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Introduction
Over the past several decades, the subject of missing values, 

incomplete data, the expectation and the maximization (EM) algorithm 
and observed information were discussed by many authors, see e.g., 
[2-5]. Hartley and Hocking [2] tried to introduce a simple taxonomy 
for incomplete problems and developed unified methods of analyzing 
incomplete data including estimating the parameters in a multivariate 
normal distribution when some of the responses are missing. Sundberg 
also studied an iterative method for the solution of the likelihood 
equations for incomplete data from exponential families, i.e., the 
data being a function of an exponential family. Efron and Hinkley [4] 
studied the variance estimate of the maximum likelihood estimator 
(MLE) to the normal distribution with one-parameter families, i.e. var 

[ ]ˆ( ) = 1/ ( ) ,E I xθθ  where I(x) is the observed information, i.e. minus the 
second derivative of the log-likelihood function at θ̂  given data x.

Dempster et al. [3] then made significant contributions with the 
essential ideas of EM algorithm and maximum likelihood estimates 
for incomplete data including examples, missing values situations, 
and proofs. Specially, Dempster et al. [3] showed a general approach 
to the iterative computation of maximum likelihood estimates when 
the observations can be considered as incomplete data with an 
example from Rao. In addition, Professor Cedric A.B. Smith made on 
this paper’s example that dealt with the standard error of maximum 
likelihood estimator using the binomial approach.

The EM algorithm can be easily used to find the MLE of a 
parameter, say θ when the log-likelihood function of incomplete data 
is known. But, in most cases, the log-likelihood function of incomplete 
data is challenging to maximize (perhaps not even in closed form). In 
this case, the EM algorithm is particularly useful to calculate the MLE 
of θ. That is, the EM algorithm is able to calculate the MLE of θ without 
explicit formula of the log-likelihood function of incomplete data. 
Thus, the calculation of the standard deviation of θ based on likelihood 
ratio or approximate normality could be problematic. In the meantime, 
Louis [1] showed that EM algorithm could be extended to compute 
the curvature of the log-likelihood function of incomplete data without 
calculation of the log-likelihood function of incomplete data itself. 
In this paper, we calculate the standard deviation using several of the 
following methods: Louis method, bootstrap for complete data and 
bootstrap for incomplete data and comparing all standard deviation 
values for a data from Rao.
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Abstract
There is a problem when a relatively simple analysis is changed into a complex one just because some of the 

information is missing. Louis showed how to estimate the standard deviation of maximum likelihood estimate (MLE) for 
a parameter θ using the missing information. In the meantime, the resampling method is one of the best methods to 
calculate the standard deviation of sample estimates. In this article, we define and compare the standard deviation of a 
parameter θ using complete data, incomplete data, and the EM algorithm. As an illustration, we analyze a data from Rao 
and compare all methods for estimating variability.

The paper is organized as follows, in section 2, we give a brief 
overview of the MLE and EM algorithm. Then, in section 3 we provide 
a more detailed, structured proof of the Louis’ method. In the final 
section 4, we illustrate with an example from Rao’s paper in which 
197 animals are multinomially distributed into four categories. We 
describe a simulation study that was carried out to compare the results 
on standard deviation estimate using Louis’ method and resampling 
methods. In the 5th and final section of the paper, we discuss the 
performance of all methods including Louis’ method and bootstrap 
methods in terms of variability and then make our conclusions. 
These bootstrap methods are very useful to some data which are also 
discussed in this section.

The Maximum Likelihood Estimation and EM 
Algorithm

In this article, we denote the vector x represents the complete data 
and it is denoted as c, while the vector y represents the actual observed 
data or incomplete data or partial data and it is denoted as p. We 
let X be an n dimensional random vector with a probability density 
function (pdf) f(x;θ) on a sample space , where x=(x1,x2,…,xn)

T and 
θ=(θ1,θ2,…,θd)

T is the vector containing the unknown d parameters in 
the postulated form for the pdf of X, and the corresponding likelihood 
function, say Lc(x,θ) Similarly, y=(y1,y2,…,ym)T denotes an observed 
random sample of size m on random vector Y with pdf g(y; θ) and 
the corresponding likelihood function, say Lp(y,θ). The superscript T 
denotes the transpose of a matrix. The objective is to find the MLE of 
θ say θ̂ .

An estimate θ̂  can be obtained as a solution of the log-likelihood 
equation:

log ( , ) = 0.cL x θ
θ

∂
∂

(1)
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In addition, θ̂  satisfies the following condition:
2

ˆ=

log ( , ) | < 0.c
T

L x
θ θ

θ
θ θ

∂
∂ ∂

We let,
2 log ( , )( , ) = c

c T

L xI x θθ
θ θ

∂
−

∂ ∂
               (2)

be the matrix of the negative of the second-order partial derivatives of 
the log-likelihood function with respect to the elements of θ, and it is 
called observed information matrix. Under regularity conditions, the 
expected (Fisher) information matrix ( )θ  is given by:

( ) = { ( , ) ( , )} = { ( , )}.X c c cE S X S X E I Xθ θ θ θ

That is,

( ) = { ( , )}X cE I Xθ θ− 				                 (3)

where

log ( , )( , ) = c
c

L xS x θθ
θ

∂
∂

               (4)

is the gradient vector of the log-likelihood function; that is the score 
statistic.

