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Abstract

Likelihood-free inference for simulator-based models is an emerging
methodological branch of statistics which has attracted considerable
attention in applications across diverse fields such as population genetics,
astronomy and economics. Recently, the power of statistical classifiers has
been harnessed in likelihood-free inference to obtain either point estimates
or even posterior distributions of model parameters. Here we introduce
PYLFIRE, an open-source Python implementation of the inference method
LFIRE (likelihood-free inference by ratio estimation) that uses penalised
logistic regression. PYLFIRE is made available as part of the general ELFI
inference software http://elfi.ai to benefit both the user and developer
communities for likelihood-free inference.
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Introduction

Computer-simulator-based models are becoming increasingly popular across a wide spectrum of scientific appli-
cations as they allow a more flexible framework for encoding expert knowledge than typical statistical model
families. A simulator model must nevertheless under most circumstances be carefully tuned to produce real-
istic outcomes when compared with observed data from some process that the simulator is trying to mimic.
Likelihood-free inference deals with the need to estimate parameters and quantify uncertainties in parameter values
in the light of the observations x when using simulator models. The most common approaches in likelihood-free
inference include approximate Bayesian computation (ABC)' and synthetic likelihood (SL)*“. In a general sta-
tistical setting, Bayesian inference combines a probability model for the observations x with the parameter(s)
6 and a prior distribution for the parameters p(6) to define the posterior distribution over parameters 6 as

_p@p(x|6)

6
p@|x) 200

, ey

where p(x|@) denotes the likelihood function and p(x) denotes the marginal likelihood defined as
px) = | p(0)p(x|0)d6. The present work considers posterior estimation when the likelihood function is not
available, but assuming that synthetic data can be be generated from the model given a configuration of its
parameters. Posterior distribution or at least some summaries for it must then be obtained with likelihood-free
inference methods, such as ABC or SL. The methods typically use summary statistics ¥(x) that are engineered
to capture the relevant information about the model parameters present in the real or simulated observations x.

Recent advances in likelihood-free methods include likelihood-free inference by ratio estimation (LFIRE). LFIRE
converts the posterior estimation problem into a density-ratio estimation problem that can be solved with logistic
regression®. Assume that the dataset {Xf } includes N observations simulated using particular parameter
values 6 and that {x'} includes observations simulated from the marginal data distribution, which is
obtained by averaging the forward simulation process over random parameter values sampled from the prior
distribution 6 ~ p(6). Logistic regression is then used in LFIRE to model the log-ratio

pxE{x7})
p(x€{x})
which approximates the log-ratio between the likelihood and marginal likelihood functions evaluated at 6.

Thomas et al.” propose modelling the log-ratio as a sparse linear combination of summary statistics ¥, (x)
calculated from the observations x:

h(x) = log (2)

h(x)= B, + z B, (x) = BTp(x), 3)

where [ denotes the linear model parameters and 1(x) contains the summary statistics and a constant term. Esti-
mation of the posterior is then based on the idea that we: (1) find the linear model parameters (6) that minimise
the /1-penalised logistic loss function evaluated over observation sets {xf } and {x”}, and (2), use the estimated
log-ratio model to approximate the posterior density with

P(0]x) = p(6) exp(B6) 1(x)). 4)

Summary statistics that contribute in the posterior estimation are selected automatically since /1 penalisa-
tion promotes sparse solutions where the coefficients are forced to zero when the corresponding summary
statistic is deemed irrelevant for the prediction: B = 0. Since the model for the approximate posterior is
estimated based on synthetic observation sets {xf } and {x"}, we can control the dataset size to ensure accurate
parameter estimation.

To summarise, LFIRE uses lasso logistic regression to approximate the intractable likelihood function and to
achieve data-driven selection of summary statistics in likelihood-free inference. Related works include sparse
precision matrix estimation in synthetic likelihood approaches’ and semi-parametric synthetic likelihood®.
LFIRE implementations are currently available in MATLAB® and in ABCpy (Python)’ and the related synthetic
likelihood methods in BSL (R)'’, while most other likelihood-free inference tools are focussed on ABC and
related summary statistic selection methods. General-purpose tools most relevant to the current contribution
are reviewed in 11 and available summary statistics selection methods in 12.
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The present work introduces a new LFIRE implementation that is compatible with models constructed with the
ELFI software''. ELFI is a general-purpose likelihood-free inference software that provides tools for model-
ling inference problems and includes various ABC approaches. Our PYLFIRE implementation introduced here
extends ELFI by adding LFIRE to its pool of available inference methods. PYLFIRE implementation is discussed
in closer detail in the next section, after which we provide operational instructions and demonstrate the workflow
for estimating a posterior distribution with the software.

