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Abstract: Let G = (V, E) be a simple graph with vertex set V and edge set E. An
outer-independent total 2-rainbow dominating function of a graph G is a function f
from V(G) to the set of all subsets of {1,2} such that the following conditions hold:
(i) for any vertex v with f(v) = 0 we have Uweng @) f(w) = {1,2}, (i) the set of all
vertices v € V(G) with f(v) = 0 is independent and (iii) {v|f(v) # 0} has no isolated
vertex. The outer-independent total 2-rainbow domination number of G, denoted by
Yoitr2(G), is the minimum value of w(f) = 3, cv () |f(v)] over all such functions f.
In this paper, we study the outer-independent total 2-rainbow domination number of
G and classify all graphs with outer-independent total 2-rainbow domination number
belonging to the set {2,3,n}. Among other results, we present some sharp bounds
concerning the invariant.

Keywords: Domination number; 2-rainbow domination number; total 2-rainbow dom-
ination number, outer-independent total 2-rainbow domination number

AMS Subject classification: 05C22

1. Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). The
order |V of G is denoted by n = n(G) and size |E| of G is denoted by m = m(G). For
every vertex v € V, the open neighborhood N(v) = Ng(v) is the set {u € V | wv € E}
and the closed neighborhood of v is the set N[v] = Ng[v] = N(v) U {v}. The degree
of a vertex v € V is degy(v) = deg(v) = |N(v)|. The minimum and mazimum degree
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of a graph G are denoted by 0 = 0(G) and A = A(G), respectively. A vertex of
degree 1 is called a leaf and its neighbor is a support vertex. Also, a support vertex is
called a strong support vertex if it is adjacent to at least two leaves and weak support
if it is adjacent to one leaf. The distance dg(u,v) between two vertices u and v in
a connected graph G is the length of a shortest u — v path in G. The diameter of
a graph G, denoted by diam(G), is the greatest distance between two vertices of G.
The complement of a graph G is denoted by G. We write K,, for the complete graph
of order n, C), for a cycle of order n and P,, for a path of order n. By a star we mean
the graph S ,, where m > 2. Let S, ; be the double star with exactly two adjacent
vertices © and v that are not leaves such that u is adjacent to r > 1 leaves and v
is adjacent to s > 1 leaves. The girth g(G) of a graph G is the length of a shortest
cycle. For terminology and notation on graph theory not defined here, the reader is
referred to [11].

A set D of vertices in a graph G is called a dominating set if every vertex v € V(G)
is either an element of D or is adjacent to an element of D. A set D of vertices in a
graph G is called a total dominating set if every vertex v € V(G) is adjacent to an
element of D. The domination number of a graph G denoted by v(G) is the minimum
cardinality of a dominating set in G. Respectively, the total domination number of a
graph G denoted by (@) is the minimum cardinality of a total dominating set in G.
A subset S of vertices is called a 2-packing if N[u]N N[v] = 0 for every pair of vertices
u,v € S. The 2-packing number p(G) of a graph G is the maximum cardinality of a
2-packing in G.

A k-rainbow dominating function of a graph G is a function f from V(G) to the
set of all subsets of {1,2,...,k} such that for any vertex v with f(v) = () we have
Uwene () f(w) ={1,2,...,k}. The 1-rainbow domination is the same as the ordinary
domination. The k-rainbow domination problem is to determine the k-rainbow dom-
ination number 7,4(G) of a graph G, that is the minimum value of }_ v () [f(v)]
where f runs over all k-rainbow dominating functions of G. The concept of rainbow
domination was introduced in [3] and has been studied extensively [1, 2, 4, 5, 7, 8, 13].
An outer-independent 2-rainbow dominating function of a graph G is a function f from
V(Q) to the set of all subsets of {1, 2} such that the following conditions hold: (i) for
any vertex v with f(v) = 0 we have U, ¢ v () f(u) = {1,2}, (ii) the set of all vertices
v € V(G) with f(v) = 0 is independent. The outer-independent 2-rainbow domination
number of G, denoted by 7oir2(G), is the minimum value of w(f) = 3_,cy(q) |f(v)]
over all such functions f. Outer independent 2-rainbow domination was introduced
by Kang et al. in [9] in 2019. This concept has been studied by several authors, see
for example [6, 10].

