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Abstract: Let G = (V,E) be a simple graph with vertex set V and edge set E. An

outer-independent total 2-rainbow dominating function of a graph G is a function f
from V (G) to the set of all subsets of {1, 2} such that the following conditions hold:

(i) for any vertex v with f(v) = ∅ we have
⋃

u∈NG(v) f(u) = {1, 2}, (ii) the set of all

vertices v ∈ V (G) with f(v) = ∅ is independent and (iii) {v|f(v) 6= ∅} has no isolated

vertex. The outer-independent total 2-rainbow domination number of G, denoted by
γoitr2(G), is the minimum value of ω(f) =

∑
v∈V (G) |f(v)| over all such functions f .

In this paper, we study the outer-independent total 2-rainbow domination number of

G and classify all graphs with outer-independent total 2-rainbow domination number
belonging to the set {2, 3, n}. Among other results, we present some sharp bounds

concerning the invariant.

Keywords: Domination number; 2-rainbow domination number; total 2-rainbow dom-

ination number, outer-independent total 2-rainbow domination number

AMS Subject classification: 05C22

1. Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). The

order |V | of G is denoted by n = n(G) and size |E| of G is denoted by m = m(G). For

every vertex v ∈ V , the open neighborhood N(v) = NG(v) is the set {u ∈ V | uv ∈ E}
and the closed neighborhood of v is the set N [v] = NG[v] = N(v) ∪ {v}. The degree

of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum and maximum degree
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of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. A vertex of

degree 1 is called a leaf and its neighbor is a support vertex. Also, a support vertex is

called a strong support vertex if it is adjacent to at least two leaves and weak support

if it is adjacent to one leaf. The distance dG(u, v) between two vertices u and v in

a connected graph G is the length of a shortest u − v path in G. The diameter of

a graph G, denoted by diam(G), is the greatest distance between two vertices of G.

The complement of a graph G is denoted by G. We write Kn for the complete graph

of order n, Cn for a cycle of order n and Pn for a path of order n. By a star we mean

the graph S1,m where m ≥ 2. Let Sr,t be the double star with exactly two adjacent

vertices u and v that are not leaves such that u is adjacent to r ≥ 1 leaves and v

is adjacent to s ≥ 1 leaves. The girth g(G) of a graph G is the length of a shortest

cycle. For terminology and notation on graph theory not defined here, the reader is

referred to [11].

A set D of vertices in a graph G is called a dominating set if every vertex v ∈ V (G)

is either an element of D or is adjacent to an element of D. A set D of vertices in a

graph G is called a total dominating set if every vertex v ∈ V (G) is adjacent to an

element of D. The domination number of a graph G denoted by γ(G) is the minimum

cardinality of a dominating set in G. Respectively, the total domination number of a

graph G denoted by γt(G) is the minimum cardinality of a total dominating set in G.

A subset S of vertices is called a 2-packing if N [u]∩N [v] = ∅ for every pair of vertices

u, v ∈ S. The 2-packing number ρ(G) of a graph G is the maximum cardinality of a

2-packing in G.

A k-rainbow dominating function of a graph G is a function f from V (G) to the

set of all subsets of {1, 2, . . . , k} such that for any vertex v with f(v) = ∅ we have⋃
u∈NG(v) f(u) = {1, 2, . . . , k}. The 1-rainbow domination is the same as the ordinary

domination. The k-rainbow domination problem is to determine the k-rainbow dom-

ination number γrk(G) of a graph G, that is the minimum value of
∑
v∈V (G) |f(v)|

where f runs over all k-rainbow dominating functions of G. The concept of rainbow

domination was introduced in [3] and has been studied extensively [1, 2, 4, 5, 7, 8, 13].

An outer-independent 2-rainbow dominating function of a graph G is a function f from

V (G) to the set of all subsets of {1, 2} such that the following conditions hold: (i) for

any vertex v with f(v) = ∅ we have
⋃
u∈NG(v) f(u) = {1, 2}, (ii) the set of all vertices

v ∈ V (G) with f(v) = ∅ is independent. The outer-independent 2-rainbow domination

number of G, denoted by γoir2(G), is the minimum value of ω(f) =
∑
v∈V (G) |f(v)|

over all such functions f . Outer independent 2-rainbow domination was introduced

by Kang et al. in [9] in 2019. This concept has been studied by several authors, see

for example [6, 10].

