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Introduction
One of the primary goals of functional genomics is to provide a 

quantitative (as opposed to qualitative) understanding of the functions 
of genes, how they influence and are influenced by proteins and the 
environment, and how they regulate the function of complex living 
organisms from the cellular level all the way to the physiological level. 
Because the structure, function, and behaviour of a cell are determined 
by gene expression patterns, it is therefore no surprise that considerable 
research effort has been devoted to the development of techniques for 
measuring the expression level of all the genes in the cell. And with 
the advent of the extremely high throughput microarray technology, 
researchers finally have the means to collect expression data on every 
gene in a cell simultaneously. However, these vast data sets provide too 
much unstructured information to be analyzed without computational 
tools.  In response to these challenges, the microarray literature 
continues to grow exponentially, with the publication of many novel 
findings from gene expression studies as well as new and more 
sophisticated statistical methods for analyzing gene expression data. 
We believe that because the high-throughput microarray technology 
does not produce high-precision data, it is best used for “screening” 
thousands of genes to identify the subset that may be of potential 
interest. A complementary technology that is more precise (and 
more accurate) but not necessarily “high-throughput” (e.g., polony 
technology [1]) may subsequently be used to characterize this smaller 
subset more efficiently.

In a previous publication [2] we proposed fundamental probability 
models for microarray data distributions. There, we presented first 
principles theoretical results that confirmed what had previously been 
speculated (e.g., [3], or assumed for convenience [4]): that under very 
reasonable assumptions, the distribution of microarray intensities 
should follow the gamma (not lognormal) model. Furthermore, the 
biological interpretations of the model parameters emerge naturally 
from our derivation. We subsequently established that a polar 
coordinate transformation of raw intensity data provides the basis 
for a technique in which each microarray data set is represented as 
a mixture of beta densities, from which rigorous statistical inference 
may be drawn regarding differential gene expression.  Specifically 
(see [2]),  just as classical statistical inference is based on theoretical 
reference distributions (such as the Gaussian, t-, Chi-square, or the 
F-distributions) we developed a methodology for drawing statistical
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Abstract
With the primary objective of developing fundamental probability models that can be used for drawing rigorous 

statistical inference from microarray data, we have presented in a previous publication, theoretical results for 
characterizing the entire microarray data set as an ensemble. Specifically, we established, from first principles, that 
under reasonable assumptions, the distribution of microarray intensities follows the gamma model, and consequently 
that the underlying theoretical distribution for the entire set of fractional intensities is a mixture of beta densities. This 
probabilistic framework was then used to develop a rigorous statistical inference methodology whose outcome, for each 
gene, is an ordered triplet: a raw computed fractional (or relative) change in expression level; an associated probability 
that this number indicates lower, higher, or no differential expression; and a measure of confidence associated with the 
stated result.

In this paper we validate the probabilistic framework and associated statistical inference methodology through 
confirmatory experimental studies of gene expression in Saccharomyces cerevisiae using Affymetrix Genechips®. 
The array data were analyzed using the probabilistic framework, and 9 genes—with indeterminate expression status 
according to the standard 2-fold change criteria, but for which our probabilistic method indicated high expression 
status probabilities—were selected for higher precision characterization. In particular, for genes CGR1, GOS1, ICS2, 
PCL5 and PLB1, the high probabilities of being differentially expressed (up or down) were found to be in excellent 
agreement with the expression status determined by the independent, high precision confirmatory experiments. 
These confirmatory experiments, using the high precision, medium throughput polonies technique, confirmed that 
the probabilistic framework performs quite well in correctly identifying the expression status of genes in general, but 
especially differentially expressed genes that would otherwise not have been identifiable using the standard 2-fold 
change criteria.
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inference using a mixture distribution of beta densities as its 
theoretical basis: it consists of (i) a probability statement that a gene 
belongs to a category (the “down-regulated”, the “up-regulated”, or 
the “no-change”) and (ii) a degree of confidence associated with such 
probability statements, determined from the variability estimated from 
replicates, or else by propagation-of-error techniques when there are 
no replicates. The final outcome is an ordered triplet of results for each 
gene: a raw computed fractional (or relative) change in expression level, 
an associated probability that this number indicates lower, higher, or 
no differential expression (a category membership probability) and 
a measure of confidence associated with the stated result. Genes that 
clear user-specified threshold values for the probabilities, and for the 
confidence index, may then be selected by the researcher for further 
study.  The principles and application of the technique was illustrated 
in [2] with a real experimental data set and also via simulation.

