i(t, .), e(t, ,))T , one obtains that u(t) satisfies the

following abstract Cauchy problem % =Au(t)+ F(u(t)), t >0, (2.3)
together with the initial data u(0) = x = (0,0,0,s,,i,,¢,)" € X,.
We also consider the positive cones X, =R”x L (0,0), X, =X,nX,

Lemma 2.1: (Hille-Yosida property) Operator A: D(4A)c X — X
is a Hille-Yosida operator. More precisely we have (-, ©)c p(4) the
resolvent set of A and for each A>-y, each (o, @,,;,¥,,w,,¥;) € X
we have

al

OR* a,

(A= a)" (I a,
3 ¥

Q)S l//Z

Vs

0,

R

-4 2 |=x,

?,
[

rewrites as the following system

p(a)' =—(A+u) ¢ (a)+y,(a)
P,(a)'==(A+u+y) ¢, (a)+y,(a)
p(a)' =—(A+u+y,) ¢;(a)+y;(@)Vaz0

?2(0)=a,, 9,(0)=a,, ¢y(a) =a;,

that is
— o (Atw) ¢ ~Oeua=s)
o (a)=e"""" a1+'|.0 e TNy (s)ds
_ ~(Aruty))a ¢ ~(Atpy;)a=s)
p,(a)=e a, +J-O e v, (s)ds

a
o,(a) = o ratrda a,+ J‘O e‘<’”"*"')(“’”z//3 (s)ds
On the other hand one has

1
o, |+ ¢ B}
ol = UL

1
o 20,00y <12k e

b

A+u
jos | + s,
o 0.y < 2P
As a consequence,
(—p,00) € p(A) and (2 -4 |(X) < L e
A+u

This completes the proof of the Hille-Yosida property. Finally the
explicit formula of the resolvent operator implies that (2.4) holds true.

Theorem 2.2: There exists a continuous semi flow {U(#)}, ., on X
into itself such that for each x e X, , the map t>U(t)x is the unique
integrated solution of (2.3) with initial data x, namely t>U(t)x satisfies

(i) J,U(s)xds € D(A), V1=0

(i) U)x=x+ AI;U(s)xds + I;F(U(s)x)ds for each t>0
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Moreover we have for each xe X, :

<liminf ||U(t)x|| x <limsup ||U(t)x|| x< A
H+Yy+7, el sl H

Proof: Let us first notice that for each M>0 there exists A>0 such
that

F(x)+Axe X, VxeB (0,M)nX,,

With B, (0,M) denote the ball of radius M centered at 0. One obtains
the existence of a maximal positive semi flow for (2.3) on X _into itself.
It remains to prove that this semi flow is globally defined. To do so,

let x € X, be given and recall that U()x=(0,0,0,s(z,.), i(¢,.),e(t,.))”

Consider the quantity

P(t)= ||U(t)x||x = J':s(t, a)da + J:i(t,r) dr +J.: e(t,t)dr,

the total population at time t. Then it satisfies the differential inequality

? SA—uP(t)

Thus the map #>P(t) cannot blow up in finite and the global
existence result follows.

Let us, in addition, notice that, from this inequality one gets (by
density)

limsup||U (£)x]x < A, VxeX,,
1> )4

One the other hand one has

%: A—yP(t)—(;/‘I:i(t,r)dr+yej:e(t,r)dr) 2A—(u+7y,+7,)P@),

so that liminf ||U(t)x||x > , Vxe X,

:u + 7/ i + ]/ e
This completes the proof of the result.

Stationary States

The disease free equilibrium

The disease free equilibrium corresponds to a stationary (that is
time independent solution)

(sp =sp(a), ip =0,e, =0),
of (1.1)-(1.2). As a consequence we have the following lemma

Lemma 3.1: The dynamical system provided by (1.1)-(1.2) has a
unique disease free equilibrium where sF is given by s (a),= Ae

From now one we set

S, = playsp(a)da, S, =] p(a)s(a)da,
and we consider the biological basic reproduction rate

R, =A[ (BA(@D)e ™ + RA.(D)e "), (3.5)
where we have set
Endemic equilibrium

We look for stationary solutions (s; i; e) such that (i; e) not
identically zero satisfying

s'(a)=—us(t,a)—As(a), a>0,
s(0) = A,

i'(t)=—(u+y,)i(r), >0,
e'(r)=—(u+y.)e(r), 7>0,

i(0)= 2 j: p(a)s(a)da, e(0)=1 jo’ (1- p(a))s (a)da
A (B@i@+p(@e@)dr,

Theorem 3.2: Recalling definition (3.5), if R >1, system (1.1)-(1.2)
has a unique endemic equilibrium point denoted by (s,; i,; e,).