Lately, the interest in the domination theory in graphs has increased and a very high
number of variants of domination parameters have been studied. Here we initiate
outer-independent total 2-rainbow dominating function and continue the study in this
context.

An outer-independent total 2-rainbow dominating function (OIt2RDF) on a graph G
is a function f from V(G) to the set of all subsets of {1,2} such that the following



A. Mahmoodi, L. Volkmann 433

conditions hold: (i) for any vertex v with f(v) = 0 we have U,,c v () f(u) = {1,2}, (ii)
the set of all vertices v € V(G) with f(v) = 0 is independent and (iii) {v|f(v) # 0}
has no isolated vertex. The outer-independent total 2-rainbow domination number
of G, denoted by Yoitr2(G), is the minimum w(f) = 3, oy (q) | f(v)] over all such
functions f. An outer-independent total 2-rainbow dominating function with weight
Yoitr2(G) is called a Yoitr2(G)-function of G. An outer-independent total 2-rainbow
dominating function f:V — P({1,2}) can be represented by the ordered partition
(Vo, V1, Vo, Vi 2) of V(G) induced by f, where Vj = {v e V| f(v) =0}, V1 ={v €
VIfw)={1}}, Va={veV]flv)={2}} and Vi = {v e V| f(v) = {1,2}}. In
this representation, its weight is w(f) = |V1| + [Va| + 2|V12].

Suppose that G1,Gs, ..., G are the components of G. Then

t
’YoitrQ(G) = Z ’YoitrQ(Gi)~
i=1

Therefore, in the rest of the text, we assume, without loss of generality, that G is a
connected graph.

In the next section, we investigate some basic properties of the outer-independent
total 2-rainbow dominating functions and we determine exact values for some classes
of graphs. Then in Section 3, we obtain the relationship between 7,;tr2(G) and some
other domination parameters. At the end, in Section 4, we present some sharp bounds
for outer-independent total 2-rainbow domination number.

2. Basic properties and examples

In this section we present some basic properties of the outer-independent total 2-
rainbow domination. We have the following simple results.

Observation 1.  For any connected graph G with n > 2, YVoitr2(G) is well defined and
2 S ’YoitrQ(G) S n.

We give now, the characterizations of all connected graphs G for which v,i12(G) €
{2,3,n}.

Proposition 1. Let G be a graph of order n > 2. Then voitr2(G) = 2 if and only if
G=K, 2V P,.

Proof. If G = K,_2 V Py, then clearly 7uitr2(G) = 2. Conversely, assume that
Yoitr2(G) = 2 and [ is & Yoitr2(G)-function. Since {v | f(v) # (@} has no isolated
vertex, no vertex of G has label {1,2}. Thus there are two adjacent vertices u, v such
that |f(u)| = |f(v)| = 1 and the other vertices must be independent with label ) and
adjacent with u,v. Therefore, for n =2, G = Py and forn > 2, G =K, oV P,. O
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To continue the characterization, we need to define some family of graphs.

e Let /7 be the family of graphs obtained from a path uv by first adding ¢ > 1
pendant edges at u and then adding s > 0 new vertices and connecting them to
u and v.

e Let F5 be the family of graphs G obtained from a path wvw by first adding
t > 0 new vertices and connecting them to u and v, and then adding s > 0 new
vertices and connecting them to v and w.

e Let F3 be the family of graphs G obtained from a path wvw by first adding
t > 0 new vertices and connecting them to u and v, and then adding s > 0 new
vertices and connecting them to v and w, and adding ¢ > 1 new vertices and
connecting them to u,v and w.

o Let F4 be the family of graphs G obtained from a triangle uvwu by first adding
t > 1 new vertices and connecting them to u and v, and then adding s > 1 new
vertices and connecting them to v and w.

o Let F5 be the family of graphs G obtained from a triangle uvwu by first adding
t > 0 new vertices and connecting them to u and v, and then adding s > 0 new
vertices and connecting them to v and w, and adding ¢ > 1 new vertices and
connecting them to u,v and w.

e Let Fg be the family of graphs G obtained from a path uwvw by first adding
t > 0 new vertices and connecting them to v and w, and then adding s > 0 new
vertices and connecting them to v and w.

e Let F7 be the family of graphs G obtained from a path wvw by first adding
t > 0 new vertices and connecting them to v and w, and then adding s > 0 new
vertices and connecting them to v and w, and adding ¢ > 1 new vertices and
connecting them to u,v and w.