Lately, the interest in the domination theory in graphs has increased and a very high

number of variants of domination parameters have been studied. Here we initiate

outer-independent total 2-rainbow dominating function and continue the study in this

context.

An outer-independent total 2-rainbow dominating function (OIt2RDF) on a graph G

is a function f from V (G) to the set of all subsets of {1, 2} such that the following
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conditions hold: (i) for any vertex v with f(v) = ∅ we have
⋃
u∈NG(v) f(u) = {1, 2}, (ii)

the set of all vertices v ∈ V (G) with f(v) = ∅ is independent and (iii) {v|f(v) 6= ∅}
has no isolated vertex. The outer-independent total 2-rainbow domination number

of G, denoted by γoitr2(G), is the minimum ω(f) =
∑
v∈V (G) |f(v)| over all such

functions f . An outer-independent total 2-rainbow dominating function with weight

γoitr2(G) is called a γoitr2(G)-function of G. An outer-independent total 2-rainbow

dominating function f : V −→ P({1, 2}) can be represented by the ordered partition

(V0, V1, V2, V1,2) of V (G) induced by f , where V0 = {v ∈ V | f(v) = ∅}, V1 = {v ∈
V | f(v) = {1}}, V2 = {v ∈ V | f(v) = {2}} and V12 = {v ∈ V | f(v) = {1, 2}}. In

this representation, its weight is ω(f) = |V1|+ |V2|+ 2|V12|.
Suppose that G1, G2, . . . , Gt are the components of G. Then

γoitr2(G) =

t∑
i=1

γoitr2(Gi).

Therefore, in the rest of the text, we assume, without loss of generality, that G is a

connected graph.

In the next section, we investigate some basic properties of the outer-independent

total 2-rainbow dominating functions and we determine exact values for some classes

of graphs. Then in Section 3, we obtain the relationship between γoitr2(G) and some

other domination parameters. At the end, in Section 4, we present some sharp bounds

for outer-independent total 2-rainbow domination number.

2. Basic properties and examples

In this section we present some basic properties of the outer-independent total 2-

rainbow domination. We have the following simple results.

Observation 1. For any connected graph G with n ≥ 2, γoitr2(G) is well defined and
2 ≤ γoitr2(G) ≤ n.

We give now, the characterizations of all connected graphs G for which γoitr2(G) ∈
{2, 3, n}.

Proposition 1. Let G be a graph of order n ≥ 2. Then γoitr2(G) = 2 if and only if
G = Kn−2 ∨ P2.

Proof. If G = Kn−2 ∨ P2, then clearly γoitr2(G) = 2. Conversely, assume that

γoitr2(G) = 2 and f is a γoitr2(G)-function. Since {v | f(v) 6= ∅} has no isolated

vertex, no vertex of G has label {1, 2}. Thus there are two adjacent vertices u, v such

that |f(u)| = |f(v)| = 1 and the other vertices must be independent with label ∅ and

adjacent with u, v. Therefore, for n = 2, G = P2 and for n > 2, G = Kn−2 ∨ P2.
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To continue the characterization, we need to define some family of graphs.

• Let F1 be the family of graphs obtained from a path uv by first adding t ≥ 1

pendant edges at u and then adding s ≥ 0 new vertices and connecting them to

u and v.

• Let F2 be the family of graphs G obtained from a path uvw by first adding

t ≥ 0 new vertices and connecting them to u and v, and then adding s ≥ 0 new

vertices and connecting them to u and w.

• Let F3 be the family of graphs G obtained from a path uvw by first adding

t ≥ 0 new vertices and connecting them to u and v, and then adding s ≥ 0 new

vertices and connecting them to u and w, and adding ` ≥ 1 new vertices and

connecting them to u, v and w.