Proof: we have
s(a) = Ae™ ¥,

i(r) = e"(””")%Aj: pla)e™“da

e(r) = e "IN " (1- p(a)) e da
Thus

A= J:ﬂi(f)e_(#+7i)f dTﬂAJA: p(a)e*(ywl)ada

+'[: lBe (T)ei(lﬁn)[d’[ﬂ[\ J.: (1- p(a))e*(uﬂ)ada

We are looking for endemic stationary state, that is A>0, so that
1:_":,&(1') Palaral dT/lAIpr(a)e‘(ﬂM)ada

+J'or ﬂe (T) e*(/‘JrVe)TdTA«A J.O00 (1 _ p(a))e_(;m-l)ada

Now the map A->f(A) is non increasing with f defined by

f(/l) = I:ﬂx(r) e*(;H‘/l)T dT/lA‘[pr(a)ef(;Hl)ada
+J-0T B.(7) e W g A J.: (1- p(a))e*(;lﬂ)ada

and f(\)>0 when A>c. As a consequence, since R =f(0)>1, there exists
a unique A >0 such that

fA=L
Finally, the functions
sp(a)=Ne W,

ip(0)=e " AN [ playe i da

e (1) =e WA j: (- p(a)e “*dq
provides the unique endemic stationary state of system (1.1)-(1.2).
Dynamical Properties

Assumption 4.1

Assume that the maps a>f; (a) and a>p, (a) are bounded and
uniformly continuous from [0,e°) into itself.

Volterra Integral Formulation:

The solutions of (1.1)-(1.2) can be reformulated as follows
0,8+0,8 =—us—At)s

s(t,0)=A, s(0,.)=s,,

With
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At =[] B@)iE1)+B(D)e(t,0)dz,
and

eyt s _ if g—t> (u+ye)t _ ' >
i(t,r)={e iy(a—t)if a 170,}’ e(t,r)={e e(a—t)if a—t>0,

U (t—a) if a—t<0 47 (¢t —a)

where >b(t)=i(t,0) and t>b(t)=e(t;,0) are the unique continuous
functions satisfying for k=i.e:

b (1) = k(t,0) = p,Is(. )] (B(D)e byt =)+ B(2)e bt~ )7
s, (€ B@iy (7 =1+ B,(@)e,(r - 1)) d

where we have set
plol=|, p@e@da, p,lipl=[ (- pa)e(a)da

By using results in Sell and You [15], one can find suitable
conditions to prove that {U(#)},_  is asymptotically smooth and derived
the following proposition.

t=0

Proposition 4.2: Let Assumption 4.1 be satisfied. Then there exists
a compact set 4 < X, such that

(i) A is invariant under the semi flow {U (l)},20

(ii) A attracts the bounded sets of X under {U(z)} _,. This means
that for each bounded set B < X, we have

lim & (U(1)B,4) =0,
where § is defined as
5(4,B)=sup inflx—]
Moreover A is locally asymptotically stable. Next one considers the

following quantities 7, =sup{r >0:5,(r) >0}, ke {i,e} and the
following set:

W ={(p.) L0 [ o+ [ w(e)dz>0
We set also

M, ={0, }x L (0.00)x M c X,
oM, = X,,\M,

From this Volterra integral formulation one obtains the following
lemma:

Lemma 4.3: The sets M, and M, are positively invariant under the
semi flow {U(¢)},., . Moreover if x € OM; then

20"

}imHU(t)x—xF H =0

with x, =(0,.5, () = Ae™,0,0)’

RS 2
Global Stability of the Disease free Equilibrium when
R <1 and Simulations

Stability with a Lyapunov like function

Lemma 5.1: Let t € R and a>0 be given. For a globally in time
solution s, we get the following inequality:

s(t,a)<s.(a)