Let F = {fl,...7f7}.

Proposition 2. Let G be a connected graph of order n > 3. Then Yoitr2(G) = 3 if and
only if G € F.

Proof.  Obviously Yoitre(G) =3 if G € F.

Conversely, assume that v,i2(G) = 3 and let f = (Vp, Vi, Vo, Vi2) be a Yoirr2(G)-
function such that |V; 5| is maximized. We consider the following cases.

Case 1. There is a vertex v € V(G) such that f(v) = {1,2}.

Then there is a vertex u € N(v) with |f(u)| = 1 and the other vertices must be
independent with label () and adjacent with v. So G € F;.
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Case 2. Vio = () and there are three vertices v,u,w € V(G) such that |f(u)| =
()] = |fw)] = 1.

Without loss of generality, let f(u) = f(w) = {1} and f(v) = {2}. The other
vertices must be independent with label (} and adjacent with v. Consider two following
subcases:

Subcase 2.1. The subgraph of G induced by {u,v,w} is the path wwwv.

If all vertices with label §) are adjacent with u but not with w, then G = Ky o € Fo.
If each vertex with label §) is adjacent to either u or w, then G € F». If some vertices
with label () are adjacent with u and some of them are adjacent with w and some of
them are adjacent with both, then G € F3. If all vertices with label §) are adjacent
with w but not with u, then G € F;.

Subcase 2.2. The subgraph of G induced by {u,v,w} is the path uvw.

All vertices with label () must be adjacent with u or with w. If all vertices with label
() are adjacent with « but not with w, then G € F;. If some vertices with label () are
adjacent with u and some of them are adjacent with w, then G € Fg. If some vertices
with label () are adjacent with u, some of them are adjacent with w and some of them
are adjacent with both, then G € F7.

Subcase 2.3. The subgraph of G induced by {u,v,w} is the triangle uvwu.

If all vertices with label @) are adjacent with w but not with w, then G = K,,_o V P,
which is a contradiction by Proposition 1. Thus some vertices with label §) are adjacent
with u, some of them are adjacent with w, some of them are adjacent with u and w.
Hence G € F4 U Fs. O

Family F1 Family F2 Family F3 Family F4 Family Fs

Family Fg Family F7

Figure 1. The families of graphs G with ~,:,2(G) = 3
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We now characterize the graphs attaining the upper bound from Observation 1.

Proposition 3. Let G be a graph of order n > 2. Then Yoitr2(G) = n if and only if
G = P> or G = Ps or G = Py or every non-leaf vertex of G is a weak support vertex.

Proof. Necessary is clear. For the sufficiency let vit2(G) = n. If 6 > 2, then clearly
Yoitr2(G) < n—1. So we can assume that § = 1. It is easy to see that if 2 < n < 4 and
Yoitr2(G) = n, then G = Py or G = P3 or G = P,. So assume that n > 5. Obviously,
if there is a strong support vertex, then Y,;tr2(G) < m — 1. Thus we can suppose that
every support vertex is weak. We claim that every non-leaf vertex of G is a weak
support vertex. To see this by contradiction, suppose that there is a non-leaf vertex
say v which is not a support vertex. Hence we have deg(v) > 2. Let u,w € N(v) such
that deg(u) > 2,deg(w) > 2. Define f : V(G) — P({1,2}) by f(v) =0, f(u) =1,
f(w) =2 and f(x) = 1 otherwise. It is easy to see that f is an outer-independent
total 2-rainbow dominating function on G. Thus 7,t-2(G) < n — 1, a contradiction.

O

Next we determine the outer-independent total 2-rainbow domination number of some
special graphs.

Observation 2. Forn > 3, voitr2(Kn) =n — 1.