• Let F4 be the family of graphs G obtained from a triangle uvwu by first adding

t ≥ 1 new vertices and connecting them to u and v, and then adding s ≥ 1 new

vertices and connecting them to u and w.

• Let F5 be the family of graphs G obtained from a triangle uvwu by first adding

t ≥ 0 new vertices and connecting them to u and v, and then adding s ≥ 0 new

vertices and connecting them to u and w, and adding ` ≥ 1 new vertices and

connecting them to u, v and w.

• Let F6 be the family of graphs G obtained from a path uvw by first adding

t ≥ 0 new vertices and connecting them to v and u, and then adding s ≥ 0 new

vertices and connecting them to v and w.

• Let F7 be the family of graphs G obtained from a path uvw by first adding

t ≥ 0 new vertices and connecting them to v and u, and then adding s ≥ 0 new

vertices and connecting them to v and w, and adding ` ≥ 1 new vertices and

connecting them to u, v and w.

Let F = {F1, . . . ,F7}.

Proposition 2. Let G be a connected graph of order n ≥ 3. Then γoitr2(G) = 3 if and
only if G ∈ F .

Proof. Obviously γoitr2(G) = 3 if G ∈ F .

Conversely, assume that γoitr2(G) = 3 and let f = (V0, V1, V2, V1,2) be a γoitr2(G)-

function such that |V1,2| is maximized. We consider the following cases.

Case 1. There is a vertex v ∈ V (G) such that f(v) = {1, 2}.
Then there is a vertex u ∈ N(v) with |f(u)| = 1 and the other vertices must be

independent with label ∅ and adjacent with v. So G ∈ F1.
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Case 2. V1,2 = ∅ and there are three vertices v, u, w ∈ V (G) such that |f(u)| =

|f(v)| = |f(w)| = 1.

Without loss of generality, let f(u) = f(w) = {1} and f(v) = {2}. The other

vertices must be independent with label ∅ and adjacent with v. Consider two following

subcases:

Subcase 2.1. The subgraph of G induced by {u, v, w} is the path uwv.

If all vertices with label ∅ are adjacent with u but not with w, then G = K2,n−2 ∈ F2.

If each vertex with label ∅ is adjacent to either u or w, then G ∈ F2. If some vertices

with label ∅ are adjacent with u and some of them are adjacent with w and some of

them are adjacent with both, then G ∈ F3. If all vertices with label ∅ are adjacent

with w but not with u, then G ∈ F1.

Subcase 2.2. The subgraph of G induced by {u, v, w} is the path uvw.

All vertices with label ∅ must be adjacent with u or with w. If all vertices with label

∅ are adjacent with u but not with w, then G ∈ F1. If some vertices with label ∅ are

adjacent with u and some of them are adjacent with w, then G ∈ F6. If some vertices

with label ∅ are adjacent with u, some of them are adjacent with w and some of them

are adjacent with both, then G ∈ F7.

Subcase 2.3. The subgraph of G induced by {u, v, w} is the triangle uvwu.

If all vertices with label ∅ are adjacent with u but not with w, then G = Kn−2 ∨ P2

which is a contradiction by Proposition 1. Thus some vertices with label ∅ are adjacent

with u, some of them are adjacent with w, some of them are adjacent with u and w.

Hence G ∈ F4 ∪ F5.

v u
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v u w
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..

...

Family F2

v u w

...
...
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v u w
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Figure 1. The families of graphs G with γoitr2(G) = 3
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We now characterize the graphs attaining the upper bound from Observation 1.

Proposition 3. Let G be a graph of order n ≥ 2. Then γoitr2(G) = n if and only if
G = P2 or G = P3 or G = P4 or every non-leaf vertex of G is a weak support vertex.

