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Introduction
Face recognition in uncontrolled conditions arise primarily in 

fighting crime through surveillance using CCTV cameras. In contrast 
to recognition in control conditions, which has witnessed significant 
improvement over the last 3 decades, very little progress has been made 
to attain acceptable recognition rates due to the degraded nature of 
the captured images. CCTV cameras are at a distant from the imaged 
scenes and thus capture small low resolution, blurred and low-quality 
face images. Image degradation results from a variety of recording 
conditions: subject on the move, unstable sensors, out of focus optical 
system, or abnormal weather and atmospheric conditions such as 
thermal waves. Image resolution enhancement is deemed necessary for 
face recognition in these cases. 

In biometric systems, normally there is a set of feature vectors (one 
or more for each of the enrolled subjects) called the Gallery representing 
the digital templates that are obtained during the enrolment stage. 
For recognition under controlled conditions, these templates are 
extracted from good quality images of the highest possible resolution, 
and when a claimant presents him/her-self a reasonably good quality 
image is input to the same feature extraction procedure is applied 
and the output will be matched against all the gallery templates and 
identification is determined as that of the nearest neighbour. The 
situation is fundamentally different in the uncontrolled scenarios. 
Recognising faces when matching low-resolution (LR) degraded small 
images against a gallery of high-resolution good size face images need 
to incorporate some preprocessing resolution enhancing procedures. 
Various super-resolution methods have been developed with the 
aim of reconstructing a higher resolution version of the LR image. 
Hennings-Yeomans et al. [1] proposed to perform super-resolution and 
recognition simultaneously. The performance of this method depends 
on the training dataset of images. He and Zhang [2] developed an SR 
scheme that constructs a high-resolution face image, from a sequence 
of low-resolution images, to be processed by Gabor feature based 
recognition. 

In recent years advances in compressive sensing (CS) theory 

and sparse representation have been exploited to develop image/
signal processing and analysis tools to be used in pattern recognition 
including face recognition from LR face images. In particular, the 
development of efficient l1-minimization procedures to find sparse 
solutions of certain under determined linear systems has led to the 
emergence of new SR schemes for the recovery of high quality super-
resolved images from low resolution degraded images [3-7]. Yang et 
al. [5] proposed a method to reconstruct super-resolved image from a 
single low-resolution image using a pair of overcomplete dictionaries 
DH and DL whose columns are constructed, through a learning process, 
from a number of randomly selected patches of high and low resolution 
training datasets of face images. This pair of image-trained dictionaries 
will be referred to, thereafter, as the LD system. The main objective of 
this paper is to question the need for image-trained dictionaries for SR 
tasks, and in particular for face recognition in uncontrolled conditions. 
We shall describe a simple method to implicitly construct CS compliant 
dictionaries without using images and demonstrate that such non-
adaptive dictionaries perform as well as the LD dictionary, if not better. 
We shall also demonstrate that this is not only true for our implicitly 
constructed dictionary, but rather for a number of different random 
dictionaries, and show that there are no visible differences in the 
quality of the super-resolved images obtained from all the investigated 
dictionaries. For completion, we also present the performance of a non-
CS based iterative SR method, and of matching in low-resolution. 

The rest of the paper is organized as follows. Sections 2 and 3 
provide a brief review of Super resolution and Compressive Sensing 
respectively. In section 4, we shall discus a recently designed CS 
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Abstract
This paper is concerned with face recognition under uncontrolled conditions, e.g. at a distance in surveillance 

