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Introduction
In order to understand the functionality of the genome and 

its products, a great number of genome-wide association studies 
(GWAS) have been conducted [1,2]. The majority of GWAS tries to 
find statistical relations between single-nucleotide polymorphisms 
(SNPs), distributed over large parts of the genome, and variations of 
the phenotypes under consideration [3,4]. As of October 2013, 11,680 
SNPs in 1,724 studies have been reported to be associated to certain 
phenotypes in humans [5]. The number of studies conducted on 
animals and plants is steadily increasing [6,7].

Typical datasets in GWAS are comprised of many thousands, 
sometimes millions, of SNPs sequenced from hundreds to tens of 
thousands of individuals. Because the number of variables greatly 
exceeds the number of observations in these data sets, it leads to 
a statistical difficulty often referred to as the p≫n problem [8]. One 
consequence of the p≫n problem is that standard multiple-regression 
becomes infeasible. Many methods have been suggested as solutions 
to this problem. Generally, these methods can be categorized into two 
main directions, repeated single-SNP regression with adjustment of 
significance thresholds or multiple SNP regression combined with 
dimension reduction or regularization.

Most of the GWAS carried out previously are single-SNP studies 
where each SNP is tested individually for its association to the phenotype 
[3,9]. The repeated single variable regression is easy to implement and 
computationally straightforward. However, it is necessary to adjust 

significance thresholds for multiple comparisons, and for that there 
is no general consensus on the best approach. It is well-known that 
family-wise error rate (FWER) procedures (e.g. Bonferroni correction) 
are too conservative. The false discovery rate (FDR) procedures seem 
to have better statistical properties in the p≫n setting, especially 
versions depending on empirical estimation of the null-distributions 
[10]. However, it has been argued that these approaches are too simple 
to elucidate the comprehensive architecture of the genome [11], and 
that SNPs with small individual effects, that would be regarded as 
non-significant in single SNP analyses, still can have a large influence 
collectively on a phenotype [12].

Recently, in order to identify more complex relationships, a shift 
to more sophisticated multi-SNP approaches has taken place [4,13]. 
Since most SNPs in GWAS can be assumed to have no influence on 
the phenotype, the methods are often formulated as variable or model 
selection for finding the optimal model from all possible models. In 
frequentist statistics penalized likelihood methods [14] have become 
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Abstract
The goal of genome-wide association studies (GWAS) is to identify the best subset of single-nucleotide polymorphisms 

(SNPs) that strongly influence a certain trait. State of the art GWAS comprise several thousand or even millions of SNPs, 
scored on a substantially lower number of individuals. Hence, the number of variables greatly exceeds the number of 
observations, which also is known as the p≫n problem.

This problem has been tackled by using Bayesian variable selection methods, for example stochastic search variable 
selection (SSVS) and Bayesian penalized regression methods (Bayesian lasso; BLA and Bayesian ridge regression; 
BRR). Even though the above mentioned approaches are capable of dealing with situations where p≫n, it is also known 
that these methods experience problems when the predictor variables are correlated. The potential problem that linkage 
disequilibrium (LD) between SNPs can introduce is often ignored. 

The main contribution of this study is to assess the performance of SSVS, BLA, BRR and a recently introduced 
method denoted hybrid correlation based search (hCBS) with respect to their ability to identify quantitative trait loci, 
where SNPs are partially highly correlated. Furthermore, each method’s capability to predict phenotypes based on the 
selected SNPs and their computational demands are studied. Comparison is based upon three simulated datasets 
where the simulated phenotypes are assumed to be normally distributed.

Results indicate that all methods perform reasonably well with respect to true positive detections but often detect 
too many false positives on all datasets. As the heritability decreases, the Bayesian penalized regression methods are 
no longer able to detect any predictors because of shrinkage. Overall, BLA slightly outperformed the other methods and 
provided superior results in terms of highest true positive/ false positive ratio, but SSVS achieved the best properties 
on the real LD data.
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popular because of their capability of simultaneously selecting 
important variables and estimating their effects in high dimensional 
statistical inference [15].

Bayesian inference provides a sophisticated approach to high 
dimensional problems due to their ability to incorporate prior 
knowledge and their unified probabilistic approach of data analysis 
[16,17]. Furthermore, Bayesian regularization methods give easily 
interpretable and comparable results along with valid standard errors 
[18]. Unfortunately, Bayesian formulations of multi-SNP methods are 
generally demanding, necessitating increased computational power 
and therefore it is important to capitalize on their sparsity [19].

Bayesian methods for variable selection can be broadly divided into 
methods based on spike and slab mixture priors and regularization 
priors [20]. Stochastic search variable selection (SSVS) is a popular 
Bayesian variable selection method based on mixture modeling of two 
normal distributions for the regression coefficients and was introduced 
by George and McCulloch [21]. SSVS has been further developed in 
numerous studies and applied to genomic datasets in work by Yi et 
al. [22], Srivastava and Chen [23], Guan and Stephens [24], Chen et 
al. [25] and Skarman et al. [26]. Bayesian regularization is based on 
one continuous prior that resembles the spike and slab shape of the 
mixture priors. Both the Bayesian lasso (BLA) and Bayesian ridge 
regression (BRR) are based on exponential power priors, with BLA 
having a Laplace distribution and BRR a Gaussian distribution [18]. 
The Bayesian adoptions of the lasso and ridge regression offer the 
advantage of providing estimates for the parameters along with valid 
standard errors that can be used for variable selection [18]. Bayesian 
penalized regression was used in genomic studies for example by Yi 
and Xu [27], Li et al. [11] and Cai et al. [28]. The Bayesian lasso was 
used by Silva et al. [29] for genome-wide selection (i.e. prediction of 
genomic breeding values).

