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Introduction 
In underwater acoustics [1], the Pekeris waveguide is a simple 

model, which has been studied extensively [2]. For actual calculation, 
the region in consideration is always very large, such as the entire ocean, 
and the problem is usually reduced to a mathematically well-known 
Helmholtz equation over the infinite domain. The modal expansion 
of the waveguide consists of a few propagation modes and an integral 
of continuous radiation modes [3,4], which is difficult to evaluate in 
practical computations. When the transverse direction is bounded, 
many methods can be used [5-8]. A perfectly matched layer (PML), 
introduced by Berenger in 1994 [9,10], is a common tool to truncate 
the unbounded domain. It is an addition layer around the interested 
domain, in which the solutions decay. Mathematically, introducing a 
PML is equivalent to applying a complex coordinate transformation 
inside the additional layers. Modal expansion of the bounded problem 
with PML is quite different from the unbounded one. All the modes 
are discrete, and the integration is approximated by the infinite sum of 
leaky modes and PML modes. Although the modal expansion method 
has been used for calculation widely, there are few literatures on the 
theoretical analysis and numerical verifications, when it combines with 
PML.

In this paper, we give a discussion on the validity of modal 
expansion in Pekeris waveguide which is truncated by a PML [11]. 
Due to the introduction of PML, the coordinate-transformed operator 
is not self-adjoint, and the eigenfunctions lose the property of 
orthogonality. In this situation, the coefficients of modal expansion are 
difficult to evaluate. We use the conjugate eigenfunctions [12], which 
are analytical expressed, to compute the expansion coefficients. And 
the eigenvalues are given by the asymptotic approximation [13]. The 
theoretical results on the convergency and stability of the coefficients 
are derived in this paper. 

This paper is organized in the following manner. The mathematical 
formulation of bounded waveguide and the modal expansion method 
is presented in the section Model and Methods, and the numerical 
methods and theoretical results on convergency and stability are also 
given here. Numerical examples are given in the next section. Finally, 
we leave the conclusions.

Model and Methods
Mathematical model of waveguide

When wave propagates in the Pekeris waveguide [13], the following 

two-dimensional Helmholtz equation is considered:
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and z is the depth, x is the range, k1 and k2 are wave numbers in different 
fluid layers, ρ1 and ρ1 are densities. For a range-independent waveguide 
where κ only depends on the depth z, the general solution of (1) has the 
form u = φ(z)eiβx, in which φ and λ = β2 satisfy the following eigenvalue 
problem:
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The solution of problem (1) satisfies u ∈ L2 [0,+∞], and it has the 
modal expansion form: 
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Where 2 2=zκ κ β− , and the eigenfunctions of (2) have the 
property of weighted orthogonality [4]. However, to slove the 
Helmholtz equation (1) or further approximations numerically, the 
depth z must be truncated. As a result, the problem is restricted to a 
finite interval.

Received  January 05, 2013; Accepted January 28, 2013; Published February 
06, 2013

Citation: Zhu J, Chen Z (2013) On the Validity of Modal Expansion in Pekeris 
Waveguide with PML. J Applied  Computat Mathemat 2: 124. doi:10.4172/2168-
9679.1000124

Copyright: © 2013 Zhu J, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
The perfectly matched layer (PML) is a widely used tool to truncate the infinite domain in numerical computations. 

It can also be used in the modal expansion of an open Pekeris waveguide. In a bounded waveguide with PML, the 
modal expansion consists of three kinds of modes. They are propagation modes, leaky modes and PML modes. 
The PML modes are introduced by the utilization of PML, and depend on the parameters of the PML. The validity 
of the modal expansion of the PML-truncated waveguide is discussed in this paper. It is proved that the expansion 
coefficient tends to zero when the index of modes tends to infinity, thus the truncation of the infinite sum is reasonable. 
Moreover, it is also proved that the numerical computation of the coefficients is stable. 