scenarios, and post-rioting forensic, whereby captured face images are severely degraded/blurred and of low resolution. 
This is a tough challenge due to many factors including difficulties in determining a model for image degradation that 
encompasses a range of realistic capturing conditions. We present the results of our investigations into recently 
developed Compressive Sensing (CS) theory to develop scalable face recognition schemes using a variety of over-
complete dictionaries that construct super-resolved face images from any input low-resolution degraded face image. We 
shall demonstrate that deterministic as well as non-deterministic dictionaries that do not involve the use of face image 
information but satisfy some form of the Restricted Isometry Property (RIP) used for CS can achieve face recognition 
accuracy levels as good a, if not better than, those achieved by dictionaries, proposed in the literature, that are learnt 
from face image databases using elaborate procedures. We shall elaborate on how this approach helps in crime fighting 
and terrorism.
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approach to image RS using different types of dictionaries, and discuss 
the properties of these dictionaries that are relevant to the recovery of 
a sparse signal from a down-sampled degraded version of images. In 
section 5, we shall conduct experiments to compare the performance 
of a known face recognition scheme when applied to super-resolved 
mages using the different types of dictionaries as well as to the original 
LR images. In the conclusion, section 6, we shall briefly describe the 
contribution of the paper and also highlight benefits of using certain 
types of implicitly constructed CS dictionaries conclusions. 

Super Resolution
Recovering a high-resolution (HR) image from one or more 

low-resolution (LR) images is a challenging inverse problem that has 
been traditionally dealt with by iterative procedures of incremental 
enhancement, referred to as Super-resolution (SR). SR schemes, 
therefore, assume that an observed degraded LS small image y is the 
result of blurring and down-sampling applied to an ideal HR image x 
and corrupted by additive noise, i.e. x is a solution of a matrix equation:

y=SBx+η 					                    (1)

where B is a point-spread function with a blurring effect, S is a 
down sampling function, and η is additive noise. The most common 
traditional non-CS based super-resolution techniques are variants of 
the Iterative Back Projection (IBP) SR scheme that can super-resolve a 
single or multiple input LR image(s). The standard single LR image IBP 
scheme works by first generating the initial HR image x0 by decimating 
the pixels of y using Bi-cubic interpolation. For n>0, calculate an error 
image xe of the size of the x(n-1) image by the 3 steps procedure:

Convolute x(n-1) image with an appropriate degradation function, 

Down sample the resulting image to obtain y(n), and 

xe is obtained from (y-y(n)) by up-sampling. 

The nth iteration output the nth version of the HR image simply 
by calculating x(n)=(x(n-1)+xe), representing the back projection of the 
difference (y-y(n)) onto x(n-1). The SR scheme terminates either when the 
energy of the error term (y-y(n)) is reduced below a certain threshold 
or the number of iterations reached a fixed maximum number [8]. 
Variants of the IBP expand each iteration by pack-projecting additional 
terms, representing high frequency information in x0 e.g. using the 
Canny edge detection [9].

The main challenge in recovering x is the modelling of the unknown 
blurring function. Gaussian functions with different blurring effect have 
been considered as a suitable model for use in SR procedures, but they do 
not reflect severe degradation conditions seen in surveillance scenarios. 
A suitable model can be based on the use of atmospheric turbulence 
functions of different strengths (i.e., degradation functions that model 
environmental conditions caused by variation in temperature, wind 
speed and exposure time) which extends the effect of the Gaussian 
functions. In the frequency domain such functions are of the form:

   
52 2 6( )( ,  ) − += k u vH u v e                                                                     (2)

Where k is a constant that reflects severity of blurring. We label 
degradation as severe if k ε [0.045, 0.09]; mild (similar to most 
Gaussian blurring functions) if k ε [0.02, 0.04]; and low if k ε [0, 0.02], 
The small images in Figure 1 are the down-sampled degraded images 
after applying H for different values of k. Throughout the paper, we 
shall adopt this model of degradation for a number of k values in these 
ranges to test performance of face recognition from LR images.

Compressive Sensing 
Images/videos and other media signals/objects have long 

been benefiting from frequency domain decompositions and 
dimension reduction methods that help express the original signals 
as superposition of certain bases functions. These methods yield 
sufficiently informative but sparse approximation of the original 
signals suitable for efficient implementation of a variety of processing 
and analyse tasks. Traditionally the input signals to these methods 
are uniformly sampled for the highest resolution afforded by the 
deployed sensors. It is natural to ask if this is necessary, when most data 
resulting from these methods are thrown away. Compressive sensing, 
also known as sparse recovery, is a novel paradigm of signal sampling 
that attempts to answer this question and greatly relaxes the stringent 
limitations of the conventional Shannon-Nyquist Sampling Theorem, 
for signals that can be approximated by a sparse expansion in terms of 
a suitable basis of waveforms. The underlying principle of CS is that the 
number of linear measurements needed to reconstruct a compressed 
signal should be proportional to the compressed size of the signal, 
not the uncompressed size. This suggests the use of generating sets of 
vectors belonging to different bases of functions. Bruckstein et al. [10], 
suggest that the concatenation of 2 bases one constructed from wavelet 
functions and the other from sinusoid functions would be of benefits 
for image processing/analysis tasks. 