Methods

Implementation

PYLFIRE generates a marginal or prior predictive observation set {x!'} by sampling N configurations from the
prior distribution p(€) and conditional observation sets {xi } by sampling corresponding observations from
the observation model p(x|@). The observation sets {x;9 } are generated with parameter combinations 6 that
indicate the locations in parameter space where lasso logistic regression is used to calculate an approximate
log-ratio and approximate posterior based on {xf } and {x”}. Hence the main computational tasks are dataset
generation and fitting the logistic regression.

PYLFIRE constructs the simulated datasets with ELFI 0.7.4'" and estimates the sparse logistic regression model
with glmnet 2.1.1". ELFI models inference problems as networks that are used in PYLFIRE to generate observa-
tions with random parameters that follow the user-specified prior distribution or with fixed parameter values.
Logistic regression parameters are estimated with the glmnet implementation that utilises Fortran subroutines for
fast execution. Estimation is based on cyclical coordinate descent to minimise the penalised loss function with
respect to regression parameters and cross-validation to optimise the penalisation level. When multiple
computation cores are available, PYLFIRE can parallellise dataset construction or cross-validation.

Operation

PYLFIRE requires Python 3.6.0 (or a later version) and a Fortran compiler. However we also provide a Docker
container image to run PYLFIRE with the requirements pre-installed. The package and installation instruc-
tions are available in ELFI zoo https://github.com/elfi-dev/zoo/tree/master/pylfire. PYLFIRE is provided with
a makefile and installation options as follows. To install PYLFIRE in an environment that has Python 3.6 and a
Fortran compiler, run installation:

make install

We then recommend testing the PYLFIRE framework with:

make test

The alternative is to build and run the PYLFIRE Docker image:

make docker-build
make docker-run

This requires that Docker is installed, but avoids possible problems with the Fortran compiler. When PYLFIRE is
installed, it is available with:

import pylfire

Running posterior inference with LFIRE implemented in the PYLFIRE package then includes (1) ELFI model
construction and (2) running LFIRE to estimate posterior probabilities at predetermined parameter combina-
tions. ELFI model construction means that the user adds their parameter priors, simulator, and summarisation
rules into a network structure. While model construction does not require observed data, observations can be
added in the model. The process is demonstrated in ELFI documentation and tutorials: https://elfi.readthedocs.io/.

ELFI model provides PYLFIRE means to generate observations from the marginal and conditional distribu-
tions. In addition to the network model, the user must determine the parameter combinations where approximate
posterior is evaluated and the dataset size used in logistic regression. The observed data x must also be added in
the network model, and the model, parameter combinations, and dataset size are then used to initialise an LFIRE
instance that calculates the approximate posterior probabilities. The process is demonstrated in the next section.
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Use case

We demonstrate how ELFI and PYLFIRE can be used to estimate the posterior distribution over model param-
eters in a lag-one autoregressive model with conditional heteroscedasticity (ARCH(1)). The model describes
dependencies between observations in a time series as

y(t) — ely(l*l) + e(l) 5)

e =E902+6,""), (6)

where y© = 0, and ¢ and &” are independent standard normal random variables. The time series used as observed
data in the current example is simulated with parameters (01, 2) = (0.3, 0.7) and has T = 100 observations.
The simulator is available in the PYLFIRE package:

from pylfire.models import arch

Dependencies between parameters, observations, and summary statistics are described in a predetermined
ELFI model that is loaded with:

m = arch.get model ()

Here the ARCH(1) simulator parameters are associated with prior distributions 6, ~ % (-1, 1) and 6, ~ % (0, 1).
In our codes we denote the parameters 6, and 6, as tl and t2, respectively. The parameters are mapped into
time series observations with the simulator, and observations are in turn reduced into summaries that include
the time series mean, variance, autocorrelations, and pairwise combinations between the autocorrelations, as
described in previous work®. Figure 1 illustrates the network structure of the ARCH(1) ELFI model.