On the Validity of Modal Expansion in Pekeris Waveguide with PML
Jianxin Zhu* and Zengsi Chen
Department of Mathematics, Zhejiang University, Hangzhou 310027, China

*Corresponding author: Jianxin Zhu, Department of Mathematics, Zhejiang 
University, Hangzhou 310027, China, E-mail: zjx@zju.edu.cn 

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679



Citation: Zhu J, Chen Z (2013) On the Validity of Modal Expansion in Pekeris Waveguide with PML. J Applied  Computat Mathemat 2: 124. 
doi:10.4172/2168-9679.1000124

Page 2 of 4

Volume 2 • Issue 1 • 1000124
J Applied  Computat Mathemat
ISSN: 2168-9679 JACM, an open access journal 

Under the assumption that bottom is homogeneous for z>G, the 
PML technique is introduced in the depth direction. It is equivalent to 

a complex coordinate transformation, that is 
0

ˆ = ( )
z

z z i t dtσ+ ∫ . If the 

interested interval is 0<z<H for some H>G, the PML is added on the 
boundary x=H, and is terminated at D. For 0 ≤ z ≤ H, σ(z)=0. Defining 
an operator L by 
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the problem (2) is therefore approximated by the following form: 
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The technique described above result in an eigenvalue problem 
(4) on a bounded interval, whose solutions satisfy u ∈ L2 [0, D]. F. 
Olyslager has proved that the discrete spectrum of the problem with 
PML (4) converges to the continuous spectrum of (2) in [14]. As a 
result, we have the modal expansion form 
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exactly when the thickness of PML tends to infinity. In practical 
applications, the series must be truncated to a finite sum. In the 
following sections, we are going to show that the truncation is 
reasonable by showing the convergency and stability of the coefficients. 
As the eigenfunctions lose the property of orthogonality, and the 
determination of coefficients is technical, the method for which is given 
afterwards.

Eigenfunctions and conjugate eigenfunctions 

The eigenfunctions φj (z) (j = 1,2,…) of (4) do not have the property 
of weighted orthogonality, that brings difficulty in determining the 
expansion coefficients. Fortunately, the analytical expression of 
conjugate eigenfunctions ( ) ( = 1,2,...)j z jϕ  can be derived [12], which 

are defined by 
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Denoting  2 2
1 1 2 2= 1, = , =i γ κ λ γ κ λ− − − , the eigenfunctions can 

be obtained by solving problem (4) formally, which are 
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 Here, γj (j = 1,2) are chosen to satisfy the imaginary part of γ >, 

and 
0

ˆ = ( )
z

z z i t dtσ+ ∫ . Considering the boundary conditions, the 

parameters can be determined as 
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The conjugate operator of  can be obtained easily by its definition, 
which is 
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 In other words, ( ) ( = 1,2,...)j z jϕ  should satisfy the following 

ODE: 
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As before, the solutions of equation (9) turn out: 
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Eigenvalues and expansion coefficients

From the formulas of (6), (7), (10), once the eigenvalues are 
obtained, the corresponding expansion coefficients can be determined 
directly. Next, numerical calculation of eigenvalues is discussed.

Although eigenvalue problems are usually difficult to solve, under 
certain conditions, there exist some good methods. In this paper, 
asymptotic solution method is used. In order to get accuracy modes, 
a nonlinear equation for the eigenvalues of this problem is derived, 
which is 

1 1 2 2
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The above equation is called dispersion relation, and its deduction 

process has used the boundary information φ(D)=0 in (4). The roots of 
(11) corresponding to the eigenvalues of (4).

Using the dispersion relation, Jianxin Zhu et al. [13,15] have given 
the asymptotic formulas of both PML modes and leaky modes of 
Pekeris waveguide. Here, we just quote the results as follows:
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PML modes satisfy 
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whose asymptotic formulas are given similarly: 
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 All the parameters mentioned above can be found in [13].

As mentioned earlier, there is a close relationship between 
eigenvalues and the corresponding expansion coefficients. Denote 

= ( )
D

G
T dσ τ τ∫ , the following theorems can be derived.

Theorem 1: If λ1, λ1, λ1, … are eigenvalues of (4), which ordered 
by their absolute value in ascending order, and u(x,z) is a continuous 
function, D > T then when |λk| → ∞, we have |ck| → 0. 

The eigenvalues in next theorem are the same to Theorem 1. 

