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Introduction
The Nelson-Aalen estimator Nelson [1,2] provides the foundation 

for the ubiquitous Kaplan-Meier survival estimator which consists of 
its product-integral. This article reviews martingale theory and its role 
in demonstrating that the Nelson-Aalen estimator is asymptotically 
uniformly consistent for the cumulative hazard function for right-
censored continuous time-to-failure data and demonstrates its 
application using simulation.

Fundamental principles
Nonparametric statistical models for censored data were developed 

using counting processes which decompose into a martingales and 
integrated intensity processes. Martingale methods facilitate direct 
evaluation of small and large sample properties of hazard estimators 
for right censored failure time data. This section provides formal 
definition of a martingale process as well as reviews several intrinsic 
properties that are used to study small and large sample properties of 
hazard estimators for right censored failure time data.

Counting processes

A family of sub-σ-algebras {Ft: t ≥ 0} of a σ-algebra F is called 
increasing if s ≤ t implies Fs⊂ Ft. An increasing family of sub-σ-algebras 

is called a filtration. When {Ft: t ≥ 0} is a filtration, the σ-algebra 
0

+
>


t h
h

is usually denoted by Ft+. The corresponding limit from the left, Ft−, is 

the smallest σ-algebra containing all the sets in 
0

−
>


t h
h

 and is written

0

{ }σ −
>


t h
h

. A filtration {Ft: t ≥ 0} is right-continuous if, for any t, 

Ft+=Ft. A stochastic basis is a probability space (Ω, F, P) with a right-
continuous filtration {Ft: t ≥ 0}, and is denoted by (Ω, F,{Ft: t ≥ 0}, P). 
A stochastic process {X(t): t ≥ 0} is adapted to a filtration if, for every 
t ≥ 0, X (t) is Ft-measurable. A counting process is a stochastic process 
{N (t): t ≥ 0} adapted to a filtration {Ft: t ≥ 0} with N (0)=0 and N (t) < 
∞ almost surely (a.s.), and whose paths are with probability one right-
continuous, piecewise constant, and have only jump discontinuities 
with jumps of size +1. If N is a counting process, f is some function 
of time, and 0 ≤ s < t ≤ ∞, then ( ) ( )∫

t

s
f u dN u , is the Stieltjes integral 

representation of the sum of the values of f at the jump times of N in 
the interval (s, t].

Martingales

Let X={X(t): t ≥ 0} denote a right-continuous stochastic process 
with left-hand limits and {Ft: t ≥ 0} a filtration, defined on a common 
probability space. X is called a martingale with respect to {Ft: t ≥ 0} if, X 

is adapted to {Ft: t ≥ 0}, E|X (t)| < ∞ for all t < ∞, and E[X (t + s)|Ft]=X 
(t) a.s. for all s ≥ 0, t ≥ 0. Thus, a martingale is essentially a process
that has no drift and whose increments are uncorrelated. If E[X (t +
s)|Ft] ≥ X (t) a.s. X is a submartingale. Two fundamental properties of
martingales are, for any h > 0,

E[X (t)|Ft−h]=X (t − h), 	 and

E[X (t) − X (t − h)|Ft−h]=X (t − h) − X (t − h)=0.

Predictable processes

The stochastic process X is said to be predictable with respect to 
filtration Ft if for each t, the value of X(t) is specified by Ft− and therefore 
is Ft−-measurable [4]. Theorem A.1 in Appendix A is the version of 
the Doob-Meyer Decomposition Theorem provided by Fleming and 
Harrington [3], which states that for any right-continuous nonnegative 
submartingale X there is a unique increasing right-continuous 
predictable process, A, such that A(0)=0 and X−A is a martingale. 
Also, there is a unique process A so that for any counting process, 
N, with finite expectation, N−A is a martingale. This is shown in the 
Corollary A.2 [3]. The process A in Corollary A.2 is referred to as the 
compensator for the submartingale X. 