LFIRE determines an approximate posterior distribution over parameter values based on the summaries calcu-
lated from an observed time series. At a minimum, the method requires three inputs: an ELFI model with the
observed data, candidate parameter combinations, and the dataset size to be used in logistic regression. Param-
eter combinations must be given as a two-dimensional numpy array where columns correspond to the individual
parameters and rows correspond to the parameter combinations to be evaluated. In the current example we
estimate posterior probabilities on a 100 x 100 grid over the [-1, 1] x [0,1] parameter space:

import numpy as np

n = 100

tl = np.linspace(-1, 1, n)
t2 = np.linspace (0, 1, n)

ttl, tt2 = np.meshgrid(tl, t2, indexing='ij')
params_grid = np.c [ttl.flatten(), tt2.flatten()]

and the dataset size used in logistic regression must be given as an integer:

batch size = 1000

LFIRE is then initialised with:

1fire method = pylfire.LFIRE (model=m, params grid=params grid, batch size=batch

size)
T @0 D000 O

Figure 1. Network structure of the ARCH(1) model.
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LFIRE can additionally take precomputed marginal data and custom logistic regression parameters as optional
inputs, and allows the user to control whether cross-validation or dataset generation is run in parallel. By default
LFIRE generates the marginal data when initialised, uses lasso logistic regression, and runs cross-validation
in parallel.

After the LFIRE method is initialised, one can run inference and extract results with:

lfire res = lfire method.infer ()

lfire res.summary ()

Method: LFIRE

Number of simulations: 10000000

MAP estimates: tl: 0.434, t2: 0.515
Posterior means: tl: 0.388, t2: 0.654

PYLFIRE also provides two visualisation methods: one for plotting marginal posterior densities and another
for plotting pairwise posterior densities:

lfire res.plot marginals()
lfire res.plot pairs()

Figure 2 visualises the marginal posterior distributions and Figure 3 visualises the pairwise marginal poste-
rior distributions. PYLFIRE also records the logistic regression parameters estimated at each candidate location
so that users can examine how summary statistics were weighted in posterior estimation and determine whether
automatic selection focussed on certain summaries. All results are stored in a dictionary and can be extracted with:

lfire res.results

Finally, LFIRE incorporates automatic summary statistic selection to make posterior estimation robust to irrel-
evant summary statistics. In this experiment the summary statistics in ARCH(1) model are augmented with
17 white-noise variables:

m noisy = arch.get model (noise=17)

lfire method noisy = pylfire.LFIRE (model=m noisy, params grid=params grid,
batch size=batch size)

lfire res noisy = 1lfire method noisy.infer ()
lfire res noisy.summary ()

Method: LFIRE

Number of simulations: 10000000

MAP estimates: tl: 0.475, t2: 0.556
Posterior means: tl: 0.394, t2: 0.64

Comparison to previous results confirms that the point estimates and posterior distribution remain about
the same despite irrelevant summary statistics. The estimated posterior distribution is visualised in Figure 4.
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Figure 2. Marginal posterior distributions for parameters ¢, and 0,.
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Figure 3. Posterior and marginal distributions for parameters ¢, and 0,.
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Figure 4. Posterior and marginal distributions for parameters ¢, and 6, when model includes irrelevant summary
statistics.

Summary

We have introduced PYLFIRE, an open-source Python package running on ELFI and implementing the ratio-
estimation-based LFIRE method for likelihood-free inference with automatic summary statistic selection is
implemented. PYLFIRE seeks to minimise the computation time in LFIRE with parallelisation and using the
external glmnet package'’ where key components are written in Fortran. PYLFIRE uses glmnet to fit lasso
logistic regression. For convenience, PYLFIRE provides summarised inference results and two built-in plotting
methods for visualising the estimated posterior distribution.