The objective in this work is to test and validate our probabilistic 
framework experimentally by analyzing gene expression in 
Saccharomyces cerevisiae using Affymetrix Genechips. First, the raw 
microarray data is analyzed, according to the probabilistic framework, 
to produce the probability that each gene belongs to a category 
showing lower, higher, or no differential expression; and a measure of 
confidence associated with the stated probabilities. Next, independent 
follow-up studies are conducted on a subset of genes using the higher-
precision, medium throughput polonies technique [1] to confirm or 
refute the expression status determined by the probabilistic analysis 
of the original microarray data.  Specifically, these genes—nine in 
total—are selected from a group whose expression status would be 
indeterminable using the standard fold-change criteria.

Polony technology is a form of polymerase chain reaction (PCR) in 
which the reaction is immobilized in a thin polyacrylamide gel attached 
to a microscope slide. As the chain reaction proceeds, the PCR products 
diffuse radially within the gel from its immobilized template giving rise 
to a polymerase colony. When the gel is stained with SyberGreen I and 
scanned with a microarray scanner, the polymerase colony resembles 
a colony on an agar plate, hence its name. One major advantage of 
this technology is that each immobilized template gives rise to only a 
single polony.  As a result, highly precise digital data can be obtained 
with this approach [1,5], especially in the context of mRNA expression 
profiling when first-strand cDNA is used as the PCR template [6-8]. 
The accuracy of this technique enables its use as a reliable confirmatory 
tool for gene expression studies.

Materials and Methods
Strain and media

Saccharomyces cerevisiae strain FY4 was used in this study. Fructose 
(control condition) and galactose were used as carbon sources and the 
minimal media used were prepared as described elsewhere [9]. All 
cultures were grown at 30oC in a BioFlo 110 Benchtop Fermentor (New 
Brunswick Scientific). The pH was maintained at 5.5 and dissolved 
oxygen was maintained above 60%. The inoculum for the culture was 
grown in shake flasks until late log phase.

Parameters measured

Cell density was monitored by taking OD (600 nm) measurements 
at regular intervals. Samples were taken to measure substrate (carbon 
source) concentration during the course of the experiment. Cell dry 
weight and oxygen uptake rate were measured in early- to mid-log 
phase (OD600 0.5-1.0). RNA samples were taken at mid-log phase 
(OD600 0.8-1.0).

Microarray reactions and pre-treatment

Total yeast RNA was prepared using MasterPure Yeast RNA 
Purification Kit (Epicentre) and samples were prepared according 
to the protocol described by HPCGG (http://www.hpcgg.org). RNA 
obtained from fructose minimal culture was used as control condition. 
The microarray analysis was done using Affymetrix Genechips 
(Yeast Genome 2.0 Array) and was performed by HPCGG. In order 
to facilitate any posterior comparison of candidate genes, median 
signal intensities for all arrays were normalized using global LOWESS 
(smooth parameter = 0.33).

Polony slides

Polony reactions were conducted as previously described [6]. 
The following master mix recipe was used to cast 4 polony gels. In a 
microcentrifuge tube, a master mix was made containing 34.32 μL 
of molecular biology grade water, 7.55 μL of 10X JumpStart buffer 
(Sigma Aldrich), 3.03 μL dNTP (Ambion), 0.51 μL of 30% BSA (Sigma 
Aldrich), 0.76 μL of 10% Tween 20 (Fisher Scientific), and 18.85 μL 
of degassed, filter-sterilized acrylamide (Fisher Scientific), which were 
combined and vortexed briefly to mix. 63.47 μL of master mix was 
combined with 1.9 μL of appropriately diluted template cDNA, 1.5 μL 
each of a forward and a reverse primer (100 μM), 11 μL of JumpStart 
Taq (Sigma Aldrich), 1.5 μL of 5% (v/v) TEMED (Pharmacia), 1.5 μL 
of 5 % (w/v) ammonium persulfate (Pharmacia).  19 μL of this mixture 
was transferred to the well of a teflon coated single well bind-silane 
(Pharmacia) treated glass slide (Erie Scientific). The well was covered 
with a glass slide cover and the gel was allowed to polymerize for 10 
min. The slide cover was then covered with a hybridization well (Grace 
Bio-Labs) and mineral oil was injected into the open cavity surrounding 
the glass slide cover and sealed. The slides were thermal cycled (24˚C 
5 min., 94˚C 2 min., 54 cycles of 94˚C 15 sec., 61˚C 30 sec., 72˚C 30 
sec. and a final 72˚C extension for 2 min) using a PTC200 thermal 
cycler adapted for use with glass slides (16/16 twin tower block, MJ 
Research). Note that the reverse primer has a 5’ acrydite modification. 
The acrydite modification immobilizes the resulting polonies in the 
acrylamide gel. The hybridization wells were then removed, the slides 
were washed in hexane to remove the mineral oil and the glass slide 
covers were removed.