As the log-likelihood function of X is unobservable, we will not be 
able to find the MLE of θ, Ic(x,θ) and ( ).X θ  So, instead of observing 
x∈, we can find the MLE of θ using the observed data y. The algorithm 
operates as follows:

Then, we can write the log-likelihood function of observed data 
Lp(y,θ) as:

( ) ( )log ( , ) = log ( | ) = log ( | ) ( )p Y XR
L y f y f x d xθ θ θ µ∫ (5)

where R={x:y(x)=y}, and dµ(x) is a measure.

The EM algorithm approaches the problem of solving the observed 
data log-likelihood eqn. (5) indirectly by proceeding iteratively in 
terms of the complete data log-likelihood function Lc(x,θ). As it is 
unobservable, it is replaced by its conditional expectation given y, using 
the current fit for θ. The definitions of the EM algorithm for complete 
data was defined by Dempster et al. [3], as follows:

Suppose first that f(x|θ) has the regular exponential family form:

( | ) = ( )exp( ( ) ( )) / ( )Tf x b x c t x aθ θ θ   		     (6)

where θ denotes a 1×d vector parameter, t(x) corresponds 1×d vector 
of complete-data sufficient statistics, b(x)denotes a function of x, a(θ) 
represents a function of θ. In addition, let y denote the “observed" or 
“incomplete data" from the sample, and θ(k) represents the current value 
of θ after k cycles of the EM algorithm. The next cycle of the algorithm 
consists of the following steps:

E-Step: Estimate the complete-data sufficient statistics, t(x), by
evaluating:

[ ]( )
( )=

= ( ) | | ,k
kt E t X Y

θ θ
               (7)

the conditional expectation of t(x) given the observed data y at the 
current value of θ. In the case of the exponential family, the properties 
of the estimator are well established. However, if the distribution is 
non-exponential family such as Cauchy, then mean does not exist and 
thus the properties (self-sufficiency and monotone convergence) need 
to be established case by case basis.

M-Step: Determine θ(+1k), an updated value of θ, as the solution in
θ of the equation:

[ ] ( )
( 1)=

( ) | = k
kE t X t

θ θ +    (8)

Alternatively, the above equation can be expressed as:

( )
( 1)=

log ( ) | = ,
( )

k
k

a t
c θ θ

θ
θ +

∂
∂

                    (9)

see more details the paper Dempster et al. [3] and Louis [1].

Louis’ Method
To see how to compute the observed information in the EM, let 

Sc(x,θ) and Sp(y,θ) be the gradient vectors of log-likelihood functions 
log Lc(x,θ) and log Lp(y,θ) for the complete data and observed data 
respectively and Ic(x, θ) and Ip(y,θ) be the negatives of the associated 
second derivative matrices. Then, Louis [1] proved that the following 
statements are true.

[ ]( ) ( , ) = ( , ) |p ci S y E S X X Rθ θ ∈  (10)

[ ] ˆ=
ˆ( ) ( ) = ( , ) | ( , ) ( , ) | | .T

Y c c cii E I X X R E S X S X X R
θ θ

θ θ θ θ ∈ − ∈  (11)

In the eqn. (11), the first term is the conditional expected full data 
observed information matrix while the second term produces the 
expected information for the conditional distribution of X given X∈R. 
That is, we can write using a simplified notation as below:

|
ˆ ˆ ˆ( ) = ( ) ( )Y X X Yθ θ θ−     			                 (12)

which is an application of the missing information principle [6] to the 
observed information. It has the following appealing interpretation:

Observed Information=Complete Information-Missing Information.

The eqn. (12) can be written as:
2

ˆ2 =
ˆ( ) = ln[ | ] | ln[ | ] | | .Y E X X R Cov X X R

θ θ
θ θ θ

θ θ
 ∂ ∂ − ∈ − ∈   ∂ ∂  



The first term of the right side of the above equation (i.e., complete 
information) is the conditional expected information matrix of the 
complete data X and is typically easy to compute. However, it may be 
computationally intractable to calculate in some situations. Tanner [7] 
suggested a Monte Carlo approach to Louis’ method by replacing the 
expectations with a Monte Carlo estimate. Louis [1] proved that the 
second term of the right side (Missing Information) is the expected 
information for the conditional distribution of X given X∈R (Appendix 
1 for proving the Louis method).

This eqn. (12) is an application of the missing information principle 
[6] to the observed information. Notice that all of these conditional
expectations can be computed in the EM algorithm using only S and I,
which are the gradient and curvature for a complete-data problem. Of
course, they need to be evaluated only on the last iteration of the EM
procedure, where Sp(y,θ) is zero.