Data availability

Underlying data
All data underlying the results are available as part of the article and no additional source data are required.
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1. Source code available from: https://github.com/elfi-dev/zoo/tree/master/pylfire

2. Archived source code as at time of publication: https://doi.org/10.5281/zenodo.3533332.

3. License: BSD 3-Clause
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Guilherme Rodrigues
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Summary of the paper

In modern statistical analysis, the adoption of complex probabilistic models frequently results in likelihood
functions that are computationally costly to evaluate (intractable). A vast collection of methods has been
engineered to enable statistical inference in such situations. In particular, Approximate Bayesian
Computation (ABC)' and Synthetic likelihood (SL)? are well established classes of likelihood-free
algorithms. As an alternative approach, Thomas et al. (2016)° proposed a novel technique, named LFIRE
(likelihood-free inference by ratio estimation), which converts the problem of estimating the posterior
distribution as a problem of modeling (by lasso logistic regression fitted over synthetic/pseudo samples)
the ratio between the data generating distribution and the marginal distribution. A convenient byproduct of
such formulation is the resulting semi-automatic selection of summary statistics implied by the lasso (least
absolute shrinkage and selection operator) regularization.

This paper introduces PYLFIRE, an open-source Python implementation of LFIRE that provides for
practitioners and developers an easy-to-operate toll for parameter estimation using LFIRE. In an
introduction section, the paper describes the general problem of likelihood-free inference in the Bayesian
framework and then outline how LFIRE approaches such problem. Next, in a methodological section, it
elaborates on the implementation and operational aspects of the package, including details about the
installation process and the support offered for parallel computing. A simple bi-dimensional
autoregressive model with conditional heteroscedasticity (ARCH(1)) model is then fitted with PYLFIRE for
illustrational purposes. To conclude, the paper summarizes the package main features and
implementation decisions.

Major comments:

The paper is generally well-written and serves its purpose as a helpful reference source for the PYLFIRE
package documentation. The package itself also provides a valuable contribution to the initiative of
offering efficient open-source tools that allows immediate exploitation of some of the most advanced
solutions for the likelihood-free estimation problem.
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1. Albeit the focus of the paper is, understandably, the computational aspects of the package, it
would be beneficial for the reader if the paper was self-contained, in the sense that all information
regarding the practical use of the package was present. The description of the LFIRE method,
especially, should be meaningfully extended. In this regard, | recommend the inclusion of a
pseudo-algorithm that lists the inputs, outputs and the steps involved in the referred approximate
posterior sampling algorithm. Moreover, throughout the introduction, a more explicit distinction
between observed and synthetic data should be pursued.

2. It would also be of great use to include some guidance on how to specify the parameters of the
algorithm (e.g. the number of simulated samples from the marginal distribution and from the data
generating distribution) and to discuss when the method is suitable. For instance, models with a
moderate number of parameters or where the prior is diffuse (as compared to the posterior) seem
to be out of reach.

3. Considering that another Python routine is currently available, namely, ABCpy, a deeper
comparison of the relative merits and deficiencies of each implementation seems necessary. A
well-designed numerical simulation would certainly contribute to the robustness of the
comparison.

Minor comments:

1. The notation used for the sample sizes is a bit confusing and could be improved. Is there a reason
to use lowercase (n) and uppercase (N) letters? In addition, the number of simulated samples from
the marginal distribution and from the data generating distribution are necessarily the same?

2. The term “is implemented” should be suppressed from the first paragraph of the Summary section.

3. ltis not sufficiently clear how the observed summary statistics are passed on to the function when
the user itself provides the simulated data sets.

4. | wonder how feasible it would be to embed the provided functionalities in an optimization process
that aims to find the MAP (maximum a posterior probability). If possible, a brief discussion on how
to accomplish that could extend the reach of the package when estimating the whole posterior
distribution is impracticable.

5. The lasso regression is a reasonable and convenient classifier for estimating the density ratio.
However, other classification algorithms could, at least in principle, be employed, either for better
accuracy or for computational speed. As such, have the authors considered giving the user control
of the classification process, for example, allowing them to pass on a custom python function that
returns the estimated classification probabilities (instead of the reported optional “custom logistic
regression parameters”)? If feasible, this extension would readily benefit from advances on the
probabilistic classification area (e.g. whenever a new package for classification becomes available
or in cases where the gimnet 2.1.1 package® underperforms).