Polony slides were SYBR green (Molecular Probes) stained, imaged 
and the single base extension protocol was initiated. SYBR green 
staining was conducted by immersing polony slides in 2X SYBR green 
I (TBE, pH 8.0) for 10 min. followed by a 5 min. wash in TBE. Slides 
were imaged on a ScanArray Express (GSI Lumonics).

Single Base Extension (SBE) sequencing

Single base extension sequencing was used to quantify polonies 
arising from different genes in the mixed sample. Polony slides were 
initially incubated in a 70 % (v/v) formamide in 1X SSC solution for 15 
min. at 70˚C to denature the double stranded polony DNA. Following 
the denaturing step, electrophoresis (42 % (w/v) urea in 0.5X TBE) was 
conducted to remove the DNA strand not covalently bound to the gel 
with the 5’ acrydite. The electrophoresis was run for 2.5 h at 140 V in a 
standard DNA gel electrophoresis box. Following the electrophoresis, 
slides were washed 4x5 min. in Wash 1E (100 mM tris pH 7.5, 20 mM 
EDTA, 500 mM KCl). 150 μL of 1.33 μM sequencing primer in 6X 
SSPE and 0.1% (v/v) Triton X-100 (Acros Organics) was placed on 
the surface of the gel, covered with a hybridization well and allowed 
to anneal to the immobilized polony DNA (94˚C for 3 min. then 55˚C 
for 15 min). Slides were washed 2x4 min. in Wash 1E and equilibrated 
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for 1 min. in Klenow Extension Buffer (50 mM tris pH 7.5, 5 mM 
MgCl2, 0.01% (v/v) Triton X-100). Slides were then covered with 60 μL 
of an extension solution consisting of 60 μL Klenow Extension Buffer, 
0.5 μL Klenow fragment (5000 U/mL, New England Biolabs), 0.5 μL 
Single Stranded DNA Binding Protein (1-5 μg/ μL, USB), 1.25 μL of 
either Cyanine-5-dATP, -dCTP or –dUTP (10 μM, PerkinElmer Life 
Sciences) and 1.25 μL of either Cyanine-3-dATP, -dCTP or –dUTP (10 
μM, PerkinElmer Life Sciences) depending upon the desired extension. 
The extension reaction was allowed to proceed for 3 minutes at room 
temperature. Slides were then washed 2x4 min. in Wash 1E and imaged 
using a ScanArray Express scanner.

Polonies gene expression analysis

Gene expression analysis was conducted as described [6,8]. Briefly, 
5 mL of each culture was harvested in mid-exponential phase (OD660 
approximately 0.5-2.5) and was immediately chilled to approximately 
0˚C. Media was removed by decanting following centrifugation at 
9500 rpm and 4˚C for 10 min. Cells were stored at −80˚C prior to 
recovering RNA. Total RNA was isolated using the MasterPure Yeast 
RNA Purification Kit (Epicentre) according to the manufacturer’s 
protocol. 5 μg of RNA from each culture was used as template for 
cDNA synthesis using the SuperScript First-Strand Synthesis System 
for RT-PCR (Invitrogen) according to the manufacturer’s protocol. 
This first-strand cDNA was the template for polony slides. Polonies 
were prepared as described above.

Statistical analysis

The Affymetrix GeneChip array data was analyzed as described in 
Ogunnaike et al. [2].  Briefly, for each gene we computed: (i) xi, a raw 
fractional (or relative) change in expression level; (ii) P, an associated 
probability vector that this number indicates lower (Pdown), higher 
(Pup), or no differential expression (Pnon) (note that, by definition, 
Pdown + Pup + Pnon=1); and (iii) ci (0 ≤ ci ≤ 1), a measure of confidence 
associated with the computed probabilities. A low value of ci indicates 
a correspondingly low degree of confidence in the assertion about the 
true state of expression status of the gene i implied by the computed 
probabilities. Conversely, a high value of ci corresponds to a higher 
degree of confidence in what the computed probabilities imply about 
the expression status of the gene i.