The central challenge for CS is the construction of non-adaptive 
relatively small number of linear measurements that can guarantee 
the recovery of a sparse or approximately sparse signal. Such a set 
of linear measurements are represented by rows of an over complete 
dictionary [11], i.e., an mxn matrix whose columns form a spanning 
set of m-dimensional vectors to be used to decompose the signal. 
Dictionaries generalize vector space basis, and are represented by 
overcomplete m×n matrices, (m<<n), whose columns are expected 
to form a pool of m


 bases. Consequently, vectors in m


 can have 

multiple representations by the different bases each capturing different 
features, perhaps at different scales. A main premise of this work is that 
good CS dictionaries can be constructed implicitly from certain pools 
of bases by concatenation. 

If { }1 2, ,= … ∈mxn
nD d d d   is a suitable underdetermined dictionary 

then for any observed vector y, CS-based tools recover the sparsest 
solution of the equation: y=Dx, i.e. determine ∈nx  such that:

  0 2
min= −yx x subject to y Dx  			                    (3)

Unfortunately, this l0-minimization problem, known as the (P0) 
problem, is computationally NP-hard due to the need to exhaustively 
testing all m columns of D, indexed by a subset Ω of {1,2, …,n}, such 
that y=D Ω z has a non-trivial solution ∈mz . However, if x is sparse 
and D satisfies certain properties, then a unique solution of the l1- 
minimisation (P1) problem exists: 
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Figure 1: Determinant of submatrices from the High-resolution LD Dictionary.
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 
1 2

min= −yx x subject to y Dx . 		                  (4)

This is a convex optimisation problem which is amenable to linear 
programming. In fact, if x is small, then the Least Square (LS) method 
can be used to solve the corresponding the l2-minimisation (P2) 
problem:



* * 1
: 2

(arg min ) ( )−
== =x b Dxx x D DD b  .

In many applications such as when x is spiky, the LS solution is 
not suitable. However, the use of the l1-minimisation to recover the 
solution of (P0) problem have been the subject of intense research. 
Bruckstein et al. [10], discuss two basic questions about (P0): (1) Under 
what conditions, does it have a unique solution? and (2) Given a feasible 
solution, is there a simple test to verify that is a global minimizer? The 
uniqueness requirements are known to depend on certain parameters 
and properties of the matrix D. 

The sparke of an mxn matrix D, denoted by sp(D) is the minimum 
number of linearly dependent columns of D. It is clear that sp(D) ≤  
m+1. Equality occurs when D has a full row rank, and then D is said to 
be of full sparke.

Theorem 1 [11] 

If every (sp(D)-1) columns of D are linearly independent then 
every (sp(D)/2)-sparse x can be recovered uniquely from Dx. // 

Throughout we assume that these matrices are of full row ranks. 
Computing the sparke of a dictionary D may sound as difficult and NP-
hard as solving the P0.problem, however, the absence of this property 
can be established statistically by testing a randomly selected large 
set of m-columns for independence. More importantly, this theorem 
provides an efficient strategy for the implicit construction of suitable 
CS-dictionaries that guarantee uniqueness of solutions. The main 
theme in this paper is to show that such dictionaries can be implicitly 
constructed by concatenating certain sets of 



m  bases. 

The answer to the second question, above relates to the Null Space 
Property (NSP) An m×n dictionary D satisfies the NSP of order k if for 
each size k set Ω ⊂ {1,…,n} and nonzero vector z e Ker(D), 

 
1 1Ω Ω
≤ Cz z ,                            			                   (5)

Where zA is obtained from z by making 0 all coordinates not 
indexed by A ⊂ {1,…,n}. 