Proof. Necessary is clear. For the sufficiency let γoitr2(G) = n. If δ ≥ 2, then clearly

γoitr2(G) ≤ n−1. So we can assume that δ = 1. It is easy to see that if 2 ≤ n ≤ 4 and

γoitr2(G) = n, then G = P2 or G = P3 or G = P4. So assume that n ≥ 5. Obviously,

if there is a strong support vertex, then γoitr2(G) ≤ n− 1. Thus we can suppose that

every support vertex is weak. We claim that every non-leaf vertex of G is a weak

support vertex. To see this by contradiction, suppose that there is a non-leaf vertex

say v which is not a support vertex. Hence we have deg(v) ≥ 2. Let u,w ∈ N(v) such

that deg(u) ≥ 2,deg(w) ≥ 2. Define f : V (G) −→ P({1, 2}) by f(v) = ∅ , f(u) = 1,

f(w) = 2 and f(x) = 1 otherwise. It is easy to see that f is an outer-independent

total 2-rainbow dominating function on G. Thus γoitr2(G) ≤ n− 1, a contradiction.

Next we determine the outer-independent total 2-rainbow domination number of some

special graphs.

Observation 2. For n ≥ 3, γoitr2(Kn) = n− 1.

By Observation 2, one has the following fact.

Corollary 1. For any integer t ≥ 2, there is a graph G such that γoitr2(G) = t.

Observation 3. For r, t ≥ 2, γoitr2(Sr,t) = 4.

Proposition 4. For 2 ≤ n ≤ m, γoitr2(Kn,m) = n+ 1.

Proof. Let {u1, . . . , un} and {v1, . . . , vm} be two partite sets of Kn,m. Define f :

V (Kn,m) −→ P({1, 2}) by f(u1) = f(ui) = f(v1) = {1} for 3 ≤ i ≤ n, f(u2) = 2

and f(vi) = ∅ for 2 ≤ i ≤ m. Clearly f is an outer-independent total 2-rainbow

dominating function and ω(f) ≤ n + 1. So γoitr2(Kn,m) ≤ n + 1. The inverse

inequality is obvious.

Proposition 5. For n ≥ 2, γoitr2(Pn) =

{
d 2n

3
e, n = 3k + 2

d 2n
3
e+ 1, otherwise.

Proof. Clearly γoitr2(P2) = 2. Assume that n ≥ 3 and let Pn = v1v2 . . . vn be a

path on n vertices. If n = 3k + 2 for some non-negative integer k, then define the

function f : V (Pn) −→ P({1, 2}) by f(v3i+1) = {1}, f(v3i+2) = {2} and f(v3i) = ∅
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for 0 ≤ i ≤ k. Clearly, f is an outer-independent total 2-rainbow dominating function

of Pn with ω(f) ≤ d 2n
3 e.

If n = 3k+1 for some integer k, then define f : V (Pn) −→ P({1, 2}) by f(v3i+1) = {1},
f(v3i+2) = {2}, f(v3i) = ∅ for 1 ≤ i ≤ k − 1 and f(vn−1) = f(vn) = 1. Clearly, f is

an outer-independent total 2-rainbow dominating function and ω(f) ≤ d 2n
3 e + 1. So

γoitr2(Pn) ≤ d 2n
3 e+ 1.

If n = 3k for some integer k, then define f : V (Pn) −→ P({1, 2}) by f(v3i+1) = {1},
f(v3i+2) = {2}, f(v3i) = ∅ for 1 ≤ i ≤ k − 1 and f(vn) = 1. Clearly, f is an

outer-independent total 2-rainbow dominating function and ω(f) ≤ d 2n
3 e + 1. So

γoitr2(Pn) ≤ d 2n
3 e+ 1.

Conversely, assume that g is a γoitr2(Pn)-function. It is easy to verify that |g(v1)|+
|g(v2)| ≥ 2, |g(vn−1)|+ |g(vn)| ≥ 2 and |g(vi)|+ |g(vi+1)|+ |g(vi+2)| ≥ 2 for 1 ≤ i ≤
n− 2.

If n = 3k + 2, then we deduce that

ω(g) =

3k∑
i=1

|g(vi)|+ |g(vn−1)|+ |g(vn)| ≥ 2k + 2 =

⌈
2n

3

⌉
.

