Journal of

Behiry, J Appl Computat Math 2012, 1:3
DOI: 10.4172/2168-9679.1000109

Applied & Computational Mathematics

Research Article

Differential Transform Method for Nonlinear Initial-Value Problems by

Adomian Polynomials
S. H. Behiry*

General Required Courses Department, Jeddah Community College, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

Abstract

In this paper, the differential transformation method is modified to be easily employed to solve wide kinds of
nonlinear initial-value problems. In this approach, the nonlinear term is replaced by its Adomian polynomials for the
index k, and hence the dependent variable components are replaced in the recurrence relation by their corresponding
differential transform components of the same index. Thus the nonlinear initial-value problem can be easily solved
with less computational effort. New theorems for product and integrals of nonlinear functions are introduced. In order
to show the power and effectiveness of the present modified method and to illustrate the pertinent features of related
theorems, several numerical examples with different types of nonlinearities are considered.
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Introduction

The Differential Transform Method (DTM) has been proved
to be eflicient for handling nonlinear problems, but the nonlinear
functions used in these studies are restricted to polynomials and
products with derivatives [1-5]. For other types of nonlinearities,
the usual way to calculate their transformed functions as introduced
by [6] is to expand the nonlinear function in an infinite power series
then take the differential transform of this series. The problem with
this approach is that the massive computational difficulties will arise
in determining the differential transform of nonlinear function while
working with this infinite series. Another approach for obtaining the
differential transform of nonlinear terms is the algorithm in [7]. It is
based on using the properties of differential transform and calculus
to develop a canonical equation. Then this equation is solved for the
required differential transform of nonlinear term. But, as seen in the
simple examples in section 3 [7] the algorithm requires a sequence
of differentiation, algebraic manipulations and computations of
differential transform for other functions which is more difficult for
the case of composite nonlinearities.

In this work, we introduce a comprehensive and more efficient
approach for using the DTM to solve nonlinear initial-value problems;
the idea is based on the methodology in [8]. The nonlinear function is
replaced by its Adomian polynomials and then the dependent variable
components are replaced by their corresponding differential transform
components of the same index. This technique benefits the properties
of the Adomian polynomials and the efficient algorithm to generate
them quickly as in the work [9-11]. Numerical simulations of some
nonlinear equations with different types of nonlinearity are treated and
the proposed technique has provided good results.

Differential Transform Method

The transformation of the kth derivative of a function y(x) is as
follows

1| d*
Y(k)—ﬁ{dx—k)’(x)} ’ 1)
X:XO

and the inverse transformation is defined by

o0
)= YR (x—xp)* 2)
k=0
In this work, we use lower case letters for the original functions and
upper case letters stand for the transformed functions.

5.1 Theorem 1. If y(x)=f(x)th(x) ,thenY(k)=F(k)+H(k).

5.2 Theorem 2. If y(x)=cf(x) , thenY(k)=cF(k), where C is a
constant.
!
5.3 Theorem 3. If y(x)= f(")(x) , then Y (k) =%F(k +n).
5.4 Theollc'em 4.If y(x)= f(x)h(x) , then .

Y()= Y Flk)H(k-k).

k=0
5.5 Theorem 5. If y(x)=x" , thenY(k)=56(k—m),
b Sk ) 1, k=m
where —m)= .
" 0, k#m

The above theorems can be deduced from equations (1) and (2).
The Modified Differential Transform Method

In this section, we will introduce a reliable and efficient algorithm
to calculate the differential transform of a nonlinear function g(y(x)).
The Adomian polynomials of this nonlinear function are determined
formally as follows [12,13].

1| d"

A=y Pk ;/wi
=

,n>0.

=0
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That is, the Adomian polynomials of g(y(x)) are
Ao =g(yo) >

=ng¥0n) .
A =yzg(”(yo)+%y12 %00

~ 1
Ay =138V () + 7 yzg(z’(yo)+;yf )

~ 1 1
A=.8"00)+ s +;y§)g(2’(yo) T 7,8

|
)+t Yy

@

AS =y58 (¥o)+(¥273 +)’1)’4)g(2)()’0)+

1
;(yf y3+ 338 ()

1 1
+;y13y2g(4)(y0)+;y15g(5)(y0) ,and so on.
6.1 Lemma: If f(x) = g(y(x)), then F(k)= Ay where A are the
Adomian polynomials A; but with replacing y, by Y(k),k=0,1,2,---.