Theorem 2 [12]

An mxn dictionary D satisfies NSP of order k if every k-sparse 
solution x can be recovered by l1-minimization. // 

It is not difficult to show that if D satisfies NSP of order k then every 
k columns of D are linearly independent. Consequently, NSP of order 
2k guarantee uniqueness by Theorem 1 while Theorem 2 provides a 
method for recovering the sparsest solution. 

The Isometry Property (RIP) is a less stringent property than the 
NSP that was introduced by Candes and Tao [13], as sufficient for l1-
recovery. An m×n dictionary D, m<<n, is said to satisfy the RIP of order 
k if there is a constant 0<δk<1, such that for any k-sparse signal ∈nx : 

 2 2 2

2 2 2
(1 ) (1 )δ δ− ≤ ≤ +k kx Dx x                                                   (6)

The smallest δk is called the restricted Isometry constant (RIC) of 
order k. If D satisfies RIP of order k, then any 2k-columns sub-matrix 
of D must be well-conditioned [13,14], (i.e. the ratio of its maximum to 

its minimum singular values is small). Again, checking this property for 
all 2k-columns submatrices is computationally infeasible as it requires 
exhaustive check of all ( )2

n
k  submatrices. Again the non satisfaction of 

RIP, can be deduced by computing condition numbers of sufficiently 
large set of randomly selected 2k-submatrices. 

Gan et al. [15], developed a STRIP performance bound in terms of 
the mutual coherence µ of the dictionary which is an indicator of the 
dependence between columns of the matrix. The coherence of a matrix 
provides information about the likelihood of guaranteed recovery of 
the sparse solution, and is defined as the largest absolute normalized 
inner product of distinct columns ai and aj of D i.e.,

i j
1 i n

i 2 j 2

a ,a
(A) max

a a≤ < ≤= j    			                    (7)

It is not difficult to show that if D is a dictionary with unit column 
vectors and coherence μ then D satisfies RIP of order k with δk ≤ (k − 1)

μ, and if n>>m then 1 µ≤
m

.

There are a number of efficient sparse recovery algorithms that 
have been developed including the Homotopy method (LARS) and the 
Iteratively Reweighted Least Square method (IRLA) [12].

Super-Resolution by Compressive Sensing 
CS–based image SR schemes exploit the fact that image signals, 

including degraded images, can be well-approximated by a sparse 
expansion in terms of suitable bases constructed from waveforms such 
as sinusoidal curves, wavelets, and chirplets. In this section we first 
briefly describe CS-based approach to super-resolve low resolution 
degraded images using various underdetermined dictionaries that are 
assumed to satisfy RIP. We list a number of dictionary construction 
including the LD pair of images-trained dictionaries adopted by Wang 
et al. [4], as well as random generated pairs of dictionaries, and a 
new construction strategy that is independent of training images but 
designed to implicitly be of full sparke. We shall test the strength of RIP, 
using the statistical tests described above. 

CS-based image SR schemes 

A CS-based SR scheme for images require 2, preferably RIP, 
dictionaries: A Low resolution matrix DL of size 100×512 and a High 
resolution matrix DH of size 25×512. The input to this scheme is a 
degraded low resolution small image Lr, and the output is super-resolved 
to double the size image that is meant to be of “high quality”. The Lr 
image is first resized by decimating its pixels and Bi-cubic interpolation 
to obtain double the size image LR which is also degraded in the same 
way as Lr is. Three spatial filters, designed to highlight edges in different 
directions, are applied to the LR image to obtain 3 edge-highlighted 
versions. The four images are then subdivided into blocks of size 5 
and each block is transformed into column vectors of size 25. For each 
block location, concatenate the corresponding column vectors in the 4 
versions to create a column vector of 100=4×25 by concatenation. In 
order to avoid the appearance of blocking artefacts, the image will be 
subdivided into overlapping blocks. 