Examples
Estimating maximum likelihood estimator (MLE)

The following example is based on the lead example used in Rao and 
is derived from a model for recombination in gene mapping studies. In 
this data, 197 animals are distributed multinomially into four categories, 
so the observed data consists of y=(y1,y2,y3,y4)=(125,18,20,34). A 
gene model for the population specifies cell probabilities with 

1 1 1 1 1{( ), (1 ), (1 ), },
2 4 4 4 4

θ θ θ θ+ − −  0 ≤ θ ≤ 1. With y1,y2,y3,y4 as the
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frequencies, let Y1=X2+X2, Y2=X3+X3, Y3=X4+X4, where X is a 

multinomial with parameters 1 1 1 1 1{ , , (1 ), (1 ), }.
2 4 4 4 4

θ θ θ θ− −  Here, 

Y=(Y1,Y2,Y3,Y4) and X=(X1,X2,X3,X4, X5) are called incomplete data and 
complete data respectively. In this example, we will show:

(i) How to find the MLE of θ from incomplete data?

(ii) How to find the MLE of θ from complete data?

(iii) How to find the standard deviation of MLE using:

- Louis’ Method

- Second Derivative w.r.t θ for Complete and Incomplete Data

- Binomial Approach

- Bootstrap.

(i) Using incomplete data

The likelihood function of θ is:
1 2 3 4

1 2 3 4

1 2 3 4

( )! 2 1( ; ) =
! ! ! ! 4 4 4

y y y y

p
y y y yL y

y y y y
θ θ θθ

++ + + + −     
     
     

        (13)

If we derivative log-likelihood function with respect to θ, and set 
the derivative equal to zero then we will get the quadratic equation of 
θ, as follows:

( ) 1 2 3 4( )log ( ; ) = 0
2 (1 )p

y y y yL y θ
θ θ θ θ
∂ +

+ − +
∂ + −

ˆ= 0 =if θ θ

That is,

( ) ( )2
1 2 3 4 1 2 3 4 4

ˆ ˆ2 2 2 = 0.y y y y y y y y yθ θ+ + + + − + + + −         (14)

If we substitute of (y1,y2,y3,y4)=(125,18,20,34) then we will get the 

value of θ̂  is 0.6268 as ˆ > 0.θ

If we do the second derivative with respect to θ, then

( ) 1 2 3 4 1 2 3 4
2 2 2 2 2 2

( ) ( )log ( ; ) = =
( 2) (1 ) ( 2) (1 )p

y y y y y y y yL y θ
θ θ θ θ θ θ θ

 ∂ + +
− − − − + + ∂ + − + − 

ˆ< 0 =if θ θ

Since the sign of the second derivative is negative when ˆ= ,θ θ  we 
can say that the MLE of θ is ˆ = 0.6268.θ  But, the most of the cases, the 
log-likelihood function of incomplete data is challenging to maximize 
as we mentioned in the introduction. If we are unable to use the 
incomplete data to find the MLE, then we can use the complete data 
to find the MLE via EM algorithm, as shown in the paper Dempster 
et al. [3].

Remark 4.1: Finding the MLE using Tweedie Equation [8].

1 2 3 4
1 2 3 4

1 2 3 4

( )! 2 1 1( ; ) =
! ! ! ! 4 4 4 4

y y y y

p
y y y yL y

y y y y
θ θ θ θθ + + + + − −       

       
       

If we derivative with respect to θ,

( ) 1 2 3 4log ( ; ) = 0
2 (1 ) (1 )p

y y y yL y θ
θ θ θ θ θ
∂

+ − − +
∂ + − −

ˆ= 0 =if θ θ

The maximum likelihood eqn. (13) for the incomplete data is:

1 2 3 4 = 0.
2 (1 ) (1 )

y y y y
θ θ θ θ

− − +
+ − −

As Tweedie [8] suggested, we can easily solve the linear equation 
for MLE by replacing each term by its reciprocal, as follows:

1 2 3 4

2 (1 ) (1 ) = 0.
y y y y

θ θ θ θ+ − −
− − +

That is,

1 2 3 4 2 3 1

1 1 1 1 1 1 2= .
y y y y y y y

θ
   

+ + + + −   
   

If we substitute (y1,y2,y3,y4)=(125,18,20,34) then the solution of θ is 
0.6264, which is MLE from Tweedie equation.