One often over-looked challenge for GWAS arises from indirect 
linkage disequilibrium (LD), i.e. causal SNPs being correlated with 
other SNPs [2]. It has been suggested that many previously unveiled 
SNPs are unlikely to be the real variations in the genome, simply due 
to the fact that proximate SNPs on the chromosome are often in LD 
and acting as so called proxies [30]. It has been shown that correlations 
between explanatory variables can influence Bayesian variable selection 
methods considerably [31]. In order to investigate these issues, both 
direct and indirect associations are considered in this work and more 
details are given in the Methods and Results section.

Liang and Keleman [32] investigated approaches for correlated 
datasets for complex diseases, whereas Li and Zhang [33] proposed 
Bayesian variable selection methods for high-dimensional genomic 
dataset with strong correlation between markers. Recently, Kwon 
et al. [34] developed an improved version of SSVS, named hybrid 
correlation-based search (hCBS), designed to incorporate correlations 
between predictors.

The work at hand assesses the variable selection and predictive 
performance of various Bayesian multi-SNP approaches, including 
SSVS [21], hCBS [34] as well as the BLA and BRR [18] applied to p≫n 
datasets with known patterns of LD. Gibbs sampling is used to obtain 
samples from the posterior distributions to identify the most promising 
models. Evaluation of the methods is based on three datasets. Two 
datasets contain a simulated correlation structure to investigate 
common patterns of LD often present in GWAS datasets and the third 
dataset is divided into four different scenarios and uses the LD pattern 
of a real genomic dataset. The study focuses on quantitative trait loci 

(QTL) where phenotypes can be measured on a continuous scale (i.e. 
normally distributed), for example, height or weight. 

The paper is organized as follows: the Methods section outlines the 
methods under consideration including SSVS and hCBS as well as BLA 
and BRR and introduces the datasets used for evaluation. The Results 
section summarizes the results of the application of each method to 
two simulated datasets in the Block-wise correlation and Exponential 
decay correlation function (LD) subsection and four different kinds of 
datasets based on a real genomic SNP data in the Real chromosome 
data subsection. Finally, the paper closes with the Discussion section. 
The computational resources were provided by the Vienna Scientific 
Cluster. 

Methods and Data
Bayesian methods

Multiple linear regression: Assume a linear and independent 
contribution of every causal SNP [3]. A multivariate linear regression 
model with n observations (individuals) and p predictors (SNPs) can 
be written as

,β ε= +Y X   					                      (1)

where the unit standardized predictor variables xi,j are collected into 
matrix X={X1, X2,…, Xp} of dimension n×p and the unit standardized 
continuous phenotypes yi into vector Y of length n. The strength of the 
influence of each SNP on the phenotype is represented by its regression 
coefficients in vector β={β1, β2,…, βp}. The last term, ε, denotes the 
error term which is assumed to be normally distributed with mean 0 
and variance 2

εσ . Note that (1) doesn’t include a mean because of the 
standardization of X and Y.

Stochastic Search Variable Selection (SSVS): The original 
stochastic search variable selection (SSVS) was proposed by George 
and McCulloch [21] and further extended by George and McCulloch 
[35], Brown et al. [36] and Brown et al. [37]. SSVS is a Bayesian method 
that randomly explores a fraction of all possible models. This is done by 
introducing a latent indicator vector γ that indicates which predictors 
are included in and excluded from the current model by setting γj=1 
and to γj=0, respectively. Equation (1) now becomes 

Y=Xγβγ+ε. 					                      (2)

Since SSVS is a Bayesian method, the parameters of the regression 
model need to be assigned prior distributions.

2 ~ ,
2 2εσ

 
 
 

a abInvGamma , 				                   (3)

Where a/2 is the shape parameter and ab/2 is the scale parameter. 
Furthermore, a conjugate prior for the regression coefficients βγ is used 

( )2 2, ~ 0 ,γ ε ε γβ γ σ σpN H , 			                 (4)

Where 0p is a zero vector and Hγ can be seen as a penalty term for 
inclusion of variables. For Hγ the independent prior 

γpcI is used, since 
it is computationally more favorable than the g-prior [38]. George and 
McCulloch [21] introduced a widely adopted prior for γ taking the 
form of an independent Bernoulli distribution 

( ) (1 )γ γγ ω ω −= −p p pp   				                  (5)

where pγ denotes the number of variables currently selected into the 
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subset; 1
;γ γ

=
=∑ p

jj
p  

ω is considered as a prior assumption of the subset size, more 
specifically the ratio of variables included into the selected subset to the 
total number of variables [21]. In the majority of GWAS the number 
of relevant SNPs associated has been shown to be rather small [30]. 
Hence,  can be set to 10/p. Based on the specified priors, the marginal 
posterior model probability becomes

( ) ( ) 1/2 ( )/2, ' Q ( ),γ γ γ γ
γ γ γ

− − +∝ = + a n
np Y g I pX X H X                  (6)

where ( )1 ''γ γ γ γ
−= + −nab Y I YQ X K X  and 1'γ γ γ γ

−= +K X X H .