Initialise a HR image of the same size of the LR image for the super-
resolved image. The 5×5 blocks are then processed iteratively as follows: 

1. Let y be corresponding 100-dimensional vector.

2. Find the sparse solution z of the underdetermind equation y=DL z 

3. Calculate the 25-dimentional HR patch x using the matrix 
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multiplication x=DH z , 

The image-based learnt dictionary

This is the LD pair of image-learnt dictionaries proposed by Yang 
et al. [5,6] who also used for super-resolution based face recognition. 
The columns of these dictionaries are dependent on 5×5 image 
patches randomly selected from a large training set of good quality 
high resolution images that exhibit similar statistical characteristics of 
the images to be tested for matching. The DH and DL dictionaries are 
created as follows:

A sufficiently large number of high resolution (HR) images (here 
Face images) are selected and each divided into patches of 5×5 pixels. 
Patches overlap. 

Randomly sampled raw patches from the training HR images are 
transformed into normalised vectors to be added as columns of the DH 
dictionary. The number of columns is set to 512 representing the size 
of the SR image.

Generate a set LR of blurred versions of the HR images, and create 
3 other filtered versions, and the columns of DL are constructed in 

LR images and their 3 filtered version. Again the columns are to be 
normalised.

Random dictionaries

Randomly constructed matrices that satisfy the Restricted Isometry 
Condition include Gaussian, Toeplitz and Circular random Matrices. 
For Gaussian Random Matrix (GRM), the entries xi,j of the CS matrix 
of size m×n are independently sampled from a normal distribution xi,j 
~ N(0,1/m), the l2-norm was used to normalize each columns in the 
dictionary. In order to recover super resolved image from a single LR 
image for face recognition via sparse representation, two overcomplete 
dictionaries DH, DL of size 25×512 and 100×512 respectively have been 
generated from a zero mean Gaussian distribution with variance 1/25. 

Toeplitz-Circular Random measurement matrix (TCRM) are 
another class of RIP dictionaries that have been widely used. Bajwa et 
al. [16], have shown that Toeplitz-structured matrices are sufficient to 
recover undersampled sparse signals. Toeplitz and Circular matrices of 
the size k×n are respectively of the form: 

 

n n-1 1 n n-1 1
n+1 n 2 1 n 2

t t t t t t
t t t t t t

n+k-1 n+k-2 k n-1 n-2 k

T ,and C
t t t t t t

   
   
   = =
   
   
   

 

 

 

 

For image reconstruction, the DH and DL dictionaries are generated 
as TCRM matrices, by selecting the first row using the standard 
Gaussian distribution and the rest of the rows are permuted versions of 
it as required above. 

Iteratively constructed full spark dictionaries 

Full-sparke dictionaries is a class of full row rank overcomplete 
m×n dictionaries, where m<<n, so that each m-columns sub-matrix 
is a basis of 



m . Here we describe an example on how to construct 

such matrices by starting with an invertible mxm matrix and iteratively 
appending a set of image independent linearly independent m-column 
vectors in 



m  while maintaining the full sparke property after every 
addition. One way to maintain the full sparke is to insist that every 
new column can only be generated by the full columns of the previous 
inserted submatrices. 

Our generic full sparke dictionaries, referred to as LID, is of the 
form: 

 ( )1 2 1
, ,..., ,

+
 =  k kp p p pD A A A C A

where for i=1,..., k+1, the pi’s are distinct real numbers >1, and 

2 1

2

1 2 3

1 1 11

1 1 11

1 1 1 1

−

−

− − −

 
 
 
 
 

=  
 
 
 
  
 







m
i i i

m
i ipi i

m m m
i i i

p p p

p pA p

p p p

 

Note that k=n/m and the last sub-matrix of D is simply the first 
(n-km) columns. Then, the m×n LID dictionary is obtained from the 
resulting matrix after normalising its columns using the l2-norm. 

For our experimental purposes the LID1 high-dictionary DH is 
generated from using integers pi>1. For simplicity, the low-dictionary 
DL was created from a Standard Gaussian Random Matrix (GRM). 