By Observation 2, one has the following fact.

Corollary 1. For any integer t > 2, there is a graph G such that Yoir2(G) = t.
Observation 3. Forr,t > 2, voitr2(Srt) = 4.

Proposition 4. For 2 <n <m, Yoitr2(Kn,m) =n+ 1.

Proof. Let {u1,...,un} and {v1,...,v,} be two partite sets of K, ,,,. Define f :
V(Knm) — P({1,2}) by f(uw) = f(u;) = f(v1) = {1} for 3 < i < m, flug) =2
and f(v;) = 0 for 2 < i < m. Clearly f is an outer-independent total 2-rainbow
dominating function and w(f) < n+ 1. So Yeitr2(Kn,m) < n+ 1. The inverse

inequality is obvious. O

21, n=3k+2
221+ 1, otherwise.

—/
[

Proposition 5. For n > 2, Yeitr2(P) = {

Proof. Clearly voitro(P2) = 2. Assume that n > 3 and let P, = vjv2...v, be a
path on n vertices. If n = 3k + 2 for some non-negative integer k, then define the

function f : V(P,) — P({1,2}) by f(vsiy1) = {1}, f(v3ir2) = {2} and f(vs;) =0
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for 0 < i < k. Clearly, f is an outer-independent total 2-rainbow dominating function
of P, with w(f) < [%].

If n = 3k+1 for some integer k, then define f : V(P,,) — P({1,2}) by f(vsi+1) = {1},
fvsite) = {2}, flvy)) =0for 1 <i<k—1and f(v,—1) = f(v,) = 1. Clearly, f is
an outer-independent total 2-rainbow dominating function and w(f) < [2*] 4 1. So
Yoitr2(Pn) < 2] + 1.

If n = 3k for some integer k, then define f : V(P,) — P({1,2}) by f(vsi+1) = {1},
f(usiva) = {2}, f(vs;)) =0 for 1 < i < k—1and f(v,) = 1. Clearly, f is an
outer-independent total 2-rainbow dominating function and w(f) < [2*] + 1. So
Yoitr2(Pn) < 3] + 1.

Conversely, assume that g is a veier2(Pp)-function. It is easy to verify that |g(v1)| +
9(v2)| = 2, [g(vn-1)] +1g(vn)| = 2 and |g(vs)| + [g(vit1)| + [9(vig2)| =2 2 for 1 < i <
n—2.

If n = 3k + 2, then we deduce that

3k on
w(g) = 3" lg(ws)] + 19(va—1)| + lg(va)| = 2k +2 = {3} _

i=1

If n =3k + 1, then we have

w(g) = lg(v)] + lg(va)l + 355 1g(vi)] + lg(vn—1)| + |g(vn)]
> 242k—1)+2=2k+2

1
Assume that n = 3k. If |g(v1)| > 1, then we conclude that

3k—2
o(9) = lao)l+ Y 90 +lalon )l +Hloon)| 2 14200k-1) 42 = 2041 = | 2] 41,

If |g(v1)] = 0, then we observe that |g(v1)| + |g(v2)| + |g(vs)| > 3 and we obtain

3k
w(g) = lg(wn)l + lg(v2)| + la(vs)| + D _lg(wi)| > 3+ 2(k 1) = 2k +1 = F?ﬂ b

i=4

O

Proposition 6. Forn > 3, voitr2(Cn) = [2*].

Proof. Define f: V(C,) — P({1,2}) by f(v;) = {1} if i =1 (mod 3), f(v;) = {2}
if i = 2 (mod 3) and f(v;) = 0 if i = 0 (mod 3), for 1 < i < n. Clearly f is
an outer-independent total 2-rainbow dominating function with w(f) < [2*]. So
Yoitr2(Cp) < [%"] Similar to the proof of Proposition 5, the inverse inequality
arises. O
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3. Outer-independent total 2-rainbow domination number
and other graph parameters

Here we are interested in the relationship between ~,i2(G) and several other dom-
ination parameters. For instance any outer-independent total 2-rainbow dominating
function is an outer-independent 2-rainbow dominating function, so one has

Yoir2(G) < Yoitr2(G)-
Also we have the following straightforward observation.