Since the posterior distribution has to be evaluated for 2p 
different models in order to find the model with the highest posterior 
distribution, computation becomes infeasible with the large values 
of p that is typical for GWAS. Instead, Markov chain Monte Carlo 
methods are used to approximate the posterior distribution. Still, 
sampling through all predictors in every iteration of the Markov chain 
becomes prohibitive when the number of p becomes larger than a 
few thousands. Brown et al. [38] suggested an approach where a new 
vector γ* is created from the current γ by either adding or removing a 
randomly chosen predictor with probability ȹ. With probability 1-ȹ, 
swap two predictors by choosing independently at random a 0 and a 1 
in γ and altering both of them. This results in the following proposal 
distribution

( )
( )

*

*

*

, if 1

1 ,if 0.

γ γ
γ

γ γ
γ γ

ϕ

γ γ
ϕ

 − =
=  − − =
 −

p p
p

q
p p

p p p

   	                	                (7)

Using the Metropolis algorithm, a new model is then accepted with 
probability

( )
( )

*

min ,1
γ

γ

  
 
  

g
g

 , 				                   (8)

where ȹ usually is set to 0.5. Hence, with these priors SSVS does not 
incorporate any information about the relationships between variables 
in the generation of a new candidate model.

Correlation-based Search (CBS): The correlation-based search 
(CBS) uses a similar approach as SSVS, except that CBS does not consider 
every variable as independent [34]. As previously outlined, genomic 
data often show high correlations due to LD present in the genome. 
Not considering correlation during variable selection can result in the 
inclusion of highly correlated variables at the cost of variables being 
not considered which are part of the true underlying subset. While 
SSVS chooses the variables for altering γ randomly, CBS considers the 
correlation between variables in every iteration of the Markov chain to 
propose an altered subset γ*. Only variables having a low correlation 
are added to the current subset, whereas highly correlated variables are 
excluded from the current subset [34]. Compared to Brown et al. [38], 
components of γ are no longer independent Bernoulli variables and 
therefore the prior is modified to

( )
1

1
γ γ

γ
−

 
∝  
 

p
p

p p  	  			                   (9)

Consequently, since the proposal of a new subset is no longer 

symmetrical, the proposal distribution is altered as well

( )
*

*

*

, if 1
2

1 ,if 0

γ γ
γ

γ γ
γ

ϕ

γ γ
ϕ

 − =
=  − − =


p p
p

q
p p

p

  		                    (10)

Because the proposal distribution is not symmetrical, CBS uses a 
Metropolis-Hastings algorithm to generate the Markov chain

( )
( )

( )
( )

*

*

*

min ,1

γ
γ γ

γ
γ γ

 
 
 
 
 
 
 

g
q

g
q

  . 			                   (11)

Hybrid Correlation-based Search (HCBS): Hybrid correlation-
based search (hCBS) is an iterative stochastic search method that 
randomly alternates between SSVS and CBS. Kwon et al.  [34] suggested 
90% CBS and 10% SSVS iterations for the construction of a Markov 
chain. In order to obtain only SSVS samples the CBS part is set to 0 to 
result in only SSVS moves in each iteration.

Bayesian Lasso (BLA): It was noted already by Tibshirani [14] 
that lasso estimates of the regression coefficients could be interpreted 
as the Bayes posterior mode under independent Laplace (double-
exponential) priors. However, a Gibbs sampler for a full hierarchical 
model of the Bayesian lasso (BLA) was only recently introduced by 
Kyung et al. [18]. Consider the multiple regression model in (1) with 
standardized predictors and response. A hierarchical Bayesian model 
can be formulated as

( )2 2, , ~  ,ε εβ σ β σ ny N IX X

( )2 2 2 2 2
1 2, , , ~  0 ,ε ε τβ σ τ τ τ σ… p pN D

( )2 2 2
1 2diag , ,τ τ τ τ= … pD   			                   (12)

  2 22
2 2 2 22
1 2 1, , ~

2

τ

τ τ τ τ
−λ

=
λ

… ∏
j

p
p j je d  

2
2

1~ ,ε
ε

σ
σ

Where λ is the regularization parameter and 2 2 2
1 2, ,τ τ τ… p  are 

predictor specific variances. After integrating out 
2 2 2
1 2, ,τ τ τ… p , the prior 

on β will have the form of a conditional Laplace (double exponential) 
prior

( ) j /2
1 2

εσ
ε

ε

β σ
σ

−λβ

=

λ
=∏ p

j
p e 	  		                (13)

which ensures unimodality of β. Conveniently, λ is also assigned 
a hyperprior and thus it is not necessary to a priori estimate the 
appropriate amount of shrinkage by for example cross-validation or 
pilot runs of MCMC. Kyung et al. [18] show that a Gibbs sampler 
can be constructed by sampling from the following full conditional 
posterior distributions
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was constructed as the sum of the first 10 SNPs plus a random draw 
from the univariate normal distribution with mean μ=0 and standard 
deviation σε=1. Similar simulated datasets are used by Hastie and Zou 
[41] and Li and Lin [39].