Measuring RIP strength of DH dictionaries

In this section, we present the result of statistical test of the 
“strength” of the RIP for the LD and LID1 dictionaries. The various 
statistical tests on full spark property of a dictionary or the condition 
numbers of m-submatrices is conducted on a randomly selected 
sample of 100 submatrices. For the full sparke property, we evaluated 
the determinants, as indicator of linear independence, for more than 
a hundred randomly selected sample of 25×25 submatrices of the 
corresponding DH dictionaries. Although in theory, the LD dictionary 
may statistically satisfy NSP of order 12, Figure 2 shows that the 
determinant of most 25×25 submatrices is so small (almost zero) and 
hence the full sparke property is not satisfied. In contrast, Figure 3 
confirms that the LID1 is indeed fully sparke. 

The next experiment to calculate another RIP indicator, namely the 
condition number of 25×25 submatrices of 4 of the DH dictionaries for 
LD, LID1. GRM and the TCRM. These condition numbers are expected 
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Figure 2: Determinant of submatrices from the High-resolution LID1 dictionary. 

4. Back-projection the 2-dimensional 5×5 version of x onto the 
existing HR.

5. In the rest of this section we describe the pairs of Dictionaries 
DL and DH for the various dictionary construction strategies adopted 
in this paper.

similar way as in step 2, but by concatenating the patches from the 
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to be bounded by RIC of order 2k, with k=12. Table 1, below, displays 
the mean and standard deviation of the condition numbers for 100 
randomly selected submatrices and the condition number of the full 
size 25×512 matrix.

These results again demonstrate that the overcomplete LID1 

dictionary is well-conditioned in comparison to all others for the 
various submatrices but for the full matrix GRM and TCRM have 
similar condition numbers that are better than the LID1. Moreover, the 
condition number of the LD is extremely large for all cases, which make 
these dictionaries very ill conditioned. , 

Another test relates to calculating the row-rank and coherence 
values for the various dictionaries. It is well known that the highest 
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Figure 3: Recognition accuracy rates using different dictionaries and in comparisons with matching in low-resolution.

submatrices Dictionaries
LID1 LD GRM TCRM

mean std mean std mean std mean std
25×25 3.08 3.14 3.34E+16 1.79E+17 279.36 597.79 85.19 155.68
Full matrix 1.977 1.00E+15 1.43 1.453

Table 1: Mean and Standard deviation for CN for a hundred random sub-matrices 
of different sizes.

Dictionary LID LD GRM TCRM
Row Rank 25 24 25 25
Coherence 0.9958 <0.2 0.7438 0.7318

Table 2: Row-rank and Coherence.
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sparsity recovered signal for any dictionary=(1+row rank)/2, and 
coherence µ must satisfy 0.2 =1/√m ≤ µ ≤ 1. Again, results in Table 2 
highlight the superiority of the LID1 dictionary.

In order to test the level of success of the CS-based SR schemes, in 
comparison to non-CS based SR such as the IISR and the usual Bi-cubic 
interpolation schemes, we display in Figure 4 an example of an original 
HR image its degraded and down-sampled versions, and the super-
resolved images output from the various schemes. The degraded small 
images were obtained from the HR image by applying the degradation 
function in equation (6) for different k values ranging from mild to 
severe and then down sampled. In terms of image quality, the difference 
between the recovered HR image using the various dictionaries is not 
discernable by the human eye, but a noticeable improvement can be seen 
when the SR methods were used, including IISR, over the low-resolution 
images and the Bi-cubic interpolation method for every degradation 
value of k. PSNR values for the entire dataset of face images calculated 
between the output SR image and the original images confirm the same 
pattern, but we omit these results. As can be expected, regardless of 
the SR method used, the quality of super-resolved images decreases as 
the level of blurring increases. With increased level of blurring there 
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Figure 4: Super Resolved image by different SR methods and well non-interpolation methods.

is no difference in image quality from different dictionaries. But the 
dictionary methods produced slight improvement on the IISR method, 
and superiority over the interpolation method at every level of blurring.

Face Recognition-Experimental Results
In this section, we test the accuracy of face recognition when 

different SR dictionary methods as well as the IISR method as well 
as the Bi-cubic interpolation method are used to reconstruct super 
resolved face image from a single LR image with different magnification 
blur. We use a simple but efficient wavelet-based face recognition 
scheme, whereby the training as well the matching image are wavelet 
decomposed to level 3 and each of the each of the subbands at level 3 
(i.e. LL3, HL3, LH3 and HH3) is used as a face feature vector. The well 
lit sets of face images from the Extended Yale B database will form the 
bases of the experiments.