(ii) Using complete data

The likelihood function of θ is:
1 2 5 3 4

1 2 3 4 5

1 2 3 4 5

( )! 1 1 1( ; ) = (1 )
! ! ! ! ! 2 4 4

x x x x x

c
x x x x xL x

x x x x x
θ θ θ

+ ++ + + +      −     
     

(15)

As we have done for the incomplete data, we derivative log-
likelihood function with respect to θ, and set the derivative equal to 
zero then we will get:

( ) ( ) ( )2 5 3 4
1 1log ( ; ) = 0 ( 1)

(1 )cL x x x x xθ
θ θ θ
∂

+ + + + −
∂ −

ˆ= 0 =if θ θ

Therefore
2 5

2 3 4 5

ˆ = .x x
x x x x

θ +
+ + +

If we do the second derivative with respect to θ,

( ) ( ) ( )2 5 3 42 2 2

1 1log ( ; ) =
(1 )cL x x x x xθ

θ θ θ
∂

− + − +
∂ −

2 5 3 4
2 2

( ) ( )=
(1 )

x x x x
θ θ

 + +
− + − 

ˆ< 0 =if θ θ

Since the sign of the second derivative is negative when ˆ= ,θ θ  we 
can say that the MLE of θ is θ̂ .

In this case, we are unable to estimate the MLE value of θ as x2 is 
unobservable. However, it can be estimated using the EM algorithm as 
described in section 2. But in order to estimate, first we have to find the 
complete-data t(x) of this distribution.

The probability density function of x given θ is:

1 2 5 3 4
1 2 3 4 5

1 2 3 4 5

( ) 1 1( | ) =
! ! ! ! ! 2 4 4

x x x x xx x x x xf x
x x x x x

θ θθ
+ ++ + + + −     

     
     

   (16)

This density can be written as an exponential-family form, as 
follows:

1 5 3 4
1 2 3 4 5

2
1 2 3 4 5

( ) 1 1( | ) = exp
! ! ! ! ! 2 4 4 4

x x x xx x x x xf x ln x
x x x x x

θ θ θθ
+   + + + + −       

                   

( )= ( )exp ( ) ( ) / ( ),b x c t x aθ θ

where
1

1 2 3 4 5
2

1 2 3 4 5

( ) 1( ) = , ( ) = , ( ) = ,
! ! ! ! ! 2 4

xx x x x xb x c ln t x x
x x x x x

θθ+ + + +    
   
   
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( )5 3 41( ) = .
4 4

x x x

and a θ θθ
− − +−   

   
   

E-Step: If we assume that the initial value of θ is θ(0), then the first 
iteration of the EM algorithm, the E-step requires the computation of 
the conditional expectation of complete-data given incomplete data y at 
θ=θ(0). It can be written as:

[ ](0)
(0)=

= ( ) | |t E t X Y
θ θ

[ ]2 (0)=
= | |E X Y

θ θ

[ ]2 1 (0)=
= | | .E X Y

θ θ

Remark 4.2: Prove that / 1 / 11 1 1
( ) = ( )X Y X YE x E x

Consider:

11
/ 11

( , )
( ) =

( )
X Y

X Y
Y

f x y
f x

f y

*
1 1 * *1

1 2 3 4*
1

( , , )
= = ( , ) = ( , , )

( , )
X Y

Y

f x y y
where y y y and y y y y

f y y

*
1 11

*
1

(( , ), )
=

( , )
X Y

Y

f x y y

f y y
*

1 1 * *1 1
1 1*

1 *1

( , ). ( )
=

( ) ( )
X Y Y

Y Y

f x y f y
as Y does not depend on X and Y

f y f y

1 11 1

11

( , )
=

( )
X Y

Y

f x y

f y

/ 11 1
= ( ).X Yf x

Therefore we can write / 1 / 11 1 1
( ) = ( )X Y X YE x E x  by the definition of 

conditional expectation.

Let’s say the distribution of X1 given Y1 is Bin(n1,p1), and the 
distribution of X2 given Y1 is Bin(n2,p2) where n1=y1, n2=y1 and p1 and p2 
can be calculated as follows:

( )
1 1

1 1 1 (0)(0)
1

( ) 1 / 2 2= ( | ) = = = .
( ) 21 / 2 / 4

P X Yp P X Y
p Y θθ
∩

++
            (17)

( )
(0) (0)

2 1
2 2 1 (0)(0)

1

( ) / 4= ( | ) = = = .
( ) 21 / 2 / 4

P X Yp P X Y
p Y

θ θ
θθ

∩
++

           (18)

The expected value of X1 given Y1 and θ is:

( ) ( )
(0) 1
1 1 1 1 1 1 (0)(0)

1 / 2 2= | = = = .
21 / 2 / 4

yx E X Y n p y
θθ ++

	              (19)

Also, we can find the value of X2 given Y2 and θ is:

( ) ( )
(0) (0)

(0) 1
2 1 1 1 (0)(0) (0)

1 / 2 / 4= = = .
21 / 2 / 4 1 / 2 / 4
yx y y y θ θ
θθ θ

−
++ +

        (20)

Therefore,

[ ]
(0)

(0) (0)1
2 1 (0) 2(0)=

= | | = =
2
yt E X Y x

θ θ

θ
θ+

(0) (0)
2=t x 					                   (21)

This completes the E-step on the first iteration.