Block-wise correlation (LD): The second simulated dataset yields 
a block-wise correlation structure and mimics a block of proximate 
correlated SNPs influencing the phenotype beside a second large block 
of correlated variables having no direct influence. A similar dataset has 
been used by Kwon et al. [34]. This dataset also contains p=5,000 SNPs 
and n=500 phenotypes. The following correlation matrix ϓX was used

11 12

21 22

 
=  
 

X

Υ Υ
Υ

Υ Υ
  				                    (18)

Where ϓ11 is a 10×10 matrix, corresponding to the correlation 
between the predictors associated with the phenotype. ϓ12 and ϓ21 
denote the correlation matrices between the 10 predictors associated 
with the response and the remaining 4990 predictors outside ϓ11. 
Consequently ϓ22 represents a 4990×4990 block. The off-diagonal 
elements were chosen as ϓ11=0.85 and ϓ22=0.55 whereas the elements 
of the diagonals were set to 1. All elements of ϓ12 and ϓ21 were selected 
to be 0.45. Furthermore βi=0.5 for i=1,…10 and βi=0 for i=11,…,5000 
are the mean vector. The 5000 predictors were then generated from a 
multivariate normal distribution with mean vector β and covariance 
matrix ϓX. The response was generated as the linear contribution of the 
10 associated variables together with errors from the univariate normal 
distribution with mean μ=0 and standard deviation 2 1.25εσ =  datasets 
were generated in both the exponential decay and block structure 

settings. All datasets were normalized and standardized 
1

0
=

=∑n
iji

x , 

1
0

=
=∑n

ii
y   and 2

1
1

=
=∑n

iji
x   for j=1,…, p.

Real chromosome correlation (LD): In the exponential decay 
and block structure settings the correlation matrices were artificially 
created and mimic only certain idealized properties of the LD structure 
over chromosomes. In order to assess the performance of the methods 
under consideration when applied to a dataset having the correlation 
structure of a real genomic dataset, two chromosomes were used from 
Austrian Fleckvieh cattle genotyped with the Illumina bovine 54K 
SNP chip. The dataset consists of 4697 SNPs from chromosome 1 
and chromosome 2 sequenced from 2122 bulls. LD between all SNPs 
was estimated based on the standard Pearson correlation coefficient 
yielding a correlation matrix ϓrxr of size 4697×4697. Four different 
scenarios were created to investigate differences between associations 
of non-correlated and correlated SNPs within and outside LD blocks. 

- For the first scenario (Associated SNPs inside LD-Blocks), 10 
LD-blocks with an average absolute correlation value of 0.65 were 
identified on the chromosomes. In every block the SNP *

iX  yielding 
the highest average correlation to the other SNPs in each block was 
selected to be associated with the phenotype. The predictors were 
generated as X ~ N(0r, ϓrxr) and the response as * 2~ (0, ).εσ+∑ iY X N  
Moreover, in order to examine the influence of different amounts of 
information content (i.e. heritability), the datasets in each of the four 
scenarios were generated using four different values for the error 
variance 2 1,5, 20,50.εσ =  All datasets were centered and normalized as 
for the two earlier data sets.

- In the second scenario (Associated SNPs inside and correlated 
SNPs outside of LD-blocks), in addition to the previous setup, for 
each of the 10 SNPs within LD-blocks assigned to be associated to the 

( ) ( )( )1 12 2 2 2 ' 1 ' 2 ' 1
1 2, , , , , , ~  ,ε τ ε τβ σ τ τ τ λ σ

− −− −… + +p y N yX X X D X X X D

	  
( ) ( )2 2 2 2 1

1 2
1 1, , , , , , ~  , ' '
2 2 2ε τ

λσ β τ τ τ λ β β β β−− + … − − + 
 

p
n py InvGamma y yX X X D

	 
2

2 2
2 2

11 , , , , ~  , 0ε
ε

λ σβ σ λ λτ τβ

   
  >      j jj

y InvGaussian IX              (14)

2
2 2 2 2 2

1 2 1
, , , , , , ~  , 2ε

τλ β σ τ τ τ δ=

 
… + + 

∑ p j
p j

y Gamma p rX

	  

Where r=1 and δ=0.1.

Bayesian Ridge Regression (BRR): The Bayesian ridge regression 
(BRR) performs regularization by assigning the regression coefficients 
a Gaussian prior. The prior (13) is now modified to

( )
2

2
1 2

.ε

β
λ σ

ε
ε

λβ σ
σ

 
 −
 
 

== ∏
j

p
jp e   		                 (15)

However, the same hierarchical setup as for BLA is used to represent 
the BRR but with the modification 2τ j  of the priors on 2 2 2

1 2, ,τ τ τ… p  
and λ. According to Kyung et al. [38], the hierarchical lasso is adapted 
for ridge regression by giving all 2τ j 's a degenerative distribution at the 
same constant value

21/ 0τ λ= +j   					                  (16)

and the regularization parameter is sampled from

2 2 2 2 2
1 2 2 1

1, , , , , , ~ ,
2 2ε

ε

λ β σ τ τ τ β δ
σ =

 
… + + 

 
∑ p

p jj

pX y Gamma r . (17)

Variable selection in bayesian regularization: Since neither the 
Bayesian lasso nor the Bayesian ridge regression is able to effectively 
set the regression coefficients of irrelevant variables exactly to zero, 
subsequent variable selection is performed by using the credible 
interval (CI) criterion [39]. A variable is excluded if the credible interval 
of the regression coefficient βi covers zero. Consequently, a variable 
is considered relevant if zero lies outside of the credible interval. A 
common choice is a 95% credible interval. Li and Lin  [39] argued that 
a 95% interval leads to too few selections. Hence, we decided to use also 
90% and 50% CIs for comparative purposes.