Conclusions

The paper is well-structured, generally clear and represents a valuable addition to the practitioner’s
toolbox. For the readers convenience, an extra effort should be made to ensure the paper is
self-contained. A list of suggestions was included in the comments above to indicate some options that
could be explored in this regard.
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Introduction to the topic

The problem that is considered in this paper is parameter inference for implicit statistical models (i.e.
computer-simulator model) in the Bayesian framework. In particular, what the authors aim at is posterior
estimation when the likelihood function is intractable, but data-simulation from the model is available, i.e.
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what is considered is a likelihood-free inference method. The paper presents the PYLFIRE package (here
), which is an open-source Python package that implements the likelihood-free inference by ratio
estimation (LFIRE) method [6]. The LFIRE method is a simulation-based inference method for implicit
Bayesian models, where the inference problem is transformed into a density-ration estimation problem,
which is solved using Lasso logistic regression [6]. Thus, LFIRE has similarities to approximate Bayesian
computation (ABC) [5] and in-particular synthetic likelihood (SL) [4]. However, in contrast to SL, LFIRE
does not require any distribution assumptions on the summary statistics [6]. Another feature of the LFIRE
method is that it allows for automatic selection of summary statistics by employing Lasso logistic
regression [6]. This is an interesting feature since selecting proper summary statistics is one of the main
challenges when using ABC in practice.

Summary of paper

The article starts by introducing the implicit statistical model (i.e., computer-simulator model); in the
introduction, the LFIRE method is also briefly introduced. Then the authors explain how PYLFIRE is
structured: PYLFIRE extends the ELFI software [1] and utilizes the ELFI framework, and the gimnet 2.1.1
package [2] is utilized for logistic regression modeling. The authors stress that PYLFIRE is developed with
performance in mind; therefore, fast FORTRAN subroutines and parallelization are supported.
Instructions on how to install PYLFIRE are provided, and a simple case study (simulation study for an
ARCH(1) model) highlights the capabilities of PYLFIRE. The paper ends with a summary of the most
important features of PYLFIRE.

Comments

The introduction in the paper is quite useful to the reader since it contains a short general introduction to

the LFIRE method. However, this could be extended, which would make it easier for a reader not already
familiar with the LFIRE method to follow the paper. An idea could be to try to include in the introduction a
similar figure as to Figure 1 in [6].

The authors' reason for developing PYLFIRE could be further processed. Is PYLFIRE developed primarily
to extend the capabilities of the ELFI software, to provide an easy-to-use package for LFIRE based
inference, or to provide an LFIRE implementation with better computational performance than other
implementations?

Another minor comment is that the authors could include a link to the Jupyter notebook (here) with the
ARCH(1) example in the beginning of the Use case section. This would make it easier for a reader to get
started using PYLFIRE.

The authors provide an associated Docker image for PYLFIRE, which is very useful since a user then can
circumvent the possibly somewhat involved installation process.

PYLFIRE implements the LFIRE method [6]; however [6] appears to be still unpublished at the time of
writing. It would, therefore, be useful to know if [6] is currently under review in some venue.

Regarding computational performance: The authors mention that PYLFIRE is implemented with
computational performance in mind. Due to this, the authors utilize parallelization and efficient FORTRAN
subroutines (via the gimnet 2.1.1 package [2]). However, in the paper, it is not made clear if these efforts
of writing efficient code rendered any performance improvements compared to other implementations of
the LFIRE method. The authors state that there already exists a MATLAB implementation [6] and another
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Python implementation (ABCpy [1]) of the LFIRE method. A computational performance comparison with
these implementations (or at least the ABCpy implementation) would be of interest, in order to investigate
if PYLFIRE indeed has a better computational performance. A comparison with the other implementations
could also investigate how easy the packages are to use, and possibly show the reader the potential
advantages of using PYLFIRE.

Furthermore, PYLFIRE utilizes parallelization by default. However, in the paper, the authors do not
investigate the potential performance gains from utilizing parallelization. Setting up such a case study is,
of course, quite tricky since the results will be highly dependent on the model considered and the
particular computer-system used. However, including such a case study could still be of interest since it
could highlight: 1) how the user can run the PYLFIRE package in parallel, 2) some idea on what
performance gains are plausible.

The only case study provided in the paper is a simulation study for the ARCH(1) model. In particular,
since computational performance is of interest, would it be interesting to see how the PYLFIRE performs
for a more complicated model with a higher-dimensional parameter space. Such a case study could
potentially also highlight the parallel computation capabilities of PYLFIRE.

Conclusion

This is an overall clear and well-written paper that for the most parts is easy to follow. However, some
parts of the paper could be extended for clarification, and the paper would be improved by including some
further analyses (for details, see the Comments section). The paper fulfils article approval status -
approved, but it could be further improved by incorporating the suggestions presented in the Comments
section.
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