Proof: At first we want to prove that: s(¢,a) <s,(a), Va>0.We
have on characteristics:

~ [ ura(s)ds 3
' if a-t>0
sola=1) (5.6)

t,a)=
$(-a) if a-t<0

4(‘,;“/1(:),1;

e

As a consequence we obtain for each s € R, t>0 and a>0 that

—pr+fh+ A(s)ds

s(s,a—t) if a-t>0

— pa=f A+(1)(1)ds

ne if a—-t<0

e
s(t+s,a)=

If t=a then for each s e R:

—ya—-l.:&(s)ds

s(s+a,a)=e 5(s,0)< S, (a)

Let € R and a>0 be given. Choose s € R such that s=t-a. The
above equality re-writes as

s(t,a)<s.(a) >
and the result follows.

We will use the lemma above in the proof of the following theorem.

Theorem 5.2: For the model (1.1)-(1.2), if R <1, then the disease
free equilibrium is globally asymptotically stable in oM,

Proof: Recall that

R © 0
-0 - IO ﬂi(r)e’(’”")rdrj‘o pla)eda

AN
+J: ﬂe(r)e"(“”)rdrI: (1- p(a))e“da,
Choose and such that
(@) =(u+7)l ()= B(7)
T,(0)=["e 7 B (s)ds,
And
(@)= (u+y ). (2)=B.(7)
T(0)= e B, (s)ds,
Note that
R, =T, p@s, (@)da+T,(0) [ (1- p(@)s,(a)da

Then one gets (by density):

%j: T (0)i(t,7)dr = —j: T ()i (t,0)dr—(u+7,) jo" T (0)i(t,7)dr
= AOT, )| p@s(t,a)da+ [ [T',(2)= ()T, ()i (t,7)dr

ditj: T (c)elt,r)dr =— j: T.()e (t,7)dr—(u+7.) j: T, (v)e(t, 7)dr

= A0, (1= p@)s(t.a)da+ [ [T, (0) = (u+ 7T, ()le(t,)d7
so that

d o
” [T, @i, + T, (et )]dr
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_ ® © Age (years) p(a) B, B, v Ve H
B I:ri (O)-[O p(a)s(t, a) da+ re (O)IO (1 p(a))SF (a)da:| % [0; A=60 yrs] | 0.811.e2%&= 10-6 10-20 0.036 0.02 15.10°
U:ﬁf(r)i t,7)+ ,Be (0)elt, Z')dz‘j| Table 2: Values for R <1.
Age (years) p(a) B, B, v Ve H
* C A= (-288*a) - -5
_|:J' ﬂi(z_)i ([, T) + ,Be(f)e (t, T)dl'} [0; A=60 yrs] | 0.811.e 0.00006 @ 10-20 0.09 0.05 15.10
0 Table 3: Values for R>1.
d .
= j [TC.(0)i(t,7)+T,(r)e(t,7)]dr
dt 90 € anstruct furction o s1=0.811 e -0, 2880 21 fror data coming from Data- C

so that

%I:[Fi(f)i(t, )+, ()e(t,7)]dr
< [F,»(O)J.: p(a)s(t,a)da+ FQ(O)J': (- p(a))s, (a)da] %

U:ﬂf(f)i(f,f)+ﬂe(r)e(t, T)dr]

Since R, <1 then,

% [m@ito)+T (@)e.0)ldz

< [r,. (0) j: p(a)s(t,a)da+T ,(0) j: a- p(a))sF(a)da} x

[ 40160+ A@e e |

=[O p@ste.0) =5, @da+T O (1= p(@Nis(t.0) s, (@)]da |

x[ j: B(@)i(t,71)+B.(7)e (t,r)dr]

On the attractor A we check by lemma 5.1 that
s(t,a)<sp(a), VteR, a>0,
so that the functional
Vii,e](t) = I: [[,(0)it,7)+T,(v)e(t, 7)),
is non-increasing along the complete orbits.

V [i,e] is a strict Lyapunov function for DFE on 4 < OM, and
global stability of DFE when R <1 follows.