If n = 3k + 1, then we have

ω(g) = |g(v1)|+ |g(v2)|+
∑3k−1
i=3 |g(vi)|+ |g(vn−1)|+ |g(vn)|

≥ 2 + 2(k − 1) + 2 = 2k + 2

=
⌈

2n
3

⌉
+ 1.

Assume that n = 3k. If |g(v1)| ≥ 1, then we conclude that

ω(g) = |g(v1)|+
3k−2∑
i=2

|g(vi)|+|g(vn−1)|+|g(vn)| ≥ 1+2(k−1)+2 = 2k+1 =

⌈
2n

3

⌉
+1.

If |g(v1)| = 0, then we observe that |g(v1)|+ |g(v2)|+ |g(v3)| ≥ 3 and we obtain

ω(g) = |g(v1)|+ |g(v2)|+ |g(v3)|+
3k∑
i=4

|g(vi)| ≥ 3 + 2(k − 1) = 2k + 1 =

⌈
2n

3

⌉
+ 1.

Proposition 6. For n ≥ 3, γoitr2(Cn) = d 2n
3
e.

Proof. Define f : V (Cn) −→ P({1, 2}) by f(vi) = {1} if i ≡ 1 (mod 3), f(vi) = {2}
if i ≡ 2 (mod 3) and f(vi) = ∅ if i ≡ 0 (mod 3), for 1 ≤ i ≤ n. Clearly f is

an outer-independent total 2-rainbow dominating function with ω(f) ≤ d 2n
3 e. So

γoitr2(Cn) ≤ d 2n
3 e. Similar to the proof of Proposition 5, the inverse inequality

arises.
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3. Outer-independent total 2-rainbow domination number
and other graph parameters

Here we are interested in the relationship between γoitr2(G) and several other dom-

ination parameters. For instance any outer-independent total 2-rainbow dominating

function is an outer-independent 2-rainbow dominating function, so one has

γoir2(G) ≤ γoitr2(G).

Also we have the following straightforward observation.

Observation 4. Let f = (V0, V1, V2, V12) be a γoitr2(G)-function. Then V1 ∪ V2 ∪ V12 is
a total dominating set in G and γt(G) ≤ γoitr2(G).

On the other hand, clearly γ(G) ≤ γt(G) and so we have the following relation by

Observation 4.

γ(G) ≤ γt(G) ≤ γoitr2(G).

A subset S of V (G) is called independent if no two vertices in S are adjacent. An

independent set of maximum cardinality is a maximum independent set of G. The

independence number of G is the cardinality of a maximum independent set of G and

is denoted by α(G). An independent set of cardinality α(G) is called an α(G)-set. A

set of vertices S is a vertex cover set if every edge of G is incident with a vertex of S.

A vertex cover set of minimum cardinality is a minimum vertex cover set of G. The

vertex cover number of G is the cardinality of a minimum vertex cover set of G and

is denoted by β(G). A vertex cover of cardinality β(G) is called a β(G)-set.

Proposition 7. If G is a graph of order n ≥ 2, then β(G) ≤ γoitr2(G). Moreover, this
bound is sharp.

Proof. Let f = (V0, V1, V2, V12) be a γoitr2(G)-function. Since V0 is an independent

set, we deduce that |V0| ≤ α(G). Using this fact and Gallai’s theorem (α(G)+β(G) =

n), we obtain

n− γoitr2(G) = n− (|V1|+ |V2|+ 2|V12|)
≤ n− (|V1|+ |V2|+ |V12|)
= |V0|
≤ α(G)

= n− β(G)

and the proof is complete. For the sharpness, consider G = Kn−2 ∨ P2, n ≥ 2, by

Proposition 1 and the graphs F2, F3, F4 and F5.
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Corollary 2. If G is a graph of order n ≥ 2, then δ(G) ≤ β(G) ≤ γoitr2(G).

Proof. If I is an α(G)-set, then it is well known that V (G)\I is a β(G)-set. If v ∈ I,

then this implies that δ(G) ≤ deg(v) ≤ |V (G)\I| = β(G). The other inequality follows

from Proposition 7, and the proof is complete.

