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The investigation of the exact and numerical solution to nonlinear 
equations plays an important role in the study of nonlinear physical 
phenomena. The modified KdV types of equations have been an 
important class of non-linear evolution equations with numerous 
applications in physical sciences and engineering fields. For example, 
in geophysical fluid dynamics, they describe a long wave in shallow 
seas and deep oceans [1-3]. In plasma physics these equations give rise 
to the ion acoustic solutions [4-6]. However, the physical situations in 
which the KdV equations arise tend to be highly idealized due to the 
assumption of constant coefficients. In the recent years, many authors 
mainly had paid attention to study solutions of coupled equations 
by using various methods. Among these are Trigonometric function 
transform method [7], the homogeneous balance method [8], the 
F-expansion transform method [9], the He’s variational iteration
method [10-13], Homotopy perturbation method [14,15], Adomian 
decomposition method [16,17] and other [18-20]. 

In this paper, the differential transformation method (DTM) [21-
28] is used to solve the coupled-mKdV equations.

Keywords: Differential transformation method; Approximate analytic
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Introduction
In the current paper, we consider the problem of determining 

distribution of temperature in the heat equation in the cast-mould 
heterogeneous domain. Let’s start by formulating the first mathematical 
model of the problem. 1D   and  2D  regions are given below (Figure 1):

( ) [ ] ){ }*
1 1, : ,0 , 0,D x t x x t t= ∈ ∈

 and
( ) [ ] ){ }*

2 2, : 0, , 0,D x t x x t t= ∈ ∈
(1)

Five-component boundaries of this region are dispatched:
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In the cast (domain 1D ) and mould (domain 2D ) we consider the 
heat transfer equations:
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Where , 1, 2,ia i =  are the thermal diffusivity, ,u v denote the 
temperature, and t   and x   indicate the time and spatial location. At
the boundaries of the above functions satisfy the initial and boundary 
conditions:
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where the , 1, 2i iλ = , denote the thermal conductivity.
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Abstract
In this article, a new application of Differential Transformation Method (DTM) is presented to find exact and 

approximate solutions of the heat equation in the cast-mould heterogeneous domain. It is indicated that the solutions 
obtained by the two dimensional (DTM) are reliable, useful and effective method for decouple partial differential 
equations. Exact solutions can also be obtained from the known forms of the series solutions.
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Figure 1: Domain of discussed problem.
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This paper is organized as follows: 

In section 2, we describe DTM briefly. To show in efficiency of 
this method, we give the implementation of the DTM for the coupled-
mKdV equation and numerical results in Section 3. The conclusions 
are then given in the final section 4.

Differential Transformation Method
The basic definitions and fundamental operations of the two 

dimensional differential transform function of the function are 
expressed as follows [21,22,25]. Two dimensional differential transform 
of  ( ),u x y  is the following form
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where ( ),u x y   is the original function and ( ),U k h   is the 
transformed function. The inverse differential transform of  ( ),U k h  
is defined as
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when ( )0 0,x y  are taken as ( )0,0  , the function ( ),u x y , Eq.(7), is 
showed as the following
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From the above definitions, it can be found that the concept of two-
dimensional differential transform is derived from two-dimensional 
differential transform is obtained from two-dimensional Taylor series 
expansion.

The DTM Applied to the Heat Equation in the Cast-
Mould Heterogeneous Domain

In this section, we will investigate the solution of the heat equation 
in the cast-mould heterogeneous domain, which have been widely 
examined in the literature. We described the implementation of the DTM 
the heat equation in the cast-mould heterogeneous domain in detail. 
Application of the presented procedure will be examined with the help 

of parameters values, in which 1 2 1 2 1
11, 1, , 1, 1
4

x x a a λ= − = = = =   

and 2 2λ =   To solve Eqs (3)-(5), according to DTM, Eqs. (5) with 
initial condition,
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the boundary conditions,

	  ( ) ( )2 11, , 1, ,t tu t e v t e− +− = =
	                              (10)

applying the differential transform of (3), (4), (9) and(10) , then
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Substituting Eq. (11)-(12) into Eq. (13)-(14), we obtain the closed 
form solution as
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which are the exact solutions [6]. The graph of exact and DTM 
solutions belonging to examples examined the above are shown at 
Figures 1-2 for 1 21and 2λ λ= = . it can be deduced that DTM solution 
corresponds to the exact solutions (Figure 2 and 3). 

Conclusions
In this article, to find the numerical solution of the heat equation 

in the cast-mould heterogeneous domain with a number of initial and 
boundary values, the two dimensional differential transformation 
method (DTM) was has been performed successfully application. The 
results obtained from DTM show that in full compliance with exact 
solution. The solution obtained by differential transformation method 
shown as an expression of the form of a series of the exact solution. 

Figure 3: Exact solution and DTM solutions for u(x,t) when for 1 21and 2λ λ= = .

Figure 2: Exact solution and DTM solutions for u(x,t) when for 1 21and 2λ λ= = .
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DTM can be applied to many complicated linear and strongly nonlinear 
partial differential equations and does not require linearization, 
discretization or perturbation. The results of the present method show 
that this method is useful and effective for solving in the cast-mould 
heterogeneous domain.
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Table 1: Operations of the two dimensional differential transform.
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