M-Step: The M-step then takes the estimated complete data 
( )(0) (0)

1 2, ,18,20,34x x  and estimate θ on the first iteration by choosing θ(1) 
to be the value of θ. θ(1) is obtained from the following equation.

(0)
(1)=

log ( )= |
( )
at

c θ θ

θ
θ

∂
∂

5 3 4
1log ( ) = log ( ) log

4 4
a x x xθ θθ −   − − +   

   

Therefore,

(0)
(1)=

log ( )= |
( )
at

c θ θ

θ
θ

∂
∂

(1)=

log ( )= |
( )

a
c θ θ

θ θ
θ θ

∂ ∂
∂ ∂

3 4 5
(1)=

= ( ) |
(1 )
x x x

θ θ
θ

θ θ
 +

− − 

If we substitute (0)
2x  instead of t(0) and θ=θ(1) then

(0)
2 3 4 5
(1) (1) (1)=

(1 )
x x x x
θ θ θ

+
−

−

That is,
(0)

(1) 2 5
(0)
2 3 4 5

= x x
x x x x

θ +
+ + +

   			                                   (22)

The new fit θ(1) for θ is then updated for θ into the right sides of 
(eqn 19) and then (eqn 20) to produce updated values of (1)

2x  and t(1) 
respectively. Note that we do not need to maximize the θ again and 
again since the MLE of θ has a closed form. Now if we substitute (1)

2x  
instead of (0)

2x  in (eqn 22), it leads new fit θ(2) for θ, and so on. It follows 
on so alternating the E- and M-steps on the (k+1)th iteration of the EM 
algorithm that

( )
( 1) 2 5

( )
2 3 4 5

=
k

k
k

x x
x x x x

θ + +
+ + +

			                (23)

where

( )
( ) ( )

( ) ( ) ( )1
2 1 1 1 ( )( )

/ 4= = = = .
21 / 2 / 4

k k
k k k

kk

yx y x y tθ θ
θθ

−
++

	               (24)

Remark 4.3: The value of θ must be determined by the rules of 
thump, which is defined as follows: The ratio of successive deviations, 
say rk,

( ) ( )( 1) ( ) ( ) ( 1)= /k k k k kr θ θ θ θ+ −− −

is essentially constant or the log-likelihood function ( )log( ( ))kL θ  is a 
non-decreasing function.

In eqn. (24), if we substitute instead of 
( )

( ) 1
2 ( )= ,

2

k
k

k

yx θ
θ+

 then we 
will get

( )
1

5( )
( 1)

( )
1

3 4 5( )

2=
.

2

k

k
k

k

k

y x

y x x x

θ
θθ

θ
θ

+
+

+

+ + +
+
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The formula of θ(k+1) in terms of y’s is:
( ) ( )
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1 2 3 4
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( )(2 )

k k
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y y
y y y y

θ θθ
θ θ
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		               (25)

We define a function of θ(k+1) such that ( )( 1) ( )= , = 0,1,2,....,k kM for kθ θ+  
where the function M(θ(k)) is defined as:

( )
( ) ( )

( ) 1 4
( ) ( )

1 2 3 4

(2 )=
( )(2 )

k k
k
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y yM
y y y y

θ θθ
θ θ
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+ + + +

( ) ( )
( )

1 2 3 4( )

159 68= , , , = 125,18,20,34 .
197 144

k

k if y y y yθ
θ

+
+

Since θ(k+1) converges to some point, say θ(*) and M(θ(k)) is 
monotonically increasing and continuous function, then θ(*) must 
satisfy the condition θ(*)=M(θ(*)), [3].

On putting θ(k+1)=(k)=θ(*) in the equation θ(k+1)=M(θ(k)), we can 
explicitly solve the resulting quadratic equation in θ(*) to confirm that 
the sequence of EM iterates {θ(k), irrespective of the starting value θ(0).

That is,
(*)

(*)
(*)

159 68= .
197 144

θθ
θ

+
+

The quadratic equation in θ(*) is 197θ(*)2-15θ(*)-68=0. Since 0<θ(*) <1, 
the value of θ(*) is 0.6268, which is MLE of θ.

(iii) Estimating the standard deviation of MLE

In this subsection, we are concentrated on estimating the standard 
deviation of MLE using simulation. There are different methods we 
used in order to estimate the standard deviation. For example, we 
used Louis’ method, the binomial approach, the second derivative of 
complete data and incomplete data and bootstrap methods as well. In 
addition, we have calculated the absolute relative percentage (ARP) 
based on Louis’ method and then compare those values to find out 
which method would give the best estimate of standard deviation for 
the MLE based on Louis’ method. The ARP is defined by:

| |= *100%.Louis Method MethodAPR
Louis Method
′ −

′

However, there are several other criteria to evaluate our methods 
such as mean absolute error (MSE), root mean squared error (RMSE) 
and bias. Taking the square root of the average squared errors has 
some interesting implications for RMSE. Since the errors are squared 
before they are averaged, the RMSE gives a relatively high weight to 
large errors. This means the RMSE should be more useful when large 
errors are particularly undesirable. In order to use Louis’ method, we 
have to calculate the observed information ˆ( )Y θ  using the formula as 
mentioned in section 3. Since we know the log-likelihood function of 
θ from eqn. (16), we can directly calculate the Sc(x, θ) and Bc(x, θ), and 
then find X and X|Y as follows:

2 5 3 4log( ( , ))( , ) = =
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c
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θ θ θ
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2 2
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y
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θ
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( )
1

ˆ22 =

1 2 ˆ= | = 57.804 = 0.6268
2
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θ θ

θ θ
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Therefore the ˆ( )Y θ  can be calculated using the formula (3.3),

|
ˆ ˆ ˆ( ) = ( ) ( ) = 435.296 57.804 = 377.4917.Y X X Yθ θ θ− −  

The MLE θ̂  is asymptotically distributed as:

1ˆ , ,
( )Y

Nθ θ
θ

 
 
 




  				                (26)

as θ̂  satisfies the following conditions.

(i) the dimension of the parameter space does not change with n

(ii) the distribution is exponential family

(iii) the range of Y does not depend on θ.

Where Y(θ)denotes the expected Fisher information from one 
observation [9] and it is defined as:

2

2( ) = ln[ | ] |Y E Y Y Rθ θ
θ

 ∂
− ∈ ∂ 

   		                   (27)

Because θ is unknown, we can plug in θ̂  to obtain an estimate the 

standard deviation, ˆ ˆ( ) 1 / ( ).YSD θ θ≈   Therefore the approximate 

standard deviation value for MLE is 1 / 377.4917 = 0.05147.

Remark 4.4: In this example, we have shown that
2

|2( ) = ln[ | ] | = ( ) ( )Y X X YE Y Y Rθ θ θ θ
θ
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− ∈ − ∂ 

  

The first derivative of log-likelihood function w.r.t. θ is,

( ) 1 2 3 4
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2 (1 )
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θ θ θ θ

∂ +
− +
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and the expected value of the second derivative is:
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|= ( ) ( ) .X X Yθ θ −  

There was another method to estimate the standard derivation of 
MLE in the discussion on the paper Dempster et al. [3] by Professor 
Cedric A. B. Smith. The standard deviation of MLE, θ̂  is:

*

ˆ ˆ(1 )ˆ( ) =
(1 )

SD
n
θ θθ

λ
−
−

				                  (28)

where n* can be estimated as:

*
2 2 3 4 2 3 4

ˆˆ= = 1 ˆ2
n X Y Y Y Y Y Y Yθ

θ

 
+ + + + + +  + 

	               (29)

and λ is calculated as follows:

For each iterations in the EM algorithms find the ratio as shown 
in the Table 1. After a few iterations, we can see that the ratio does not 
change, which is denoted as λ.

Since the EM algorithm provides non-decreasing maximum 
likelihood function, the convergence criteria can be subjected. Relative 
change should be computed in the magnitude of 10-3,10-4,10-5, etc. If 
the consecutive values provide same estimate, then the middle value 
should be used as a criteria for convergence. In our example, we expand 
with 10-3,10-4 and 10-5 and we recommend the magnitude of 10-3.

The following Tables 2 and 3 show the results from our simulation 

studies for the θ values of 0.3, 0.4, 0.5, 0.6, 0.6268, 0.7, 0.8 and 0.9 to 
identify which the method would give the best estimate for SD of MLE 
as good as Louis’ estimates. In other words, we have estimated the SD 
of MLE using several methods for all θ (Table 2) and find the ARP 
values (Table 3) for each approach based on Louis’ method. As we can 
see the simulation results in the tables, the methods binomial approach 
(Method I), bootstrap for incomplete data (Method II) and the second 
derivative of incomplete data w.r.t θ (Method III) give best estimates 
while all methods from complete data (Method IV-IX) give worst 
estimates. However, the Method I requires the distribution of X2|Y1 is 
known and MLE from the incomplete data exists, and the Method III 
requires the second derivative of incomplete data w.r.t θ exists.

Although in this example, computing time were very smaller 
(and non-issue due to close form solution). In other situations, EM 
algorithm may take more time. However, this is not a issue due to very 
advance computational method.

Note that in this example, the likelihood based on incomplete data 
and complete data is straight forward. Therefore, it is easier to compute 
difference variance estimates. When incomplete data likelihood 
function is not closed form, this computation may not be possible.

Discussions and Conclusions
Generally, the Louis’ method is one of the best methods to estimate 

the standard deviation of MLE when the observations can be viewed 
as incomplete data. If the bootstrap approach for incomplete data 
(Method II) is properly done as we described, then this method would 
give the best estimate for the standard deviation of MLE and be as good 
as Louis’ method estimates. We also calculated the estimate of standard 
deviation of MLE using nine different possible methods to show that 
Method II is the best approach to estimate the standard deviation 

Iteration (I) θ(I) ( ) ( )) )ˆ ˆ/( +1 (θ θ θ θI I− −   
1 0.300 0.175 
2 0.570 0.139 
3 0.619 0.134 
4 0.626 0.133 
5 0.627 0.133 

Table 1: The EM iterations for the example and λ value.