Simulations

We first simplify the model by assuming that S and g are
both constant parameters. Then introducing I(¢) = JO i(t,7)dr and

E(t)= [: e(t,7)dr

We will use data in Tables 1-3 for the case of Cameroon.

Age prevalence p prevalence q Ref.
0 to 1 month (excluded) 0.1 or 10% 0.9 or 90% [11,5]
1 to 6 months (included) 0.2 or 20% 0.8 or 80% [5]
7 to 12 months (included) 0.45 or 45% 0.55 or 55% [5]
1 to 5 years (included) 0.5-0.25 or 50-25% | 0.25-0.5 or 25-50% | [11,5]
>5 years 0.94-0.9 or 94-90% | 0.06-0.1 or 6-10% [11,5]

Table 1: "Data-(C)", some other data collected on Cameroon.

Qe
]—I— +  + Function o fallowing data of Data-© 1 and adjustad with laast squares msthod

ne T

Boof o g +

20 40 L= an 1o 120
Figure 1: Construct function g(a)=0.811*e(-0.288*2) from data coming from
"Data-(C)" in Table 1.

b ; ; ; ! !

Murnber of susceptibles
m m m
~ o [{u]

o
m

o
]

m
.
_

1 1 i 1
a0 100 150 200 250 300

Tire[in Years]
Figure 2: Function t~>J.o4x(l,a)da from Data-"C", R <1.
Discussion

Simulations illustrate the asymptotic stability of DFE in section 5.
The model described by equations (1.1-1.2) exhibit a rich dynamic. We
observe that the biological basic reproduction rate R is fundamental
for the study of the basic dynamical properties. Applied to hepatitis
B, the model suggests that infection rates play a great role in the
description of the disease (see expression of R ). Simulations conducted
follow our results and suggest the fact that the endemic equilibrium is
asymptotically stable if R >1 (Figures 1-9).
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5000 : - . . ‘
: : : 9000
8000 Fy e ene T R T e S TR T 2}
@ 7O00F- Ao ...................... ....................... _ B000
.z : ; ®
= @
o EDDD ......... .............................. - E
= : © 7000
g : : : 2
AO00 - TN S . NN SO 2N o SO ._ w
Foc (5 g ] M e ......................... .......... ................... i) E 6000
@ ; : ! £
.3 ) z : &
=1 : : ©
B 3000k AN S AT A A AT 4 ‘s
: : : 5 & 5000
B D00 e ................... .................. = §
1000 b ................ - ........... S, A . 4000
0 . L : : : : : ] ;
u] a0 100 1580 200 250 300 3000 L ; L : L : ! L -
Tima{in Years] O 10 20 30 40 &0 60 FO0 80 90 100
Time[in Years]
Figure 3: Function E(t) from Data-"C", R <1. . .
9 ® 0 Figure 6: Function E(t) from Data-"C", R >1.
5000 3 T T T T T T T T T T
4500
4000
g 3500 P
g 3
£ 3000} 32
o E
g 2400 - %
‘B [
= 2000 s
2 b
2 15m €
=
1000
0 i 1 i i i : : :
0 &0 100 150 200 280 300 " ; ¢ : ; ; ; ; : ]
Timel[in Years] 0 10 20 30 40 a0 60 0 g0 90 100
Time[in Years]
Figure 4: Function /(t) from data of Data-"C", R <1.
Figure 7: Function /(t) from data of Data-"C", R>1.
i T T T T T T T T T
0.2 : ; : : . ! :
@ 02
=
e el
o @
- E
= S 018
o [
s 3
o (=4
2 =
T =
= =
3
= 2 0
= =
o o
0.05
. : ; ; ; ; : 0 T N SN (R SN S N

0 10 20 3n 40 a0 60 70 a0 an 100

I i
] 10 20 30 40 a0 60 70 g0 a0 1 o o
Time[in Years]

Timelin Years

Figure 5: Function t~>.[;s(t,a)da from Data-"C", R,>1. Figure 8: Prevalence of asymptomatic carriers E(f) from Data-"C", R >1.
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=] =) o
{5} E=N m

Hv B prevalence acute inf

o
(8]

01

o 10 20 30 40 50 G0 70 80 el
Time[in Years]

Figure 9: Prevalence of acute infectious /(f) from data of Data-"C", R >1.
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