The minimum degree bound δ(G) ≤ β(G) can be found in the Thesis of W. Willis

[12]. For completeness we have given the short proof.

Corollary 3. If G = Kn1,n2,...,np is the complete p-partite graph with n1 ≤ n2 ≤ . . . ≤ np

and p ≥ 3, then

δ(G) = β(G) = γoitr2(G) = n1 + n1 + . . .+ np−1.

Proof. Corollary 2 implies γoitr2(G) ≥ β(G) ≥ δ(G) = n1+n2+. . .+np−1. Let Si be

the partite set with |Si| = ni for 1 ≤ i ≤ p. Define the function f = (V0, V1, V2, V12)

by V0 = Sp, V1 = S1, V2 = S2 ∪ S3 ∪ . . . ∪ Sp−1 and V12 = ∅. Then f is an

outer-independent total 2-rainbow dominating function on G and thus γoitr2(G) ≤
n1 + n2 + . . .+ np−1 = β(G) = δ(G).

Corollary 3 demonstrates the sharpness of Corollary 2 and Proposition 7.

4. Bounds

Our aim in this section is to determine some bounds on the OIt2RD number of graphs.

First, we obtain an upper bound for graphs G of girth g(G) ≥ 5.

Theorem 5. If G is a graph of order n with g(G) ≥ 5 and δ(G) ≥ 2, then

γoitr2(G) ≤ n−∆(G) + 1,

and this bound is sharp.

Proof. Let v be a vertex of maximum degree ∆ = ∆(G), and let u1, u2, . . . , u∆ be

the neighbors of v. Define the function f by f(v) = f(u1) = {1}, f(u2) = f(u3) =

. . . = f(u∆) = ∅ and f(x) = {2} otherwise.

As G is triangle-free, {u2, u3, . . . , u∆} is an independent set. The condition δ(G) ≥ 2

implies that each vertex ui has a neighbor w with f(w) = {2} for 2 ≤ i ≤ ∆. As

f(v) = {1}, we obtain
⋃
x∈N(ui)

f(x) = {1, 2} for each 2 ≤ i ≤ ∆. In addition,

we deduce from g(G) ≥ 5 and δ(G) ≥ 2 that each vertex x with f(x) = {2} has a

neighbor with f(w) = {2}. Consequently, f is an outer-independent total 2-rainbow

dominating function on G of weight n−∆ + 1 and thus γoitr2(G) ≤ n−∆ + 1.

Let H be consist of a subdivide star with the leaves x1, x2, . . . , x2p such that x2i−1

and x2i are adjacent for 1 ≤ i ≤ p. Then it is easy to verify that γoitr2(H) = 2p+ 2 =

n(H)−∆(H) + 1. This family of graphs show that this upper bound is sharp,
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Next we present a lower bound for outer-independent total 2-rainbow domination

number with regard to the maximum and minimum degree.

Theorem 6. Let G be a connected graph of order n ≥ 2 with minimum degree δ and
maximum degree ∆. Then

γoitr2(G) ≥
⌈

δn

∆ + δ − 1

⌉
.

Moreover, this bound is sharp.

Proof. The results is trivial if n = 2 or γoitr2(G) = n. So assume that n ≥ 3

and γoitr2(G) < n. Let f = (V0, V1, V2, V12) be a γoitr2(G)-function and V0 =

{x1, x2, . . . , xt}. Since V0 is an independent set, every vertex xi, for 1 ≤ i ≤ t, has at

least δ neighbors in V1 ∪ V2 ∪ V12. On the other hand, every vertex in V1 ∪ V2 ∪ V12

has at most ∆− 1 neighbors in V0, since {v | f(v) 6= ∅} has no isolated vertex. So we

obtain

δ|V0| ≤ (∆− 1)(|V1|+ |V2|+ |V12|).