Square integrable martingales

A martingale, X(t) is called square integrable if E[X2(t)]=var[X(t)] 
< ∞ for all t ≤ τ, or equivalently, if E[X2(τ )] < ∞ [4]. The variance of 
a square integrable martingale X(t) is estimated using the predictable 
variation process, 

0
( ) [ ( ) | ].−〈 〉 = ∫ 

t

u
X t var dX u

For martingales Xi, Xj,

0
, ( ) [ ( ), ( ) | ]−〈 〉 = ∫ 

t

i j i j u
X X t cov dM u dM u

is the predictable covariation process of Xi and Xj. If (Xi, Xj)(t)=0 
for all t, then Xi and Xj are orthogonal martingales [3]. Suppose Xi, Xj 

are orthogonal martingales, for all ≠i j . Then 
1 1

( ) ( ).
= =

〈 〉 = 〈 〉∑ ∑
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i i
i i

X t X t
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The Nelson-Aalen estimator provides the basis for the ubiquitous Kaplan-Meier estimator, and therefore is an 

essential tool for nonparametric survival analysis. This article reviews martingale theory and its role in demonstrating 
that the Nelson-Aalen estimator is uniformly consistent for estimating the cumulative hazard function for right-censored 
continuous time-to-failure data.
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τ] on n subjects with independent failure times. The Nelson-Aalen 
estimator is a nonparametric estimator of their common cumulative 
hazard function, Λ(t), in the presence of right censoring. Suppose Ti 
and Ui are the failure and censoring times and Ni={Ni(t), t ≥ 0} the 
observed counting process for the ith subject. Let {Yi(t), t ≥ 0} denote a 
process such that Yi(t)=1 if and only if the ith subject is uncensored and 
has survived to time t−. It is referred to the at risk process and assumed 
left-continuous. For each t > 0, let Ft−=σ{Ni(u),Yi(u), i=1, ..., n; 0 ≤ u ≤ 

t} denote the filtration up to, but not including t. Let 
1

.( ) ( )
=

=∑
n

i
i

N t N t

and 
1

Y.( ) ( )
=

=∑
n

i
i

Yt t denote the aggregate processes that count the 

numbers of total failures and at risk in the interval (0, t], respectively. 
Furthermore, let J(t)=I{Y.(t)>0} indicate whether at least one subject is 
at risk at time t and suppose that 0 0

0
= . The Nelson-Aalen estimator 

follows as

0

( )ˆ ( ) .( ), 0 .
.( )

τΛ = ≤ ≤∫
t J ut dN u t
Y u

          		                 (3)

Asymptotic uniform consistency of the Nelson-Aalen 
estimator

In this section, we demonstrate how to prove that (3) is an 

uniformly consistent estimator of 
0

( )( )
1 ( )

Λ =
−∫

t dF ut
F u

, for continuous 

distribution function, F(t)=P{T ≤ t}. Note that by assuming continuous 
time we have assumed that no two of the counting processes N1(t), ..., 
Nn(t) jump at the same moment. Theorem A.4, known as Lenglart’s 
Inequality, and related Corollary A.5 are used to produce the result 
[3]. Two regularity conditions are necessary. First, inft∈(0,τ]Y.(t) → ∞ in 
probability as n → ∞. This implies that the number of subjects at risk at 
each time point becomes large for large n. Second, Λ(τ) < ∞, thus, F(t) 
< 1, ∀t ∈ [0, τ ].

First notice,
ˆ ( ) ( )Λ −Λt t

0 0 0

( ) ( ) ( ).( ) ( )       
.( ) 1

[1-J(
1 )

u ]
) (

)
(

| | | |≤ − +
− −∫ ∫ ∫

s s sJ u dF u dF udN u J u
Y u F u F u

0 0

( ) ( )[ .( ) .( ) ( )]       = [1-J(u)]
1-F(u).( )

| | | |− Λ +∫ ∫
s sJ u dF udN u Y u d u
Y u

(see e.g. (B.3) in Appendix B). We demonstrated in Section 2 that 
Ni(t) has compensator 

0
( ) ( ) ( )= Λ∫

t

i iA t Y u d u . A simple alteration of (B.1) 
in Appendix B can be used to show that for

0
1

.( ) ( ) ( )
=

= Λ∑∫
n t

i
i

A t Y u d u , 
[ .( ) | .] [ ( ) | ] [ ( ) | ] [ .( ) | .]= = =   t i t i t tE N t nE N t nE A t E A t . 