Theta Simulation Method I: 
Binomial 
Approach

Method II: 
Bootstrap for 
Incomplete 

Data Y

Method III: 
Using Second 
Derivative of Y: 

theta is not fixed

Method IV: 
Complete 

Data using 
V(E())+E(V())

Method V: 
Bootstrap 
Complete 

Data X (SD)

Method VI: 
Using Second 

Derivative of X: 
theta is not fixed

Method VII: 
Complete 

Data using 
E(V(X))

Method VIII: 
Bootstrap 

for Complete 
Data X (MLE)

Method IX: 
Using Second 

Derivative of X: 
theta is fixed

0.3 5,000 0.73% 0.32% 1.06% 8.40% 17.07% 18.67% 30.27% 30.27% 31.25%
10,000 0.66% 0.60% 0.91% 8.14% 16.93% 18.55% 30.84% 30.84% 31.2 1%
20,000 0.82% 0.45% 0.95% 8.61% 16.92% 18.53% 30.12% 30.12% 31.17%

0.4 5,000 0.43% 0.30% 0.64% 14.40% 13.69% 22.54% 24.96% 24.96% 27.58%
10,000 0.29% 0.82% 0.68% 14.70% 13.70% 22.49% 24.49% 24.49% 27.51%
20,000 0.34% 0.25% 0.65% 14.40% 13.66% 22.47% 25.00% 25.00% 27.51%

0.5 5,000 0.10% 0.44% 0.59% 19.40% 10.95% 27.19% 20.50% 20.50% 23.98%
10,000 0.18% 1.52% 0.56% 20.44% 10.95% 27.18% 18.95% 18.95% 23.99%
20,000 0.05% 0.44% 0.63% 19.89% 10.94% 27.17% 19.76% 19.76% 23.96%

0.6 5,000 0.14% 0.03% 0.79% 24.52% 8.65% 32.00% 15.42% 15.42% 20.13%
10,000 0.22% 0.05% 0.86% 24.40% 8.71% 32.09% 15.54% 15.54% 20.18%
20,000 0.32% 0.14% 0.74% 24.56% 8.63% 32.01% 15.37% 15.37% 20.15%

0.5268 5,000 0.05% 0.67% 0.74% 25.32% 8.01% 33.25% 14.95% 14.95% 19.06%
10,000 0.32% 0.29% 0.92% 25.45% 8.15% 33.40% 14.61% 14.61% 19.12%
20,000 0.34% 0.56% 0.85% 25.31% 8.11% 33.39% 14.85% 14.85% 19.13%

0.7 5,000 0.18% 1.01% 1.23% 28.15% 6.87% 37.2 1% 12.06% 12.06% 16.20%
10,000 0.13% 1.08% 1.13% 28.17% 6.79% 37.13% 12.12% 12.12% 16.17%
20,000 0.19% 0.47% 1.12% 28.55% 6.79% 37.13% 11.57% 11.57% 16.18%

0.8 5,000 1.18% 0.96% 2.29% 31.68% 5.90% 42.46% 8.15% 8.15% 11.81%
10,000 0.84% 2.39% 2.07% 30.89% 5.71% 42.38% 9.47% 9.47% 11.80%
20,000 1.08% 0.90% 2.01% 31.84% 5.67% 42.34% 8.15% 11.80% 11.80%

0.9 5,000 1.10% 3.83% 4.11% 32.51% 5.97% 47.89% 7.48% 7.48% 6.86%
10,000 0.78% 4.83% 3.43% 32.27% 5.33% 47.60% 8.46% 8.46% 6.82%
20,000 0.78% 3.72% 3.52% 32.93% 5.41% 47.64% 7.43% 7.43% 6.82%

Table 2: Results of Louis’ method and bootstrap for the example on estimation of standard deviation.
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of MLE. In addition, we can evaluate our method using bootstrap 
confidence interval [10]. Both results will not be contradicted. But, 
Louis’ method requires the conditions Sp(y, θ)=0 and the second 
derivative for complete data w.r.t θ to exist. In other words, if MLE 
of θ is not an unbiased estimator, then Louis’ method can lead to 
large mean squared error (MSE). In this situation, we can generate an 
empirical distribution of θ̂  using a bootstrap approach, and one can 
estimate the better confidence interval for θ̂ . Specially, in the design of 
clinical trials, we want to compute the confidence interval for θ̂  under 
the alternative hypothesis to validate for type II error and under null 
hypothesis to validate for type I error.

If y is a binary variable, then there are many situations in which 
likelihood function has no unique maximum, in which case we can 
say that the MLE does not uniquely exist. As a result, we will have a 
problem with separation, i.e., specificity and sensitivity.