Simulated data

Evaluation is based on three different datasets with varying patterns 
of LD. The first two datasets contain an artificially created LD structure 
in order to investigate its affect on the variable selection performance 
of the methods. The last dataset uses the correlation structure from a 
real GWAS dataset and is divided into four different scenarios where 
the set of influential SNPs, and thus their interrelationships is varied, 
resulting in different direct and indirect associations between SNPs and 
the phenotype.

Exponential decay correlation function (LD): The first simulated 
dataset consists of a correlation structure between the predictor 
variables that decreases exponentially with distance between SNPs, 
resembling the correlation often found over chromosomes [40]. 5000 
predictors (SNPs) and 500 responses (phenotypes) were used in the 
GWAS datasets. First, the correlation matrix ϓX was generated with 
the following correlation function 0.9 .ρ −= i j  The 5000 predictors 
were then generated from a multivariate normal distribution with 
mean vector μ=0 and covariance matrix ϓX. The response variable 
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phenotype, the highest correlated SNP lying outside of the LD-blocks 
was also assigned to be associated with the response, resulting in 20 
relevant SNPs in total. The average absolute correlation between the 
SNPs in LD-blocks and SNPs lying outside was 0.31; whereas the mean 
correlation between the SNPs outside the LD-blocks was 0.05.

- The third setup (Associated SNPs inside and non-correlated SNPs 
outside of LD-Blocks) contains, besides the 10 SNPs inside the LD-
blocks as in the first setup, 10 additional SNPs for which an association 
to phenotype was imputed. These additional SNPs, all outside of LD-
blocks, are chosen by using the least correlated SNP for each of the 10 
associated SNPs inside the LD-blocks. The mean absolute correlation 
between each SNP inside a block and the least correlated SNP outside 
was 0.003. 

- For the fourth setup (Associated SNPs outside of LD-Blocks), only 
the 10 least correlated SNPs outside of LD-blocks, which were added 
in the preceding scenario, were used to construct the phenotype. The 
correlation between these SNPs was on average 0.04.

Computational analysis: A direct comparison of the 
computational efficiency of all methods is rather unfair, since the main 
feature of the SSVS-based methods is to perform variable selection 
during computation so that only a subset of the variables is used in 
every iteration, whereas BLA and BRR compute all variables in every 
iteration and perform variable selection subsequent to the computation. 
As a consequence, the performance of SSVS-based methods depends 
on the number of relevant variables and on the choices for the 
hyperparameters and will be considerably faster for most GWAS [24]. 
Moreover, since samples from the Metropolis -Hastings-algorithm 
are generated and then either accepted or rejected, identical samples 
are included in chain, leading to an increased autocorrelation. As a 
consequence, more samples are needed to give meaningful results. For 
those reasons, the comparison was based on the time required for one 
iteration, averaged over 500 iterations and 5 repeats per method. All 
simulation and analyses were performed with Matlab.

Results
hCBS and SSVS were run for 1,000,000 iterations for the datasets 

with the exponentially decaying correlation function and the block-
wise correlation structure. Of these, 5,000 iterations were discarded 
as burn-in period. BLA and BRR were run for 15,000 iterations with 
1,000 iterations removed as burn-in from the MCMC chain. The scale 
reduction factor R<1.1 and the effective sample size (neff) approaching 
10,000 were used as criteria for convergence of the MCMC chains.

Exponential decay correlation function (LD)

hCBS and SSVS were run with ω=10/5000 (the hyperprior for the 
number of expected true variables), a=3 and b=1 and 

γγ = pcIH  with 
c=0.05 (the penalty term for inclusion of variables). The proportion of 
CBS to SSVS moves was set to 0.9 [34] and to 0 to obtain the pure SSVS. 
0.5 was used as probability for the swap or inclusion/exclusion move. 
25 datasets were analyzed to obtain average results.

Figure 1 summarizes the average number of true and false positive 
detections over the 25 data sets. Selections are based on 95% CIs 
for BLA and BRR, and a threshold of 0.5 for the posterior inclusion 
probability (PIP) in the case of hCBS and SSVS. BRR performed 
best in terms of true positive detections (10), but also yielded the 
largest number of false positive detections (2.280). BLA detected 
9.783 true positive variables on average and was the only method 
including no false positives. SSVS performed better than hCBS in 
terms of true positive detections (8.160 vs. 7.720), which is a rather 
unexpected result, since the correlation in the dataset is up to 0.9. 
Overall, BLA performed best in terms of highest fit criterion, i.e., 

( ) ( )# # # 10 9.783 0 0.217= − − − = − − − = −FIT ExpPos TruePos FalsePos

Figures 2 and 3 show examples from one simulated dataset of the 
regression coefficients obtained by BLA and BRR as well as the 95%, the 
90% and the 50% CIs for the first 20 variables. It is worth noting that 
BRR results in more dependency between the regression coefficients of 
the variables and CIs of similar size because of the joint prior in (16).

The prediction error (PE) was obtained by using the regression 
coefficients obtained from each of the 25 datasets βi to predict the 

responses for the remaining 24 datasets 

2
25\i  1PE X

24 γ γ
 

= β − 
 

∑ i k
k

k i Y  

Figure 1: Average true and false positive detections by all methods over 25 exponentially decaying correlation function datasets. Selections are 
based on 95% CIs for BLA and BRR.