Also, since Ai(0)=Λ(0) − Λ(0)=0, for all i=1, ..., n then A.(0)=0. 
Now we must show that A.(t) < ∞ and A.(t) is locally bounded ∀t ∈ [0, 
τ ]. For all fixed n=1, 2... and all t ∈ [0, τ], it follows that

( ) ( )( )
0

( ) ( ) log ( ) log (0)≤ Λ = − −∫
t

iA t d u S t S

( ) ( ) ( )log 1 (0) log 1 ( ) log 1 (= ) .F F t F t− − − = − −

The second regularity condition imposes that F(t) < 1, ∀t ∈ [0, τ]. 
Thus, we can conclude that A.(t) < ∞, ∀t ∈ [0, τ]. If we consider the 

localizing sequence
0

sup{ : sup | .( ) | }τ
≤ ≤

= < ∧m
s t

t A s m m , for m=1, 2, ..., 

and stopping process Qm=A.(t ∧ τm), then A. satisfies the conditions 
for locally bounded. Thus, Theorem A.3 in Appendix A, which 

is given by [3], implies that 
1

.( ) .( ) ( )
=

= −∑
n

i
i

M t N t A t  is a local square 

Localization

A nonnegative random variable τ is a stopping time with respect 
to filtration {Ft} if {τ ≤ t} ∈ Ft for all t ≥ 0. An increasing sequence 
of random times τm, m=1, 2, ..., is a localizing sequence with respect 
to a filtration if each τm  is a stopping time and limm→∞ τm =∞ [3]. A 
stochastic process X={X(t): t ≥ 0} is a local martingale (submartingale) 
with respect to a filtration {Ft: t ≥ 0} if there exists a localizing sequence 
{τn} such that, for each n, Xn={X (t ∧ τn): 0 ≤ t < ∞} is an Ft-martingale 
(submartingale). If Xn is a martingale and a square integrable process, 
Xn is a square integrable martingale and X is called a local square 
integrable martingale. It can be shown that any martingale is a local 
martingale by simply taking τn=n. An adapted process X={X (t): t ≥ 0} 
is locally bounded if, for a suitable localizing sequence {τn}, Xn={(t ∧ τn): 
t ≥ 0} is a bounded process for each n [3].

Martingale approach to censored failure time data	  
Suppose T and U are nonnegative, independent random variables, 

and assume that the distribution of T has a density. Define variable X=(T 
∧ U) to be the censored observation of the failure time variable T and 
δ=I (T ≤ U), the indicator for the event of an uncensored observation. 
The martingale approach to censored data uses the counting process 
{N(t): t ≥ 0} given at time t by N(t)=I (X ≤ t, δ =1)=δI (T ≤ t). We are 
interested in estimating the conditional rate at which N jumps in small 
intervals. Define the distribution and survival functions as F(t)=P {T ≤ 
t} and S(t)=1 − F (t) and let C(u)=P {U > u}.

We can define the hazard function to be [ ( )]( )λ −
=

d logS tt
dt  and 

cumulative hazard function
0

( )( )
1 ( )−

Λ =
−∫

t dF ut
F u

. Since we assumed that T 
and U are independent,

0 0

1 { } 1( ) lim lim { | , }.
{ }

λ
∆ ↓ ∆ ↓

≤ < + ∆
= = ≤ < + ∆ ≥ ≥

∆ ≥ ∆t t

P t T t tt P t T t t T t U t
t P T t t    (1)

Therefore, if we let ( ) lim ( )−

↑
=

s t
N t N s then

λ(t)∆t ≈ E[N ((t + ∆t)−) − N (t−)|T ≥ t, U ≥ t].

Thus, the hazard function λ(t) represents the conditional average 
rate of change in N over [t, t + ∆t), given that both the censoring and 
failure time exceed or equal t. For each fixed t, 

0
( ) ( ) ( )λ= ≥∫

t
A t I X u u du

is a random variable commonly referred to as the integrated intensity 
process which approximates the number of jumps by N over (0, t]. Let

0
( ) ( , 1) ( ) ( ) ( ) ( )δ λ= ≤ = − ≥ = −∫

t
M t I X t I X u u du N t A t .