6.2 Proof: The differential transforms of f(x) are computed by
utilizing (1) as

FO =g, =g(y(x) =g(Y(0) =4y,

F()= I_!{Eg(y(x))}m

0

= 7V gV (r(xp)) =YD (Y (0)) = 4,

1| 42
F(2) =5{?g(y(x))} )

0

:%{y(z)(xo)g(l)()’(xo))+()’(1)(x0))2g(2)(y(x0))}

=y(2)gV YO+ (Y<1)>2 @(v(0)) =4,,

1|4
F(3)—§{Eg(y(x)) N
:i y(3)(x0)g(1)(y(x0))+§y(1)(x )}/(2)
31 () g P () + (M () eP ((x))
=Y( )¢V (¥ (0) + Y)Y (2)gP (v (0)+
3 ) :A3,
( 1)’ g®(v(0))

In general we have, F(k)= A, .

Consequently, the inverse transform of the nonlinear function can

function of the problem in hand in its form without any differentiation
or algebraic manipulations or even there is no need to compute the
differential transform of other functions to obtain the required one.
This will be clear throughout the following theorems.

k
(0)g(y(x)), then F(k)= > H(k)Ay_y,
k=0

6.3 Theorem 6. If f(x)=

6.4 Proof: By utilizing definition (1), we can get
1
FO) = (=)

=H(0)g(Y(0)) =

=h(xy)g(y(x0))

X=X
H(0)4, ,

1(d
F(DT{E[}’("M(“"))J}

X=Xq

=D (x0) g () +h(x0) Y™ (x0) M (9(x)

= H()Ay+H(0)A,,

FQ)=— i[h(x)g(y(x))]
2! | dx?

X=X

=2 P 00)g ) + 20 )y g 1(x))
h(xo) [y () g™ (9(x0)) +
D)2 g? (y(xo)]

=HQ)Ay+H)A, + H(0)4,

FG)=— d—3[h(x)g( y(x)) ]
31| dx?

X=XO
H (x0) g (y(x0)) +
302 () yV (%) gV ()

' 310 (x) [y (x0) g™ (9(x,))

+(y D (xo ) gP (N1 + ) [y (x0) ™ (9(x)

Vo)) g% (y(xp))]
=H(3)Ay + H(2)A, + H1)A, + H(0)A;,

+3y(1)(xo)y(z)(xo)g(z)(y(xo))+}

k
In general we have, F(k) = z H(k) A,
k=0

X
6.5 Theorem 7. If f(x) = jg( Y(6))t , then F(k) :% k=1
6.6 Proof: By using (3), the transform of the integral can be found

fx)= J.iAk(t—xO)kdt

as

be written as xq k=0

fx)=g(y ZAk(x x) (3) ZAk I (t—xy)kdt = Z Skl K,

*o

where, A; are the d1fferent1al transform of f(x)=g(y(x)) . Again utilizing (3), we get F(k)=  where k>1 and

The advantage of using this algorithm for computing differential F(0)= f(x9)=0 . X
transformation of nonlinear functions comparing with the algorithm _ J'
suggested in [7], is this algorithm dealing directly with nonlinear 6.7 Theorem 8. If f(x)=h(x) | g(y()Ht.,

%o
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then F(k) = Z—H(k kDA s k=21
k=1 k
6.8 Proof: Utilizing the definition of the transform, we can get

X

F(O)ﬁ h(x)jg(y(t))dt -0,
%o x=x

0

1|4 T
F)= E[h(x)jg(y(t))dt]

=0

YT j g(y(®)dt +h(x)g(y(x))

X0

=h(xy)g(y(xp))
X=X,

= H(O)AO >

1| d? T
FO-; ?{hu) j g(y(r))dt}
X0

_ %{ 20 (x,) g (y(xg)) + hxq) v () g™ y(xo))}

X=Xq

=H1)Ay+H(0)4, /2,

1|4 T
o= E{h(x)“-g(y(t))dt]
X0

x:xo

=%{ 30 (x) g (y()) + 30D (x9) YV () gV ()
+h(x0) [P (x0) gV () +

OV ? ((xp))

=H(2)A, +1H(1)A + %H(O)A

In general we have, F(k) = Z—H(k kl)Ak _y»where k>1.
k1 1 f

6.9 Theorem 9. If f(x)= J & (g, ()t
X0
1 k-1
then F(k) TZGl(kl)Ak,kl,1 L k>1.
k=0

6.10 Proof: Utilizing the definition of the transform, we can get

= [ a0 <o,
*o x=x,
F =1 j (08 (/)