Results and Discussion
With the premise that confirmatory experiments constitute a 

natural next step in validating the performance of any statistical 
analysis method, we present in this section a discussion of how the 
entire probabilistic framework has been tested in practice. The two 
steps involved in the validation procedure are: i) analysis of Affymetrix 
GeneChip array data and selection of some candidate genes (for higher 
precision characterization) based on high probabilities of expression 
status and high associated confidence indexes; and ii) independent 
characterization of the real expression status (up-regulated, down-
regulated or not differentially expressed) of the selected genes, using 
a high-precision but not necessarily high-throughput technology. 
These two steps are not only relevant to this confirmatory study; we 
believe that they should be part of any gene expression study using 
microarrays. Because high-throughput microarray technology rarely 
produces high-precision data, it is best used for “screening” thousands 
of genes to identify a smaller subset that may be of potential interest. 
It is then more efficient to use a higher-precision technology to 
characterize this smaller subset more precisely as a follow up to such 
preliminary screening.

Of particular interest to us are genes that show subtle but biologically 
significant changes in gene expression because such changes are 
especially difficult, if not outright impossible, to identify as statistically 
significant using current techniques. As presented in Ogunnaike et al. 
[2], one of the distinguishing features of our probabilistic approach 
is that it provides a means for identifying significant changes in 
such genes. The ability to identify such changes in gene expression 
should therefore provide a most stringent test of the capabilities of 
this approach.  Thus, this validation study focuses specifically on the 
category of difficult-to-identify genes for which the expression data 
show fold-changes (the ratio of measured “test” to “control” expression 
levels) that are lower than 2.0 for potentially up-regulated genes, or 
higher than 0.5 for potentially down-regulated ones, i.e., genes that are 
entirely undetectable as differentially expressed strictly by the 2-fold 
change criterion.

A summary of the experiments and the main highlights of the results 
now follow.  Saccharomyces cerevisiae was grown under two different 
conditions and its gene expression was studied using Affymetrix 
GeneChips. Four pairs of microarrays (biological replicates) were 
analyzed using the probabilistic framework. A sample of the results is 
shown in (Table 1). (The data sets that passed the initial quality control, 
along with the complete set of analysis results are available at http://
www.che.udel.edu/systems/supplements/EVPartII.zip).

Nine candidate genes were selected from the above-mentioned 
“nebulous” fold-change region, using the following criteria: Pdown, Pnon 
or Pup ≥  0.80, and ci ≥ 0.70. In other words, we select for higher precision 
characterization, 9 genes whose expression status are indeterminate 
using the 2-fold change criterion, but for which (i) the probabilistic 
analysis indicates reasonably high probabilities (0.8 or higher) of being 
up- or down-regulated, or not differentially expressed, and (ii) there 
is also a reasonably high degree of confidence (0.7 or higher) in these 
estimated probabilities. The selected genes are highlighted in boldface 
type in Table 1.  Finally, the expression characteristics of the selected 
genes were subsequently determined in a different set of independent 
experiments, using the higher-precision, medium throughput polonies 
technique [1]. The results of the polonies experiments were then 
compared with what was predicted by the probabilistic analysis of 
the original microarray data. Note: because of the chosen probability 
threshold of 0.8, the expectation is that there should be only one 
or two cases (20% of 9 genes)—definitely no more than 3 cases, if 
some allowance is made for the small sample size of 9—in which the 
probabilistic approach’s predictions may not fully agree with the “true” 
expression status of the genes as determined by the higher-precision 
technique.

Table 2  shows the names  of the 9  selected genes, the fold-
changes computed from the Affymetrix data, the corresponding 
probabilities that the gene in question is up- or down-regulated, or not 
differentially expressed, and the confidence index associated with the 
probabilities. The last two columns show the fold-change computed 
from the confirmatory polonies experiments, along with the indicated 
expression status. 