Citation: Weinwurm S, Sölkner J, Waldmann P (2013) The Effect of Linkage Disequilibrium on Bayesian Genome-wide Association Methods. J Biomet 
Biostat 4: 180. doi:10.4172/2155-6180.1000180

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 6 of 11

Volume 4 • Issue 5 • 1000180

SNPs with no false positive detections. hCBS found 10 true positive 
variables and 1.6 non-associated variables; whereas SSVS found on 
average 9.33 out of the 10 associated variables but yielded a lower 
number of false positives than hCBS. 

Figure 5 shows an example based on one simulated dataset of the 
regression coefficients of the first 20 variables obtained by BLA along 
with the 95%, 90% and 50% CIs. Figure 6 depicts the corresponding plot 
for BRR. There it can be seen that for BRR the block-wise correlation 
structure results in less dependency between neighboring variables 
than the exponentially decaying correlation structure in Figure 3. The 
PE was estimated in the same way as for the exponentially decaying 
data sets. All methods performed similar in terms of PE with hCBS 
achieving slightly better results compared to the other methods. Results 
are shown in Table 1. Relaxing the variable selection criteria of PIP to 
0.4 for SSVS and hCBS, and to 90% CIs for BLA and BRR resulted in a 

and subsequently averaging over all PEi computed. Table 1 shows the 
prediction errors obtained by the methods. As can be seen, all methods 
performed rather well with a similar prediction error. 

The computational demands varied between the methods. hCBS 
and SSVS required less than 167 minutes for one data set, whereas BLA 
terminated after on average 20.8 hours and BRR took on average 22.1 
hours.

Block-wise correlation (LD)

For hCBS and SSVS, the same hyperparameters were used as in 
the analyses of the exponentially decaying data, with the exception 
of c which was set to 1. Figure 4 shows the results using the same 
variable selection thresholds as for the exponentially decaying data. All 
methods, except for SSVS, were able to identify all relevant variables. 
BLA and BRR both performed very well and identified all associated 

Figure 2: Mean regression coefficients and three different CIs of the 20 first predictors (SNPs) obtained by BLA when applied to one exponentially 
decaying correlation function data set.

 

Figure 3: Mean regression coefficients and three different CIs of the 20 first predictors (SNPs) obtained by BRR when applied to one exponentially 
decaying correlation function data set.
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false positive rate of 3.7 for hCBS, whereas the number of false positive 
detections for the penalized regression methods remains unchanged. 
Changing the variable selection criterion for the Bayesian penalized 
regression methods to 50% yielded 427 and 677 false positives, leading 
to the conclusion that a 50% CIs is not restrictive enough to be used for 
variable selection purposes.

Computation of SSVS took on average 160 minutes and for hCBS 
slightly more than 167 minutes. 15,000 iterations of BLA and BRR 
required significantly more time. The former terminated after 17.75 
hours and the latter finished after 22.14 hours, on average.

Real chromosome correlation (LD)

BRR and BLA were run for 40,000 iterations and both SSVS-
based methods for 850,000 iterations. We first evaluated the effect 
of varying the hyperparameters of the SSVS-based methods on the 
Associated SNPs inside LD-Blocks data. For each of the { }2 1,5, 20,50εσ =  
settings, analyses were performed on all combinations between 
c={0.0001,0.001,0.01,0.1,1} and ω={0.005,0.01,0.02,0.04,0.1}. 
Hyperparameter a was set to 1 and b to its corresponding 2 1εσ =  
value. Convergence diagnosis (R and neff) and acceptance ratio were 
monitored as well as the number of true and false positives. The 

 

Figure 4: Average true and false positive detections by all methods over 25 block-wise correlation structure datasets. Selections are based on 95% 
CIs for BLA and BRR.

 

Figure 5: Mean regression coefficients and three different CIs of the 20 first predictors (SNPs) obtained by BLA when applied to one block-wise 
correlated data set.

Method PE
Exponentially decaying correlation 
function

PE
Block-wise correlation 
structure

hCBS 1.19 1.07
SSVS 1.14 1.09
BLA 1.12 1.15
BRR 1.10 1.14

Table 1: Prediction error (PE) produced by each method for the exponentially 
decaying correlation function and the block-wise correlation data sets.
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complete list of results using various hyperparameters is available 
from the authors. The best average FIT-value over the four different 
error variances was obtained with ω=0.01 and c=1 for SSVS FIT=-
2.5, and with ω=0.005 and c=1 for hCBS (FIT=-5.25). Based on these 
hyperarameters, SSVS identified all true positives only for the data 
set with highest information content 2 1εσ = . hCBS was never able 
to identify all true positives. The best result was obtained for 2 1εσ =  
with 8 true positives. Moreover, hCBS reported more false positives 
than SSVS (Table 2). BRR performed better than BLA in terms of 
true positives but also identified considerably more false positives for 
datasets with high information content (Table 2). Both methods were 
unable to identify any true positives for 2 50εσ = . 