Our proposed approach (Method II) has wider application of 
automating variance and confidence interval estimation for many 
clinical studies with missing data, for example, solve the missing values 
issues in clinical trials [11], interval censor data [12], regression with 
missing predictors [13], machine learning-based missing [14], and 
missing data in longitudinal studies [15-19].
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Theta Simulation Louis' 
Method

Using 
Second 

Derivative 
of Y: theta 

is fixed

Method I: 
Bionomial 
Approach

Method II: 
Bootstrap 

for 
Incomplete 

Data Y

Method 
Ill: Using 
Secondl 

Derivative 
of Y: theta 
is not fixed

Method IV 
: Complete 
Data u.sing 
V(E())+E(V())

Method V: 
Bootstrap 
Complete 

Data X 
(SD)

Method 
VI: Using 
Second 

Derivative 
of X: theta 
is not fixed

Method 
VII: 

Complete 
Data using 

E(V(X))

Method VIII: 
Bootstrap 

for Complete 
Data X(MLE)

Method 
IX : Using 
Second 

Derivative 
of X: theta 

is fixed
0.3 5,000 0.055720 0.055720 0.055315 0.055896 0.055130 0.060402 0.0462 10 0.045316 0.038854 0.038854 0.038308

10,000 0.055644 0.055644 0.055275 0.055313 0.055140 0.060176 0.046222 0.045322 0.038485 0.038485 0.038280
20,000 0.0556 15 0.0556 15 0.055157 0.055865 0.055089 0.060404 0.046205 0.045307 0.038862 0.038863 0.038281

0.4 5,000 0.057228 0.057228 0.056980 0.057399 0.056861 0.065469 0.04939 1 0.044327 0.042946 0.042946 0.041442
10,000 0.057162 0.057162 0.056994 0.057632 0.056775 0.065567 0.049333 0.044306 0.043162 0.043162 0.041438
20,000 0.057149 0.057149 0.056956 0.057292 0.056775 0.065378 0.049344 0.044306 0.042861 0.042861 0.041429

0.5 5,000 0.056484 0.056484 0.056430 0.056233 0.056150 0.067440 0.050300 0.041127 0.044905 0.044905 0.042937
10,000 0.056491 0.056491 0.05639 1 0.057347 0.056174 0.068035 0.050306 0.041135 0.045786 0.045786 0.042938
20,000 0.056455 0.056455 0.056424 0.056701 0.056101 0.067685 0.050276 0.041115 0.045298 0.045298 0.042930

0.6 5,000 0.053832 0.053832 0.053755 0.053818 0.053407 0.067032 0.049174 0.036604 0.045532 0.045532 0.042993
10,000 0.053880 0.053880 0.054000 0.053853 0.053418 0.067026 0.049189 0.036592 0.045507 0.045507 0.043008
20,000 0.053847 0.053847 0.05402 1 0.053923 0.053449 0.067074 0.049198 0.036613 0.045568 0.045568 0.042995

0.6268 5,000 0.052772 0.052772 0.052800 0.052419 0.052383 0.066132 0.048545 0.035227 0.044884 0.044884 0.042711
10,000 0.052846 0.052846 0.052676 0.052694 0.052361 0.066294 0.048541 0.035195 0.045127 0.045127 0.042741
20,000 0.052849 0.052849 0.052668 0.052555 0.052401 0.066226 0.048562 0.035202 0.045002 0.045002 0.042742

0.7 5,000 0.049328 0.049328 0.049241 0.048831 0.048722 0.0632 15 0.045937 0.030972 0.043380 0.043380 0.041336
10,000 0.049290 0.049290 0.049224 0.048758 0.048735 0.063173 0.045941 0.030990 0.043315 0.043316 0.041318
20,000 0.049290 0.049290 0.049197 0.049057 0.048738 0.063362 0.045941 0.030989 0.043588 0.043588 0.041317

0.8 5,000 0.042413 0.042413 0.041914 0.042006 0.041443 0.055851 0.0399 11 0.024405 0.038958 0.038958 0.037404
10,000 0.042384 0.042294 0.042029 0.041372 0.041505 0.055477 0.039963 0.024423 0.038369 0.038369 0.037385
20,000 0.042376 0.042376 0.041920 0.041995 0.041523 0.055868 0.039973 0.024432 0.03892 1 0.037376 0.037376

0.9 5,000 0.031703 0.031703 0.031356 0.030489 0.030401 0.042009 0.029809 0.01652 1 0.029332 0.029332 0.029528
10,000 0.031610 0.031610 0.031364 0.030083 0.030527 0.041810 0.029925 0.016564 0.028935 0.028935 0.029454
20,000 0.031622 0.031622 0.031376 0.030447 0.030509 0.042033 0.029909 0.016558 0.029272 0.029272 0.029464

Table 3: ARP values of Louis’ method and bootstrap for the example on estimation of standard deviation (ARP: Absolute Relative Percentage).
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