Using this inequality and the fact that n = |V0|+ |V1|+ |V2|+ |V12|, we have

δn ≤ (∆− 1)(|V1|+ |V2|+ |V12|) + δ(|V1|+ |V2|+ |V12|)
= (∆− 1 + δ)(|V1|+ |V2|+ |V12|)
≤ (∆− 1 + δ)(|V1|+ |V2|+ 2|V12|)
= (∆− 1 + δ)γoitr2(G).

Therefore γoitr2(G) ≥ d δn
∆+δ−1e, because γoitr2(G) is an integer. For the sharpness,

consider cycles by Proposition 6.

As an immediate consequence of Theorem 6, we have the following corollaries.

Corollary 4. Let G be an r-regular graph of order n ≥ 2. Then γoitr2(G) ≥ d rn
2r−1
e.

Corollary 5. Let G be a graph of order n ≥ 2 with δ = 1. Then γoitr2(G) ≥ d n
∆
e,

specially for every tree T , γoitr2(T ) ≥ d n
∆
e.

We propose a so called Nordhaus-Gaddum type inequality for the outer-independent

total 2-rainbow domination number of regular graphs.

Theorem 7. Let G be an r-regular graph of order n ≥ 4. Then

γoitr2(G) + γoitr2(G) ≥ n(n− 1)

n− 2
.
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Proof. Since G is r-regular, the complement G is (n− r − 1)-regular. By Corollary

4, one has

γoitr2(G) + γoitr2(G) ≥ rn

2r − 1
+

(n− r − 1)n

2(n− r − 1)− 1
.

The function f(x) = xn
2x−1 + (n−x−1)n

2(n−x−1)−1 gets its minimum at x = n−1
2 . So we have

γoitr2(G) + γoitr2(G) ≥
n−1

2 n

2n−1
2 − 1

+
(n− n−1

2 − 1)n

2(n− n−1
2 − 1)− 1

=
n(n− 1)

n− 2
.

In the following proposition, an upper bound is given for outer-independent total

2-rainbow domination number with regard to the 2-packing.

Proposition 8. Let G be a graph of order n with δ ≥ 2. Then γoitr2(G) ≤ n − ρ.
Moreover, this bound is sharp.

Proof. Suppose that A = {v1, v2, . . . , vρ} is a 2-packing set of G and define f :

V (G) −→ P({1, 2}) by f(vi) = ∅, f(ui1) = {1}, f(ui2) = {2} for 1 ≤ i ≤ ρ where

uit are neighbors of vi for t = 1, 2 and f(x) = {1} otherwise. Since δ ≥ 2, f is an

outer-independent total 2-rainbow dominating function and so γoitr2(G) ≤ n−ρ. For

the sharpness, consider the complete graph Kn by Observation 2.

Next, we present an upper bound in terms of the diameter of a graph using Proposition

8.

Proposition 9. Let G be a graph of order n with δ ≥ 2. Then

γoitr2(G) ≤ n− 1−
⌊

diam(G)

3

⌋
.

Moreover, this bound is sharp.

Proof. Suppose that P = v0v1 . . . vdiam(G) is a diametral path, diam(G) = 3t + r

with integers t ≥ 0 and 0 ≤ r ≤ 2. It is easy to see that A = {v0, v3, . . . , v3t} is

a 2-packing set of G such that |A| = 1 + bdiam(G)
3 c. Then we have ρ ≥ |A|. So by

Proposition 8, one has

γoitr2(G) ≤ n− ρ ≤ n− |A| ≤ n− 1−
⌊

diam(G)

3

⌋
.
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For the sharpness, let P3t+1 = v1v2 . . . v3t+1 be a path of diameter 3t for an integer

t ≥ 2, and let the graph H consists of P3t+1, the vertices u and w and the edges

uv1, uv2, wv3t and wv3t+1. We have

γoitr2(H) ≤ 3t+ 3− 1−
⌊

diam(H)

3

⌋
= 2t+ 2.

If g is a γoitr2(H)-function, then we observe that g(v1) + g(v2) + g(u) ≥ 2, g(v3t) +

g(v3t+1) + g(w) ≥ 2 and g(v3i) + g(v3i+1) + g(v3i+2) ≥ 2 for 1 ≤ i ≤ t− 1. Therefore

γoitr2(H) ≥ 2n(H)
3 = 2t + 2. Also, consider the complete graph Kn for n ≥ 3 by

Observation 2.