Observation 4. Let f = (Vo, Vi, Va, Vi2) be a Yoitr2(G)-function. Then Vi U Vo U Vig is
a total dominating set in G and v1(G) < Yoitr2(G).

On the other hand, clearly v(G) < 7:(G) and so we have the following relation by
Observation 4.

Y(G) < %(G) < Yoitr2(G).

A subset S of V(G) is called independent if no two vertices in S are adjacent. An
independent set of maximum cardinality is a maximum independent set of G. The
independence number of G is the cardinality of a maximum independent set of G and
is denoted by «(G). An independent set of cardinality a(G) is called an a(G)-set. A
set of vertices S is a vertex cover set if every edge of G is incident with a vertex of S.
A vertex cover set of minimum cardinality is a minimum vertex cover set of G. The
verter cover number of G is the cardinality of a minimum vertex cover set of G and
is denoted by 3(G). A vertex cover of cardinality 5(G) is called a 8(G)-set.

Proposition 7. If G is a graph of order n > 2, then B(G) < Yoitr2(G). Moreover, this
bound is sharp.

Proof. Let f = (Vy, V1, Va, Via) be a Yoitr2(G)-function. Since Vj is an independent
set, we deduce that |Vp| < a(G). Using this fact and Gallai’s theorem (a(G)+8(G) =
n), we obtain

n = Yoitr2(G) = n — (|V1| + [Va| + 2|V12])
<n— (Vi + [Va| + [V12])
= Vol
< a(G)
=n—pB(G)

and the proof is complete. For the sharpness, consider G = K,,_o V P>, n > 2, by
Proposition 1 and the graphs Fy, F3, Fy and F5. O
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Corollary 2. If G is a graph of order n > 2, then §(G) < B(G) < Yoitr2(G).

Proof. If I is an a(QG)-set, then it is well known that V(G)\ I is a B(G)-set. If v € I,
then this implies that §(G) < deg(v) < |[V(G)\I| = B(G). The other inequality follows
from Proposition 7, and the proof is complete. O

The minimum degree bound §(G) < B(G) can be found in the Thesis of W. Willis

[12]. For completeness we have given the short proof.

Corollary 3. IfG = Kn, n,
and p > 3, then

n, 15 the complete p-partite graph withmni <nz < ... <nyp

,,,,,

5(G) = ﬂ(G) = 'Yoitr2(G) =ni1+n1+...+ Np—1-

Proof.  Corollary 2 implies Vpitr2(G) > B(G) > §(G) = ni+ng+...+np_1. Let S; be
the partite set with |.S;| = n; for 1 <14 < p. Define the function f = (Vp, Vi, Va, Vi)
by Vo = Sp, Vi=25,VWV-= SQUSP,U...USZ,,l and Vio = 0. Then f is an
outer-independent total 2-rainbow dominating function on G and thus ui2(G) <

n1+TL2+...—|—’I’Lp_1:ﬂ(G):(S(G). O

Corollary 3 demonstrates the sharpness of Corollary 2 and Proposition 7.

4. Bounds

Our aim in this section is to determine some bounds on the OIt2RD number of graphs.
First, we obtain an upper bound for graphs G of girth g(G) > 5.

Theorem 5. If G is a graph of order n with g(G) > 5 and 6(G) > 2, then
Yoitr2(G) <n — A(G) + 1,

and this bound is sharp.

Proof. Let v be a vertex of maximum degree A = A(G), and let uj, ug,...,ua be
the neighbors of v. Define the function f by f(v) = f(u1) = {1}, f(u2) = f(us) =
... = f(ua) =0 and f(z) = {2} otherwise.

As G is triangle-free, {ug, us,...,ua} is an independent set. The condition §(G) > 2
implies that each vertex w; has a neighbor w with f(w) = {2} for 2 < i < A. As
f(v) = {1}, we obtain U,cn,,) f(z) = {1,2} for each 2 < i < A. In addition,
we deduce from g(G) > 5 and §(G) > 2 that each vertex x with f(z) = {2} has a
neighbor with f(w) = {2}. Consequently, f is an outer-independent total 2-rainbow
dominating function on G of weight n — A 4+ 1 and thus Yeit2(G) <n — A+ 1.