Some important points to note from this table are: (i) for genes 
CGR1, GOS1, ICS2, PCL5 and PLB1, the indicated high probabilities of 
being differentially expressed (up or down) are in excellent agreement 
with the expression status determined by the independent, high pre-
cision confirmatory experiments. It is important to stress once again 
that none of these genes would have been identified as differentially 
expressed by the 2-fold change criterion. (ii) Even though most micro-
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Gene name

 
Fractional intensity (x)

 
  Pdown     Pnon     Pup   Confidence 

index (ci)
Min Aver. Max Min Aver. Max Min Aver. Max Min Aver. Max

NUP120 0.48 0.49 0.50 0.00 0.02 0.05 0.91 0.96 0.98 0.00 0.02 0.04 0.94

PCL5 0.37 0.39 0.40 0.76 0.86 0.91 0.08 0.14 0.24 0.00 0.00 0.00 0.88

HDA2 0.46 0.49 0.51 0.01 0.03 0.06 0.92 0.97 0.99 0.00 0.01 0.02 0.95

PAU7 0.48 0.52 0.57 0.00 0.01 0.02 0.95 0.97 0.99 0.00 0.02 0.05 0.97

MIP1 0.52 0.53 0.54 0.00 0.01 0.02 0.87 0.92 0.97 0.01 0.07 0.13 0.91

SIN4 0.19 0.24 0.28 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

GOS1 0.60 0.61 0.62 0.00 0.00 0.00 0.05 0.19 0.40 0.60 0.81 0.95 0.71

MET31 0.45 0.47 0.49 0.02 0.07 0.20 0.80 0.93 0.98 0.00 0.00 0.00 0.85

TOR1 0.53 0.53 0.54 0.00 0.01 0.02 0.81 0.90 0.97 0.00 0.09 0.19 0.86

BRE2 0.45 0.50 0.54 0.01 0.03 0.06 0.89 0.95 0.98 0.00 0.02 0.08 0.92

GAL11 0.49 0.52 0.56 0.00 0.02 0.05 0.77 0.88 0.95 0.00 0.10 0.23 0.83

FYV7 0.33 0.38 0.42 0.21 0.66 0.92 0.08 0.34 0.79 0.00 0.00 0.00 0.42

ELP6 0.48 0.50 0.52 0.00 0.02 0.03 0.91 0.95 0.98 0.00 0.03 0.05 0.95

BNA1 0.51 0.55 0.58 0.00 0.01 0.03 0.81 0.93 0.99 0.00 0.06 0.16 0.86

MCM3 0.46 0.48 0.50 0.00 0.04 0.14 0.86 0.93 0.99 0.00 0.03 0.07 0.89

KIP3 0.47 0.49 0.50 0.00 0.02 0.04 0.96 0.97 0.98 0.00 0.01 0.02 0.97

HXT4 0.08 0.09 0.11 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

ENP1 0.45 0.46 0.47 0.01 0.09 0.18 0.81 0.90 0.99 0.00 0.01 0.02 0.86

NAF1 0.38 0.40 0.42 0.23 0.63 0.92 0.08 0.36 0.77 0.00 0.00 0.00 0.43

CGR1 0.38 0.38 0.39 0.76 0.85 0.95 0.05 0.15 0.24 0.00 0.00 0.00 0.85

IRA1 0.30 0.33 0.37 0.89 0.95 0.99 0.01 0.05 0.11 0.00 0.00 0.00 0.92

PLB1 0.62 0.65 0.66 0.00 0.00 0.00 0.00 0.03 0.09 0.91 0.97 1.00 0.93

THI4  0.47 0.50 0.53 0.00 0.04 0.12 0.87 0.96 0.99 0.00 0.01 0.01 0.90

DID2 0.49 0.50 0.53 0.00 0.02 0.06 0.84 0.93 0.98 0.00 0.05 0.15 0.87

ICS2 0.38 0.39 0.40 0.79 0.84 0.94 0.06 0.16 0.21 0.00 0.00 0.00 0.87

MID1 0.50 0.51 0.52 0.00 0.01 0.03 0.86 0.94 0.98 0.00 0.05 0.13 0.90

BRE2 0.45 0.50 0.54 0.01 0.03 0.06 0.89 0.95 0.98 0.00 0.02 0.08 0.92

YIP5 0.48 0.50 0.52 0.00 0.01 0.03 0.91 0.96 0.98 0.00 0.03 0.06 0.95

PBS2 0.49 0.51 0.53 0.00 0.01 0.03 0.81 0.93 0.98 0.00 0.06 0.18 0.86

Table 1: Sample of genes from the Affymetrix data analysis. Highlighted genes in bold were chosen for further confirmatory studies.