Let S(T ) and L(T ) be the set of support vertices and the set of leaves of a tree T ,

respectively. We use the notations s(T ) = |S(T )| and `(T ) = |L(T )|. In the following

proposition we give an upper bound for γoitr2(T ) using s(T ) and `(T ).

Proposition 10. Let T be a tree of order n ≥ 3 with diam(T ) ≥ 3. Then γoitr2(T ) ≤
n+ s(T )− `(T ). Moreover, this bound is sharp.

Proof. Define f : V (T ) −→ P({1, 2}) by f(s) = {1, 2} for every support vertex s,

f(u) = ∅ for every leaf and f(x) = 1 otherwise. Clearly, f is a γoitr2(T )-function of

T with

ω(f) = 2s(T ) + (n− s(T )− `(T )) = n+ s(T )− `(T )

and the proof has been completed. For the sharpness, consider double stars Sr,t.

In the following theorem we prepare a lower bound in terms of the order and `(T ) for

a tree T .

Theorem 8. Let T be a tree of order n ≥ 2. Then

γoitr2(T ) ≥
⌈

2(n+ 2− `(T ))

3

⌉
.

Moreover, this bound is sharp.

Proof. We proceed by induction on n. The statement holds for all trees of order

n ≤ 4. Suppose that n ≥ 5 and let the result hold for all non-trivial tree T of order

less than n. Let T be a tree of order n ≥ 5. If diam(T ) = 2, then T is a star, which

yields γoitr2(T ) = 3 > d 2(n+2−`(T ))
3 e = 2 by Proposition 2. If diam(T ) = 3, then T is

a double star and by Observation 3 we have γoitr2(T ) = 4 > 3 = d 2(n+2−`(T ))
3 e. Thus

we may assume that diam(T ) ≥ 4. Let P = v1v2 . . . vk be a diametral path in T and

root T in vk. Let f be a γoitr2(T )-function. We consider the following cases:
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Case 1. degT (v2) = t ≥ 3.

Let T ′ = T−Tv2 . It is not hard to see that γoitr2(T ) ≥ γoitr2(T ′)+2 and `(T )−(t−1) ≤
`(T ′) ≤ `(T )− (t− 2) so we conclude from the induction hypothesis that

γoitr2(T ) ≥ γoitr2(T ′) + 2

≥ d2(n(T ′) + 2− `(T ′))
3

e+ 2

≥ d2((n− t) + 2− `(T ) + (t− 2))

3
e+ 2

= d2(n− `(T ))

3
e+ 2

≥ d2(n+ 2− `(T ))

3
e,

as desired.

Case 2. degT (v2) = 2.

If degT (v3) ≥ 3, then let T ′ = T − {v1, v2}. Clearly γoitr2(T ) ≥ γoitr2(T ′) + 2 and

`(T ′) = `(T )− 1 so we conclude from the induction hypothesis on T ′ that

γoitr2(T ) ≥ γoitr2(T ′) + 2

≥ d2(n(T ′) + 2− `(T ′))
3

e+ 2

= d2((n− 2) + 2− `(T ) + 1))

3
e+ 2

≥ d2(n+ 2− `(T ))

3
e,

as desired.

If degT (v3) = 2, then let T ′ = T − {v1, v2, v3}. Clearly γoitr2(T ) ≥ γoitr2(T ′) + 2 and

`(T )− 1 ≤ `(T ′) ≤ `(T ). We obtain from the induction hypothesis on T ′ that

γoitr2(T ) ≥ γoitr2(T ′) + 2

≥ d2(n(T ′) + 2− `(T ′))
3

e+ 2

≥ d2((n− 3) + 2− `(T ))

3
e+ 2

≥ d2(n+ 2− `(T ))

3
e.

This completes the proof. By Proposition 5, paths of order 3k+ 2 attain this bound.
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