=g1(x0)82(¥(x0)) =G, (0)A,,

FO=— { [ gﬁt)g;(y(t))dt}

X:XO
— 2 8P Gz rx0) + 1)y e ) ()

=[G,(1)A; +G,(0)A,]/2,

1| @ | T
F(3):§ ?{J‘gl(t)gz()’(t))dt}
X0

X=Xq

~ 21| 820500+ 26020y V)l r1x0)

+81 () [y (085 (1)) +
V)2 ((xe))]
=[G,(2)4) +G, (DA + G (0)A,]/3,
k—1
In general we have, F(k) = 1 Z G, (k))Ay_y, _, » where k>1.
k k=0 1

X
6.11 Theorem 10. If f(x)=h(x) J.gl(l‘)g2 y())dt

then F(k) = ZZ—Gl(kl 1)Ak2 L Hk=ky).

ky=1k =1 ky

6.12 Proof: Utilizing the definition of the transform, we can get

F(0) ﬁ h(x) j aOgOM)dts =0,

X
0 -
X=X

1| d T
F=; E{h(x) j gl(t)gz(y(t))dt]

X0
=Xy

=h(xy)g1(x0)82(¥(x¢)) = H(0)G,(0)A, ,

1| d? T
FO= ?{h(x)jgl(t)gz(y(t))dt]

X0
=Xy

210 (x0)g1 (08 (7(x0)) +
:% h(xo)[g?)(xo)gz(y(xo))+g1(x0)y(1)
(x0) g (y(xp))]

= H()G,(0) Ay +[H(0)G, ()4, + H(0)G, (0)A,1/2,

1] 4 T
F@)=; F{hmj gl(t)gz(y(t))dt]

X0
0
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302 (x)) g, (x0) g2 (7(x)) +
=§ 310 (xg) g (xg) g (¥ () +
1 (x)y" (xg)gs (y(x))]

+h(x0)[g§2) (x0)82(¥(xp)) +
2" (x0)y™ ()88 (y(x))]

+81(x) 7P (x0) g (1(xp))
+(y Y (x))? ¢ (9(xp))]

=H(2)G;(0)A, +
[HDG (DA, + /2 [H(0)G,(2)A, + /3 ,
H(1)G,(0)A,] H(0)G,(1)A, + H(0)G,(0)A,]

k Kk
1
In general we have, F(k) = E E —G,(k-1DA, _ H(k—k,).
2k
ky=1k =1 ky

Applications and Numerical Results

In this section, we implement the proposed method on some
different examples with different types of nonlinearity.

7.1 Example 1. Consider the nonlinear Volterra integro-differential
equation

Y'(x)+ y'(x) y(x) + y(x) = cos2x +

X

1+sin2t ,0<x<1 4

% —xzj—zln dt “)
y ()

with the initial conditions

y(0)=1and y'(0)=1. (5)

The differential transformation of equation (4) and the initial
conditions (5) are

k

" %cos(ﬁk/Z) +O6(k—3)—

Y(k-FZ)ZZZEtFESI

k
Z (m+1)Y (m+1)Y (k—m)—Y (k)

m=0

k-2 -1
Ars 1 2" (w(m-1)
- -— A ,
k—2 k—2;(m—1)!sm( 2 j k’“}

where [2F cos(;rk/z)]/k! and [2ksin(7rk/2)]/k!are the differential
transforms of cos(2x) andsin(2x), respectively and A, are
the differential transform of the nonlinear function g(y)=y >

and Y(0)=Y(1)=1. Using the Lemma, A; are:A,=g(Y(0))=1,
A =-2Y(), A, =-2Y(2)+3Y2(1), Ay =-2Y(3)+6Y()Y(2)-4Y>(1),

A, =-2Y(4)-2Y()Y(3)-Y2(2) +3Y2 ()Y (2) +5Y*(1), ...

Utilizing the recurrence relation, the transformed initial conditions
and A, Y(k)are evaluated. Hence using the inverse transformation

formula, the following series solution up to O(x'%) can be obtained
2 .3 4 5 6 7

X X X X X
yx)=l+x—— ey Ty
21 31 41 51 6! 7!
8 9
o 1)
8! 9!

For sufficiently large number of terms, the closed form of the
solution is y(x)=sinx+cosx , which is the exact solution. Table 1
shows the absolute relative error obtained for three various numbers of
terms and at some test points.