Theorem 2: For any eigenvalue λ ∈ {λ1, λ2, λ3,…}, given ε>0, 
let Dε be a circle with the radius ε at center λ, u(x,z) is a continuous 

function, and known 2 2
1 2, 0κ λ κ λ− − ≠% %  for  Dελ ∈% , there exist two 

constant T and N  for each λ, such that | ( ) ( ) |< | |c c Tλ λ λ λ− −% %  and 

| ( ; ) ( ; ) |< | | .z z Nϕ λ ϕ λ λ λ− −% %  

We leave the details of proof in APPENDIX. Theorem 1 proves 
the necessary condition of convergence property for expansion 
coefficients, and Theorem 2 gives the stability of coefficients when the 
corresponding eigenvalues are perturbed.

Numerical Examples
In order to further illustrate the two Theorems, and verify that ck 

(x) tends to zero, we first calculate the eigenvalues.

For a numerical example, we consider a Pekeris waveguide with
parameters given by 

3 3
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PML: 
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 The eigenvalues solved by the asymptotic solutions (12) and (13) 
are shown in figure 1. The distribution of all eigenvalues is in the left 
plot, while the local distribution is in the right one. 

As the eigenvalues are calculated, the next step is to calculate the 
coefficients of the modal expansion. For simplify, the modal expansion 
of incident wave is considered. We set the incident wave u(0,z)=u0(z), 
and the coefficients ck (x) are constants marked by ck.

Calculate coefficients

In this example, we choose two incident waves 
20.05( 1) 0.1( 60)

0 0( ) = 100sin( / ) , ( ) = sin( / )z zu z z D e andu z z D eπ π− − − −

After the above calculation, all modes are sorted from small to large 
according to their imaginary part, and denote their corresponding 
coefficients as ck, k=1,2,…. figures 2 and 3 give the absolute values of 
coefficients in their left. Meanwhile, we adopt a uniform sampling in 
accordance to the order of k when the first incident wave is considered, 
and list 10 coefficients, as shown in table 1. 

Next, we give error estimations for modal expansion method 
applying to these incident waves. The number of expansion is denoted 
by n. From tables 2 and 3, we find that the errors will be reduced if 
we increase the number of terms, but when a certain number of terms 
reached, the accuracy will not increase evidently. This is due to the 
fact that the latter coefficients in the expansion are very small and 

Figure 1: Eigenvalues are solved by asymptotic solution method, where the 
whole eigenvalues are plotted in the left, and the local ones are plotted in the 
right.

Figure 2: Coefficients of the modal expansion for 
20.05( 1)

0 ( ) = 100sin( / ) zu z z D eπ − −  
are plotted in the left, and the comparison of numerical solutions and incident 
wave is plotted in the right. 

Figure  3: Coefficients of the modal expansion for 0.1( 60)
0 ( ) = sin( / ) zu z z D eπ − −  are 

plotted in the left, and the comparison of numerical solutions and incident wave 
is plotted in the right. 
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they do little effect. Further more, the cumulative error will also be 
increased with the increasing of terms. That is to say, we can express 
u0 by only a few terms. We also get additional information from the 
data above, considerable part of the errors are concentrated in the PML 
part, but not in the interested region. What's more, we can see that 
the approximations work well when only about twenty eigenvalues 
are used. This shows that the calculated eigenvalues are very close to 
the exact eigenvalues, and it also further validates Theorem 2. In order 
to have an intuitive understanding, the comparisons of numerical 
solutions and incident waves are plotted in the right of figures 2 and 
3. If the incident wave is set by 0 1( ) = ( )u z zφ  or  0 1 2( ) = ( ) ( )u z z zφ φ+ ,
the expansion coefficients can be obtained as 1 = 1, = 0( > 1)kc c k  or 

1 2= = 1, = 0( > 2)kc c c k   respectively, which grantees the correctness of 
the algorithm used in this paper.

Conclusions
The present study discusses the validity of modal expansion 

method in Pekeris waveguide with PML. Although the modal 
expansion method has been used for calculation widely, there are few 
literatures on the theoretical analysis and numerical verifications, when 
it combines with PML. The Theorems in this paper are very helpful 
for numerical applications. Theorem 1 is a necessary condition for 
the using of modal expansion method, and it plays a guiding role for 
practical applications. Whereas, Theorem 2 ensures that the coefficient 
c and eigenfunction ϕ can still maintain a good stability even under the 
perturbation of eigenvalue. For these reasons, these theoretical results 
are essential for the study of the modal expansion method.
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