Experiments and results

The Extended Yale B database consists of 2,414 frontal-face images 
of 38 individuals. The cropped and normalized 192×168 face images 
were captured under various laboratory-controlled lighting conditions. 
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For each subject, we selected the P00A+00E+00 image for the gallery 
set and the other images for testing. To construct LD that depends on 
images, three images for each subject were selected from the well-lit 
face images in set 1 that were not included in the gallery/test images. 
To simulate the intended uncontrolled scenarios, we first apply the 
degradation function defined by equation 2 for different values of k on 
the high resolution images in the reasonably lit sets (1 and 2) of the 
database. The low resolution degraded Lr images are finally obtained by 
down-sampling the degraded images by a factor of 2. 

For feature extraction, each test Lr face image is first super-resolved 
using each of the above described dictionaries, the IISR scheme or 

HR templates as well as the SR-resolved test images, we use the 
Z-score normalized coefficients of the subbands of the Haar wavelet 
decomposed face images at level 3. Matching is based on the City Block 
distance function.

Figure 4, below show results for the different subbands and each 
of set 1 and set 2 face images. The various charts display the accuracy 
rate at each level of degradation function. As can be seen, there is no 
significant difference in identification accuracy rates, between the 
different dictionaries methods. Moreover, the accuracy rates seem 
to be maintained at the same level for different degradation level. In 
comparisons to the method of matching the LR images with down-
sampled gallery images, the performance of the dictionary based 
methods are far more superior and much more apparent as the image 
quality deteriorates from mild to severe degradation. However, the 
picture is surprisingly different for mild degradation (i.e. k<0.07) 
when we use the HL3 or HH3 subband as feature vectors for set1 
images. We attribute this to the effect of variation in direction of light 
source between the 2 sets on the significant HL3 and HH3 coefficients 
associated with high frequency features (e.g. vertical and diagonal 
edges, respectively). The light in set1 is centrally perpendicular to 

very faint. Mild degradations in the LR images remove these artefacts in 

The differences in the performance of all the schemes on the 
two sets can be attributed to the fact that the LL3 subband being the 
approximation of the spatial domain image, it better approximates the 
spatial domain of the better quality images in set 1 than in set 2. But 
that would also means that the non-LL subbands (known as the detail 
subbands) of the images in set 1 retain less information than retained 
by the corresponding subbands in set 2. We argue that this is why all 
schemes perform better on set 2 than on set 1.

Finaly, we note that the observed pattern of variation in the 
performance of face recognition, using different sub-bands is consistent 
with known results for wavelet-based face recognition without 
degradation [17]. 

Conclusion
We investigated the RIP property for random, and deterministic, 

constructions of CS overcomplete dictionaries as well as an existing 
learnt dictionary that trained on a set of high-resolution face images. 
These dictionaries were used to generate super resolved image with the 
aim of using for face recognition in uncontrolled conditions where the 

input is degraded blurred LR image with a wide range of degradation. 
These results effectively support the use of SR based techniques that 
employ CS dictionaries for recovering super-resolved images that are 
suitable for face recognition. More importantly, that there is no need 
for using image sets for training dictionaries, because non-adaptive 
dictionaries perform equally well if not better in some cases. In order to 
find possible explanation, we conducted a number of tests of numerical 
matrix parameters relevant to the RIP condition. We note that the 
learning image-based dictionary is highly ill conditioned and far from 
satisfying the RIP related conditions. Perhaps the use of image patches 
with the same statistical parameters of general face image patches 
compensate for the lack of RIP properties. 

Future work will focus on developing implicit construction of RIP 
dictionaries from a single basis with actions of certain finite groups 
on 


m, and report on a new construction approach that result in RIP 
matrices implicitly satisfying known bounds on singular values. Such 
schemes are useful for revocable face biometrics. Moreover, we should 
also test our future developed schemes on a database of genuine CCTV 
face images.
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