7.2 Example 2. Consider the nonlinear Volterra integro-differential
equation

6(x> + 1)y'(x)= (x* +3x2 +6x+6)e=

y? ,0<x<1, (6)
+ J- ety gy
0

with the initial condition
»(0)=0. (7)

The differential transformation of equation (6) and the initial
condition (7) are

Y(k+1):—%Y(k—1)+

6(k+1)
‘ , 3 , (8)
(D (6-11k+6K* —K°) Ay
k! k
where ik/k! are the differential transforms of e** , Apare the

differential transforms the nonlinear function g(y)=e¢ "’ and
Y(0)=0.

If we put x =0 into equation (6), we can get y'(0)=1 and hence
Y(1)=1.

The following system for k =1,2, 3, -+, 8 is obtained from (8)

Y(2)=0,
1
Y@)=—=Y(Q),
3
2
Y(4)= _ZY(Z) ,
3 1 6 A
Y(5)=—=Y(3)+—| —+—2]|,
5 6(5)| 4! 4
4 1 ({24 A
Y(6)=——Y(4)+——| —+-L|,
6 6(6)| 5! 5
5 1 60 A
Y(7)===Y(5) +——| ——+2|,
7 (7)] 6! 6
X Abs. rel. err., Abs. rel. err., Abs. rel. err.,
(5 Terms) (10 Terms) (15 Terms)
0.2 7.75099E-08 0 0
0.4 4.5762E-06 7.74161E-13 0
0.6 5.0297E-05 6.19746E-11 0
0.8 0.000283721 1.4145E-09 1.25621E-15

Table 1: Numerical comparison of results in example 1.
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__5 (11120 A5
Y@®)= SY(6)+6(8)[ 7 }

__7 1] 210 Ay
Ye)= 9Y(7)+6(9){ 8 8!}

where differential transform components A are: Aj= e () oy

A=Y(M), A =Y ()-Y(Q2), A, =—(1/2Y )+Y(Q) Y(2) -Y(3),

A =Y()Y(3)+(1/2)Y*(2) -
B2V (Y +G/8)Y () -Y(4)

By solving the above systems for Y(k), the series solution of

problem (6) and (7) up to o(x'%) is given by
3.5 .7 .9
X X X X 10
xX)=x——+—-——+—+0Kx").

4 3 5 7 9

For sufficiently large of terms, the closed form of the solution is
y(x)= tan" x , which is the exact solution. Table 2 shows the absolute
relative error obtained for three various numbers of terms and at some
test points.

7.3 Example 3. Let us consider the nonlinear Volterra integro-
differential equation

Y'(x)-2y(x)y'(x)=—x+ Lz)dt, 0<x<1, 9)
5 1+ y°(t)

with the initial conditions

»(0)=0,and y'(0)=1. (10)

The differential transformation of this equation and its initial
conditions are

k
22(m+1)Y(m+1)Y(k—m)—§(k—1)+

k! m=0
Yk+2)=—— ,
Z E (m+1)Y(m+1DA,_,,_,

m=0
Y(0)=0and Y(1)=1.

Ay canbe obtained by using Lemmaas: Ay =(1+ Y? (0))71 =LA, =0,
Ay ==Y (1), A, =2Y()Y(2), A, =2(Y()Y3)+Y22)+Y* (1) , ...

By solving for Y (k) , the series solution of problem (9) and (10) up
to O(x'%) is given by

y(x)= x+lx3 -kix5 +ix7 +£x9 +0(x").

3 15 315 2835

For sufficiently large number of terms, the closed form of the
solution is y(x)=tanx , which is the exact solution. Table 3 shows the
absolute relative error obtained for three various numbers of terms and
at some test points.

7.4 Example 4. Consider the initial-value problem of Bratu-type
(7]

y'(x)—2¢"™ =0, 0<x<I, (11)
»(0)=0,and y'(0)=0. (12)

X A?SS .Treerl;nesr)r., A(l;g 'Ir'zll"n?g;‘ Abs. rel. err., (15 Terms)
0.2 9.12337E-09 0 0

0.4 8.82908E-06 4.80303E-10 0

0.6 0.000468447 1.45549E-06 5.92E-10

0.8 0.007532013 0.000411299 2.95854E-07

Table 2: Numerical comparison of results in example 2.

X Abs. rel. err., (5 Terms) A(?‘S 1’::;;;" A(t;; 'Ir'eell"rsgr)"
0.2 9.10218E-10 0 0

0.4 9.40244E-07 7.01122E-14 6.49916E-15
0.6 5.50308E-05 5.3086E-10 4.48908E-12
0.8 0.000998396 3.04049E-07 2.23E-10

Table 3: Numerical comparison of results in example 3.