Notice that E[N(t)]=E[A(t)] (see (B.1) in Appendix B). 
Furthermore, suppose that Fs=σ{N (u), I (X ≤ u, δ=0) : 0 ≤ u ≤ s} is the 
filtration for the process M (t) and Fs− is the information in N(u) and 
I(X ≤ u, δ=0) up to, but not including time s. Both {X < s} and {X ≥ s} 
are Fs− -measurable since

1

1{ } { }
∞

=

< = ≤ −


n

X s X s
n

. Furthermore, dN(s) 

is a Bernoulli random variable such that

E[dN (s)|Fs−]=I (X ≥ s)λ(s)ds=dA(s). 	      	                (2)

When we have independent censoring it follows that P{s ≤ T<s+ds|T 
≥ s}=P{s ≤ T < s + ds|T ≥ s, U ≥ s} and E[dA(s)|Fs−]=dA(s) (see (B.2) 
in Appendix B). Therefore, the change in M(t)=N (t)−A(t) over an 
infinitesimal interval (s−ds, s], dM (s)=dN (s)−dA(s) has expectation 0 
given Fs−. Therefore, M is a martingale with respect to {Fs}.

Nelson-Aalen estimator
Suppose time-to-failure data are collected over a finite interval [0, 
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integrable martingale. In inequality (B.3) in Appendix B we noted that

0 0

( ) ( )[ .( ) .( ) ( )] .( )
.( ) .( )

− Λ =∫ ∫
t tJ u J udN u Y u d u dM u
Y u Y u

. Equation (2) as well as 

Corollary A.2 in Appendix A suggest that A.(t) is a predictable process. 

Therefore,  so is ( )
.( )

J t
Y t

. In addition, since ( )0 1
.( )

≤ ≤
J t
Y t for all t ≥ 0 and 

n>0, it is clearly locally bounded. Corollary A.5 in Appendix A can be 

used to show that 2

00

( )sup{ .( )} 0
.( )≤ ≤

→∫
t

s t

J u dM u
Y u

, in probability where ( )( )
.( )

=
J sH s
Y s

. In particular,
2

20 00

( ) ( )sup .( ) . ( )
.( ) . ( )

η η
≤ ≤

     ≥ ≤ + 〈 〉 ≥     
     
∫ ∫


t t

s t

J u J uP dM u P d M u
Y u Y u

.            (4)

Using the variances of increments of M.(t), one can show that, 

1

. ( ) ( ) 2 , (= + )
<=

〈 〉 〈 〉 〈 〉∑∑
n

i i j
i ji

M t M t M M t  (see e.g. (B.4) in Appendix B). The 

assumption of continuous time implies that for all ≠i j , Mi, and Mj 
are orthogonal martingales. In other words, Ni(t) and Nj(t) cannot 
jump at the exact same moment in time, i j∀ ≠  and ∀t ≥ 0. Therefore, 

we have
1

. ( ) ( )
=

〈 〉 = 〈 〉∑
n

i
i

M t M t . Now for any i=1, ..., n and any t>0, 

2( ) [ ( ) | ]−〈 〉 = i i t
M t E M t , because [ | ] 0− =i t

E M . Since dNi(t) is a Bernoulli 

random variable ∀t>0 and ∀i, and dAi(t) is approximately 0 over an 
infinitesimally small interval,

( )22 2 2[ ( ) | ] [ ( ) ( ) | ] [ ( )= | ] ( )− − −− = −  i i i i it t t
E dM t E dN t dA t E dN t dA t

( )( ) 1 ( ) ( )= .− ≈i i idA t dA t dA t

Thus, taking the predictable variation process equal to its 
compensator: 

0
( ) ( ) ( ) ( ),〈 〉 = = Λ∫

t

i i iM t A t Y u d u it follows from (4) that

20 0

( ) ( ) ( ). ( ) ( ) { }
. ( ) .( ) .( )

η η η
    Λ

〈 〉 ≥ = Λ ≥ ≤ >   
   
∫ ∫

t tJ u J u tP d M u P d u P
Y u Y u Y t

From our first regularity condition we have Y.(t) → ∞ in probability, 

as n → ∞. Therefore, ( ){ } 0
.( )

ηΛ
> →

tP
Y t

in probability for any η>0. Thus, all 

that is left to show is that 
0[0, ]
[1-J(u)]

1-F(
sup 0

u)
( )| |

τ∈
→∫

s

s

dF u probability as n → ∞. 