Let H be consist of a subdivide star with the leaves x1,x2,..., %2, such that z2; 1
and xo; are adjacent for 1 <4 < p. Then it is easy to verify that voo(H) = 2p+2 =
n(H) — A(H) + 1. This family of graphs show that this upper bound is sharp, O
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Next we present a lower bound for outer-independent total 2-rainbow domination
number with regard to the maximum and minimum degree.

Theorem 6. Let G be a connected graph of order n > 2 with minimum degree § and
maximum degree A. Then

on
i >l —.
701tr2(G) = ’VA_"_(;_ 1—‘

Moreover, this bound is sharp.

Proof. The results is trivial if n = 2 or 7eitr2(G) = n. So assume that n > 3
and Yoitr2(G) < n. Let f = (Vp, Vi, Ve, Via) be a 7pitra(G)-function and Vy =
{x1,22,...,2+}. Since Vj is an independent set, every vertex x;, for 1 < i < ¢, has at
least § neighbors in V3 U Vo U Vi5. On the other hand, every vertex in Vi3 U Vo U Vi
has at most A — 1 neighbors in Vp, since {v | f(v) # 0} has no isolated vertex. So we
obtain

BVl < (A — 1)(IVa| + [Val + [Via)).

Using this inequality and the fact that n = |Vy| + |V1| + |Va| + |Vi2|, we have

on < (A =1)(IVi| + [Va| + [Vaz]) + (V] + [Va| + [Vi2])
= (A =1+06)(IVi| + (V2| + [Vi2])

< (A =1+ 8)(Va| + |Va| + 2|Via|)

= (A =1+ 6)Yoitr2(G).

Therefore Yoitr2(G) > f%], because Yoitr2(G) is an integer. For the sharpness,

consider cycles by Proposition 6. O

As an immediate consequence of Theorem 6, we have the following corollaries.

n
2r—1 1"

Corollary 4. Let G be an r-regular graph of order n > 2. Then Yoitr2(G) > [

Corollary 5. Let G be a graph of order n > 2 with 6 = 1. Then voitr2(G) > [R],
specially for every tree T, Yoitr2(T) > [X].

We propose a so called Nordhaus-Gaddum type inequality for the outer-independent
total 2-rainbow domination number of regular graphs.

Theorem 7. Let G be an r-reqular graph of order n > 4. Then

n(n—l).

Yoitr2 (G) + Yoitr2 (é) 2 " — 2
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Proof.  Since G is r-regular, the complement G is (n — r — 1)-regular. By Corollary
4, one has

_ 0 (n—r—1)n
. . > .
701tr2(G) + ’701tr2(G) =9 _1 + 2(n —r— ]_) -1

The function f(z) = 5225 + 2((::;:11))2 gets its minimum at = = 251. So we have
nlp (n—2L —1)n nin—1)
2 2

Yoitr2(G) + Yoitr2(G) >

In the following proposition, an upper bound is given for outer-independent total
2-rainbow domination number with regard to the 2-packing.

Proposition 8. Let G be a graph of order n with 6 > 2. Then Yoitr2(G) < n — p.
Moreover, this bound is sharp.

Proof.  Suppose that A = {v1,v2,...,v,} is a 2-packing set of G and define f :
V(G) — P({1,2}) by f(v;) =0, flui) = {1}, f(uw) = {2} for 1 < i < p where
u;; are neighbors of v; for t = 1,2 and f(z) = {1} otherwise. Since § > 2, f is an
outer-independent total 2-rainbow dominating function and so Yeitr2(G) < n—p. For
the sharpness, consider the complete graph K,, by Observation 2. O

Next, we present an upper bound in terms of the diameter of a graph using Proposition
8.

Proposition 9. Let G be a graph of order n with § > 2. Then
’YDitTZ(G) S n—1-— \‘dh%(G)J .

Moreover, this bound is sharp.