The differential transformation of this equation and its initial
conditions are

Y(k+2)= 24

=——FX* _Y(0)=0and =0,
(k+1)(k+2) (0)=0andY(h)=0

where A, are: A, =" O A =Y() YO ,
A=Y@+ )2 /21",
Ay =[YR)+YOY @)+ (Y1) f6] '@, -

The following differential transform components are obtained:

Y(2)=1, Y(3)=0, Y(4)=1/6, Y(5)=0, Y(6)=2/45, Y(7)=0,
Y(8)=17/1260 , Y(9)=0,"- .

The series solution of problem (11) and (12) up to O(xlo)
by

is given

2,1 4, 2 ¢ 17 3 10
X)=x"+—x +—x +——x +0(x").
¥ 6 45 1260 =)
This is the same result with that obtained by [7,14]. The closed form

solution of this problem is y(x) = —21In(cosx).
7.5 Example 5. Consider the nonlinear initial-value problem [7]
y(x) =2y(x) + 4y(x) In(y(x)), x>0, (13)
y(0)=1,and y'(0)=0. (14)
The differential transformation of this equation and its initial
conditions are

1

Y(k+2)=—"—
(k+1)(k+2)

. , Y(0)=1and Y(1)=0.
2Y(k)+ 42 Y(k)Ay g,
k=0

where A; are: A;=InY(0), A, :Y(l)/Y(O),

A, =YY (0) - (Y)Y (0)? /2,
Ay =Y(3)/Y(0)+ Y)Y (2)/ (¥ (0))* -
(Y()/Y(0))* /3

>
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/Y —2YYE)+ (Y (Y (0)* +
(Y(l))z/ YY) /4

The following differential transform components are obtained:
Y2)=1, Y(4)= 1/2 Y(6) 1/6 Y(8 1/24 . The series solution
of problem (13) and (14) up to 0(x'9) is given by

2,141 6, 1 3 10
X)=1+x"+—x"+—x"+—x"+0(x").
y(x) Xt ()

This is the same result with thag obtained by [7]. The closed form
solution of this problem is y(x) =¢*

7.6 Example 6. Consider the nonlinear initial-value problem

y'(x)= \/ y(x) + y(x), (15)

y(O)—l,and y'(0)=2. (16)

The differential transformation of this problem are
9A, +4Y (k)
Ak +1)(k+2)

where A are: Ay =+Y(0) , 4, =Y()/2{Y(0)),
2/2¥0) - WP oy,
Ay = Y(3)/21/Y(0 m)Y(z>/ (") +

Y(k+2)= Y(0)=landY(1)=2.

(Y Jaey(0)7?)
Ay =Y(@)/2JY(0) ~2Yy()Y (3)

5/2
HYQ) MHMN”“ Y@/ s o)) -

s(r()* fa28(v(0))/?)

The following differential transform components are obtained:
Y(2)=13/8,Y(3)=17/24,

Y (4)=149/768,

Y(5)=77/1920,

Y(6) =641/92160 ,

Y(7)=317/322560,

Y(8) =2609/20643840 ,

Y(9)=1277/92897280 ,

The series solution of problem (15) and (16) up to O(xlo) is given

149 77 641
AL, 64l e

317 5, 2609
+ x'+ x°+
322560 20643840

_1277 x* +0(x'%)
92897280

The exact solution of this example is

X x/2 lefx/z_1 :
y(x)= " . .

x A?SS .Trgrl}nesr)r., A(?‘Z ;Zl}n?g)" Abs. rel. err., (15 Terms)
0.2 7.79747E-08 0 0
0.4 4.8256E-06 9.47535E-12 0
0.6 2.01E-06 2.69667E-09 6.74169E-10
0.8 1.28303E-05 3.5877E-08 2.44062E-09

Table 4: Numerical comparison of results in example 6. .
Table 4 shows the absolute relative error obtained for three various

numbers of terms and at some test points.
Conclusion

In this work, we present a new approach for applying the differential
transform method for solving nonlinear initial-value problems. The
differential transform of the nonlinear term is replaced in the recurrence
relation by its Adomian polynomial of index k. Hence, the dependent
variable components are replaced by their corresponding differential
transforms of the same index. This technique benefits the properties of
the Adomian polynomials and the efficient algorithm to generate them
quickly. Also, this technique is dealing directly with nonlinear function
of the problem in its form without any differentiation or algebraic
manipulations or even there is no need to compute the differential
transform of other functions to obtain the required one. The considered
prototype examples include initial-value problems with different types
of nonlinearity. These numerical examples have proved good results.
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