Noting that 
0
[1-J(u) (]

1-F(u)
)| |∫

s dF u is bounded by |Λ(s) − I (Y.(s) > 0)Λ(s)| e. g.

00

( ) ( )[1 ( .( ) 0) ( ) ( ) ( .( ) 0) (-J(u)
u

)]
1-F( )

| | | | | |,= Λ − > Λ ≤ Λ − > Λ∫∫
ss dF u s I Y u d u s I Y s s

from our first regularity condition we can conclude that

[0, ]
lim { ( inf .( ) 0) 1 } 1,   0.| |

τ
ν ν

→∞ ∈
> − ≤ = ∀ >

n s
P I Y s

Therefore we have,

00
sup ( ) ( .( ) 0) ( ) ( ) 1 ( inf .( ) 0) .| | | |

ττ
τ

≤ ≤≤ ≤
Λ − > Λ ≤ Λ − >

ss
s I Y s s I Y s

Thus, we can use Slutsky’s Theorem to conclude that 

0[0, ]
[1-J(u)]

1-F(
sup 0

u)
( )| |

τ∈
→∫

s

s

dF u  in probability as n → ∞. Therefore, the Nelson-

Aalen estimator is asymptotically uniformly consistent for the 
cumulative hazard function under regularity conditions: (0, ] .( )τ∈ →∞tinf Y t

in probability as n → ∞ and Λ(τ) < ∞.

Simulation Study
This section demonstrates the martingale approach for analysis 

of right-censored failure time data using simulation. Let A1, A2, ... 

denote independent uniform (0, τ) random variables where τ is a 
known constant, and let xi(t)=I (Ai<t), i=1, ..., n. Ni(t) counts observed 
failures for the ith subject observed over the interval (0, τi], where τi is 
a constant 0 < τi ≤ τ , i=1, ..., n. We assume that the intensity function 
of Ni(t) with respect to the filtration Ft=σ{Ni(u), Yi(u+), Xi(u+), i=1, ..., 
n; 0 ≤ u ≤ t} is

λi(t)=Yi(t) exp[xi(t)β]α,	         			                  (5)

for 0 < t < τ, i=1, ..., n, and α > 0. We simulated 30 realizations of 
the process [N.(t), 0 < t < 10] and the corresponding martingale when 
τ=10, n=10, τi=i, for i=1, ..., 10 and fixed “baseline hazard” α=1. For 
convenience, we fixed β=1. Let zi=exp(1), if xi=1 and=1 otherwise. We 
approximated continuous time by partitioning [0, 10) into disjoint 
intervals, tj of length dt=0.1. Now it follows that E[dNi(tj)]=ziαdt at 
each tj ∈ [0, τ ). For each subject, the process was simulated by iterating 
through each time interval tj within each subject. At each tj we draw a 
single sample, dNi(tj), from the Poisson density with rate parameter 
E[dNi(tj)]. If dNi(tj)>0, then we have observed the failure time for the 
ith subject to be tj. Therefore, we set counting processes Ni(k)=1 and 
Yi(k)=0, ∀tj ≤ k ≤ τ. Furthermore, the aggregated counting process 
N.(k)=N.(k) + 1, ∀tj ≤ k ≤ τ.

Figure 1 provides the resulting expected and simulated mean 
aggregated counting process N.(t) (right panel) as well as the simulated 
mean martingale (left panel). As expected, the simulated mean 
aggregated counting process N.(t) mirrors closely its expectation. 
Furthermore, the corresponding simulated mean aggregated 
martingale illustrates a process that has no random drift.

Discussion
Martingale characterizations play a critical role in the study of 

large sample properties of the Nelson-Aalen and thereby Kaplan-
Meier estimators. This article reviewed martingale theory and its role 
in demonstrating that the Nelson-Aalen estimator is asymptotically 
uniformly consistent for the cumulative hazard function for right-
censored continuous time-to-failure data and demonstrates its 
application using simulation.
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