Candidate genes Fold change* x Pdown Pnon Pup
Confidence

index (ci)
Polony fold- change ± 95% CI Expression

status

CGR1 0.62 0.38 0.85 0.15 0.00 0.85 0.56 ± 0.03 D

ELP6 1.01 0.50 0.02 0.95 0.03 0.95 0.98 ± 0.08 N

GAL11 1.11 0.53 0.02 0.88 0.10 0.83 1.10 ± 0.06 N/U

GOS1 1.55 0.61 0.00 0.19 0.81 0.71 1.21 ± 0.04 U

ICS2 0.63 0.39 0.84 0.16 0.00 0.87 0.79 ± 0.05 D

KIP3 1.01 0.50 0.02 0.97 0.01 0.97 1.10 ± 0.06 N/U

PCL5 0.63 0.39 0.86 0.14 0.00 0.88 0.62 ± 0.08 D

PLB1 1.84 0.65 0.00 0.03 0.97 0.93 1.71 ± 0.13 U

YIP5 1.00 0.50 0.01 0.96 0.03 0.95 1.07 ± 0.04 N/U

D = down-regulated, N = not differentially expressed and U = up-regulated.
* Fold-change computed from the Affymetrix microarray data.

Table 2: Summary of the most important confirmatory experiment results: i) fold-change computed from the Affymetrix data and the corresponding fractional intensity (x), 
ii) the probabilities of expression status and corresponding confidence indexes, iii) the fold-change computed from polony technology data ±95% confidence intervals (CI), 
iv) expression status of the genes according to the confirmatory experiments.
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Overall therefore, these results appear to confirm, with a reasonable 
degree of certainty, that the probabilistic framework performs quite 
well in correctly identifying the expression status of genes in general; 
and that it is especially effective in identifying differentially expressed 
genes, even in the nebulous region of subtle changes in gene expression 

where the fold-change criterion would have been too coarse to be of 
any use.

As an added benefit of the validation study, we were also able to 
explore how the fold-change values determined from the polony 
technology data compares with the one computed from Affymetrix 
data. Figure 1 shows, for each microarray technology, a plot of the fold-
change values (and corresponding confidence intervals) computed for 
the 9 genes involved in the validation study. Observe that most of the 
confidence intervals overlap, indicating good agreement between the 
different technologies in quantifying the changes in the expression 
of the genes in question. A second comparison was carried out using 
bootstrap samples of the average fold-change values obtained with each 
technology. The bootstrap method is a procedure that involves choosing 
random samples with replacement from a data set and analyzing each 
sample using the same procedure [10]. We resampled each fold-change 
vector 1,000 times and computed the coefficient of determination (R2) 
between the resulting fold-change “data” vectors using the bootstrp 
function of MATLAB. The resulting histogram of the bootstrap 
analysis in Figure 2 shows that nearly all the estimates of R2 lie in 
the interval [0.9, 1.0], with an average R2 value of 0.94. This is strong 
quantitative evidence that the fold-change values computed using the 
two different gene expression quantification technologies are very 
strongly positively correlated. And given that the polony technology 
is quite accurate and precise [1,5], these high R2 values along with 
the results in Figure 1 indicate that the high throughput Affymetrix 
GeneChip technology produces results that are comparable –at least 
in accuracy (if not in precision) –to those produced by the lower 
throughput but more precise polony technology.  It is therefore not 
surprising that the Affymetrix GeneChip technology has now become 
a popular choice for massive gene expression studies.
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Figure 1: Comparison of fold-change values for 9 genes computed from 
data obtained using polony technology and Affymetrix GeneChip® (with 95% 
confidence intervals).

Figure 2: Histogram of 1,000 bootstrap samples of the coefficient of deter-
mination (R2) between fold-change values computed from polonies data and 
those computed from Affymetrix data.

array studies are geared towards identifying “interesting” (i.e., differ-
entially expressed) genes, it is also important to be able to avoid being 
fooled by non-differentially expressed genes.  It is in this regard that we 
selected the genes ELP6, GAL11, KIP3 and YIP5 for inclusion in this 
validation study. The non-differentially expressed status of ELP6 pre-
dicted by the probabilistic approach is unconditionally confirmed by 
the polonies experiment. With GAL11, KIP3 and YIP5, the confirma-
tory experiments show a tantalizingly small possibility that they may be 
ever so slightly up-regulated, as opposed to not differentially expressed. 
However, in each case, the proximity of the lower bound of the indi-
cated fold-change confidence intervals to 1.00 (i.e., 1.03-1.04), and the 
fact that the polonies technique, while of higher precision is nonethe-
less not entirely error-free, combine to make it difficult to argue against 
the initial prediction that these genes are not differentially expressed.
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