For the Asscociated SNPs inside and correlated SNPs outside of 
LD-blocks, the best average FIT-value over the four different error 
variances was achieved with ω=0.02 and c=1 for SSVS (FIT=-6.25), 
and with ω=0.01 and c=0.1 for hCBS (FIT=-7.5). hCBS and SSVS 
performed similar in terms of average true positive detections but 
SSVS detected considerably fewer false positives than hCBS (Table 3). 
BRR achieved the same number of true positives as hCBS and SSVS for 

2 1εσ = , but again included many more false positives. BLA was inferior 
regarding true positives by only including 15 of the 20 associated SNPs. 
When relaxing the variable selection to a 90% interval BLA includes 
19 true positives and only 5 false positives. BRR found all associated 
SNPs but also selects 57 false positives. Similar to the previous example, 
both penalized regressions methods struggle with the detection of true 
positives in low information datasets such as 2 20,50εσ = .

The best average FIT-value over the four different error variances 
was obtained with ω=0.01 and c=0.1 for SSVS (FIT=-5.25), and with 
ω=0.005 and c=0.1 for hCBS (FIT=-6) for the Associated SNPs inside 
and non-correlated SNPs outside of LD-Blocks data. This time hCBS and 
SSVS performed similar with both including a high number of positive 
detections and relatively few false negatives. Table 4 summarizes the 
results obtained. The pattern of BLA and BRR not being able to detect 
a significant amount of true positives in low information datasets 

2( 20,50)εσ =  is repeated. Furthermore, BLA again performs very well 
in terms of few false positives and BRR again selects too many false 
positives (Table 4). 

As for the Associated SNPs outside of LD-Blocks data, the best 
average FIT-value over the four different error variances was obtained 
with ω=0.01 and c=1 for SSVS (FIT=0) and with ω=0.005 and c=0.1 for 
hCBS (FIT=-0.75). SSVS performed particularly well in this scenario 
as the method has been designed for datasets with little correlation 
between the predictors. SSVS manages to identify 10 out of 10 relevant 
variables with no false positives for all error variances (Table 5). hCBS 
also resulted in good true positive detection rates, but performed 
slightly inferior to SSVS in terms of false positives. BLA and BRR both 
have problems with the detection of true positives in low information 
datasets, especially for the data sets with 2( 50)εσ = .

Computational analysis

From the results shown in Figure 7, it can be seen that the 
computation time of SSVS-based methods scale with increases in the 
number of phenotypes or more generally of observations. Note that 
the y-scale is logarithmic. In contrast, Bayesian penalized regression 
methods scale with the number of SNPs or in general with the 
number of variables. This stems from the fact, that in every iteration 
each variable has to be sampled separately which is the most time 
consuming operation. Bayesian penalized regression methods required 
on average 5.5 seconds per iteration for a dataset of size 5,000×5,000. In 
contrast SSVS-based methods took 1.7 seconds. If the data set consists 
of 500 phenotypes instead of 5,000, then Bayesian penalized regression 
methods still required around 5.5 seconds, whereas computation time 
of SSVS based methods decreased to 0.004 seconds. However, SSVS-
based methods required many more iterations to be carried out than 
BLA and BRR. 

Discussion
The main contribution of this study is to conduct a detailed 

comparison between the Bayesian penalized regression methods, 
Bayesian lasso (BLA) and Bayesian ridge regression (BRR), as well 
as stochastic search variable selection (SSVS) and hybrid correlation-
based search (hCBS) on simulated phenotype data with real and 
simulated linkage disequilibrium (LD) between SNPs. The simulated 
datasets mimic certain properties of datasets common in genome-wide 
association studies (GWAS), such as high block-wise and exponentially 

hCBS SSVS BLA BRR
2
εσ

TP FP TP FP TP95 FP95 TP90 FP90 TP95  P95  P90 FP90 

1 8 2 10 0 7 1 10 10 10 38 10 56 
5 8 2 9 0 1 0 4 0 3 4 7 16 
20 7 3 7 0 0 0 1 0 0 0 1 0 
50 5 2 4 0 0 0 0 0 0 0 0 0 

Table 2: True and false positive detections by all methods when applied to the real 
cattle LD data (4697 SNPs from chromosome 1 and 2) with 10 SNPs inside LD-
Blocks used to generate the phenotype. Four different values for the error variance   

2
εσ were simulated.

hCBS SSVS BLA BRR
2
εσ

TP FP TP FP TP95 FP95 TP90 FP90 TP95  P95 TP90 FP90 

1 19 2 19 1 15 3 19 5 19 31 20 57
5 18 6 17 2 10 0 11 2 11 8 15 22
20 15 4 14 3 3 0 4 0 2 0 3 0
50 14 4 14 3 0 0 1 0 0 0 0 0

Table 3: True and false positive detections by all methods when applied to the real 
cattle LD data (4697 SNPs from chromosome 1 and 2) with 20 SNPs associated 
to the phenotype, 10 inside of LD-blocks and 10 correlated SNPs outside of LD-
blocks. Four different values for the error variance 2

εσ  were simulated.

hCBS SSVS BLA BRR
2
εσ

TP FP TP FP TP95 FP95 TP90 FP90 TP95  P95 TP90 FP90 

1 18 1 18 2 17 0 19 4 18 22 20 44 
5 18 1 19 2 10 0 12 2 12 6 15 15 
20 17 4 14 1 5 0 7 0 1 0 7 0 
50 13 4 15 2 0 0 2 1 0 0 2 0 

Table 4: True and false positive detections by all methods when applied to the real 
cattle LD data (4697 SNPs from chromosome 1 and 2) with 20 SNPs associated to 
the phenotype, 10 inside of LD-blocks and 10 non-correlated SNPs outside of LD-
blocks. Four different values for the error variance 2