Proof.  Suppose that P = vgv; ... %4iam(q) 18 a diametral path, diam(G) = 3t +r

with integers ¢ > 0 and 0 < r < 2. It is easy to see that A = {vg,vs,...,v3} is

a 2-packing set of G such that |A] = 1+ L%(G)J Then we have p > |A|. So by
Proposition 8, one has

diam (G

Yoitr2(G) <n—p<n—|A]<n—-1- {mg()J :
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For the sharpness, let P3;y1 = v1vs...v3.41 be a path of diameter 3¢ for an integer
t > 2, and let the graph H consists of P31, the vertices u and w and the edges
uv1, Uy, wugy and wvsyy1. We have

diam(H
Yoitra(H) < 3t +3—1— {m;()J — 92 +2.

If g is & Yoitro (H)-function, then we observe that g(vi) + g(v2) + g(u) > 2, g(vss) +
g(vse41) + g(w) > 2 and g(vs;) + g(vsit1) + g(vsit2) > 2 for 1 < i <t — 1. Therefore
Yoitra(H) > % = 2t 4+ 2. Also, consider the complete graph K, for n > 3 by
Observation 2. O

Let S(T) and L(T') be the set of support vertices and the set of leaves of a tree T,
respectively. We use the notations s(T") = |S(T)| and ¢(T) = |L(T)|. In the following
proposition we give an upper bound for v,;2(T') using s(T') and ¢(T).

Proposition 10. Let T be a tree of order n > 3 with diam(T") > 3. Then Yoitr2(T) <
n+ s(T) — £(T). Moreover, this bound is sharp.

Proof. Define f : V(T) — P({1,2}) by f(s) = {1,2} for every support vertex s,
f(u) = 0 for every leaf and f(z) = 1 otherwise. Clearly, f is a Yotr2(T)-function of
T with

w(f)=2s(T)+ (n—s(T)—=4T)) =n+s(T)—LT)

and the proof has been completed. For the sharpness, consider double stars S, ;. O

In the following theorem we prepare a lower bound in terms of the order and ¢(T") for
a tree T

Theorem 8. Let T be a tree of order n > 2. Then
2 2—4T
Yoitra(T) > [w—‘ )

Moreover, this bound is sharp.

Proof. We proceed by induction on n. The statement holds for all trees of order
n < 4. Suppose that n > 5 and let the result hold for all non-trivial tree T of order
less than n. Let T be a tree of order n > 5. If diam(T") = 2, then T is a star, which
vields Yoitr2(T) = 3 > fww = 2 by Proposition 2. If diam(7T) = 3, then T is
a double star and by Observation 3 we have vyi42(T) =4 > 3 = [M} Thus
we may assume that diam(7) > 4. Let P = vjvy ... v, be a diametral path in T and
root T in vg. Let f be a Yoitr2(T)-function. We consider the following cases:
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Case 1. degp(ve) =t > 3.

Let T = T—T,,. It is not hard to see that Yoitr2(T) > Yoitr2(T')+2 and £(T)—(t—1) <

LT") < U(T) — (t — 2) so we conclude from the induction hypothesis that

Yoitr2(T) = Yoitr2(T") + 2
2(n(T") +2 —6(T"))

> 3 1+2
> [2((n—t) +2—3£(T) + (15—2))1 49
2(n — 4(T))

as desired.

Case 2. degy(v2) = 2.

If degy(vs) > 3, then let 77" = T — {v1,v2}. Clearly Yoitr2(T) > Yoitr2(T') + 2 and

LT") = £(T) — 1 so we conclude from the induction hypothesis on 7" that

Yoitr2(T) = Yoitra(T") 4 2
2n(T"y +2—0(T")

> 3 1+2
_ [2((n—2)+23—€(T)+1))1 s
. [2(n+23— é(T))L

as desired.

If deg(v3) = 2, then let T" =T — {v1,v2,v3}. Clearly voitr2(T) > Yoitr2(T') + 2 and

UT)—1<4T") <T). We obtain from the induction hypothesis on 7" that

Yoitr2(T) = Yoitr2(T") + 2
An(T') +2 — (T"))

> 3 1+2
, A2,
Z[w]'

This completes the proof. By Proposition 5, paths of order 3k + 2 attain this bound.

O
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