εσ   were simulated.

hCBS SSVS BLA BRR
2
εσ

TP FP TP FP TP95 FP95 TP90 FP90 TP95  P95 TP90 FP90 

1 10 0 10 0 10 0 10 0  10  9  10  19 
5 10 1 10 0 10 0 10 1  10  2  10  5 
20 10 1 10 0 7 0 7 0  6  0  7  1 
50 10 1 10 0 0 0 0 0  0  0  0  0 

Table 5: True and false positive detections by all methods when applied to the 
real cattle LD data (4697 SNPs from chromosome 1 and 2) with 10 SNPs outside 
of LD-blocks used to generate the phenotype. Four different values for the error 
variance 2

εσ  were simulated.
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decaying correlation. Additionally, four different scenarios, based on 
a real genomic dataset from cattle, were used to further assess the 
performance of the methods. 

The main results from the investigations conducted indicate that 
all methods considered in this work are able to perform variable 
selection with a reasonable amount of true positive detections and a fair 
number of false positives when the information content (heritability) 
in datasets is high. As the information content decreases, Bayesian 
penalized methods are no longer able to detect associated SNPs and are 
outperformed by SSVS and hCBS. BLA tends to perform best in terms 
of highest true positives rates and low numbers of false positives in the 
two data sets with simulated block-wise and exponentially decreasing 
LD. For the data based on the two cattle chromosomes, SSVS tends to 

result in the highest number of true positives together with the lowest 
number of false positives. SSVS and hCBS mostly perform superiorly 
to BLA and BRR in terms of true positives, especially for the data sets 
with low information content. BRR detected too many false positives 
in most data sets.

Regarding the variable selection in BLA and BRR, using a 50% 
credible interval criterion did not provide useful results as the number 
of false positives was very large. For BLA a 95% credible interval proved 
to be the best choice as it increases the number of true positives with 
only a few more false positives. In the case of BRR a 90% credible 
interval also increases the number of true positives but also greatly 
increases the number of false positives. Therefore, using a 95% credible 
interval appears to be preferable. 

 

Figure 6: Mean regression coefficients and three different CIs of the 20 first predictors (SNPs) obtained by BRR when applied to one block-wise 
correlated data set.

Figure 7: Computation time required for analyzing datasets of various sizes averaged over 500 iterations and 5 repeats per method.
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The prediction error was in general relatively similar between all 
methods. However, hCBS and SSVS seems to predict unseen datasets 
slightly more accurately as reflected in a lower PE than the Bayesian 
penalized regression methods, especially for the data with block-wise 
correlation structure.

The computational efficiency largely depends on the size of the 
dataset to be analyzed as well as certain properties such as the expected 
number of associated SNPs in the case of the SSVS-based methods. 
For p≫n datasets, where the number of sequenced individuals is 
moderate, SSVS and hCBS are preferable. Whereas, for datasets with a 
similar number of SNPs and genomes sequenced, Bayesian penalized 
regression methods are more efficient. In more detail, Bayesian 
penalized regression methods scale with the number of SNPs, whereas 
the computational time of SSVS-based methods mostly depends on 
the number of phenotypes as discussed. For very large datasets with 
millions of SNPs, both methods may exceed computational resources. 

A possible way to tackle very large datasets, which is left to be 
addressed in future work, would be to consider a two-step strategy 
where the initial selection of SNPs is performed by either SSVS or hCBS, 
depending on the type of dataset considered, using hyperparameters 
that are not overly restrictive to variable inclusion. A second step 
would involve computing the reduced set of SNPs using either BLA 
or BRR if the information content is not too low. A similar approach 
was used by Li et al. [11] where they first reduced the initial set of SNPs 
through a supervised principle component analysis and subsequently 
analyzed the remaining SNPs using BLA. Wilson et al. [42] used the 
marginal Bayes Factor (BF) to reduce the number of SNPs followed by 
Evolutionary Monte Carlo for Bayesian model averaging.

To our knowledge, our study is the first that evaluates different 
Bayesian methods on large scale GWAS data sets with p≫n based 
on both simulated and real LD patterns. Fridley [16] compared SSVS 
with Bayesian Model Averaging (BMA) and Reversible Jump MCMC 
(RJMCMC) on simulated and real data, but only on uncorrelated 
p<n data. His main conclusion was that all three methods performed 
similar on both the simulation studies and the age-related macular 
degeneration (AMD) data. Rockova et al. [20] compared a range of 
Bayesian variable selection and regularization methods as well as 
frequentist methods on both simulated and real data, but also solely 
in the p<n setting. In their simulation study, they showed that the 
Bayesian variable selection methods led to improved performance 
in detecting the true underlying model, when compared with the 
frequentist methods. Among the Bayesian approaches, none could be 
proposed as the best for all the studied simulation settings. However, 
one of the patterns considered by Rockova et al. [20], also addressed 
in our study, was that the Bayesian regularization methods appears to 
detect too many false positives.

Related approaches to the methods considered in this work were 
proposed by Hans [43], where the variable selection ability of SSVS 
was combined with BLA, Hans  [44] who introduced a combination of 
SSVS and the Elastic Net, as well as Baragatti and Pommeret [45] who 
enhanced SSVS with the ridge regression like g-prior. A comparison 
between these methods and single-SNP Bayesian methods [9] on large 
scale GWAS data should be addressed in future studies.
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