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Abstract: Cop Robber game is a two player game played on an undirected graph.

In this game, the cops try to capture a robber moving on the vertices of the graph.
The cop number of a graph is the least number of cops needed to guarantee that the

robber will be caught. We study cop-edge critical graphs, i.e. graphs G such that for

any edge e in E(G) either c(G− e) < c(G) or c(G− e) > c(G). In this article, we study
the edge criticality of generalized Petersen graphs and Paley graphs.
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1. Introduction

The game of Cops and Robbers is a vertex pursuit game played on a graph G. It was

introduced by Nowakowski and Winkler [12]. It is an example of perfect information

combinatorial game played by two players [6]. In this game we consider two players,

one control a set of k cops (or searchers) C, where k > 0 is a fixed integer, and

the other control robber R. Cops initiate the game placing themselves on a set of

k vertices, then R occupies another vertex. In every round, the two players move

alternatively, starting with player controlling cops. A move of a player’s controlled

element is considered as either moves to an adjacent vertex or stays on the same

vertex. Therefore, in a cop move, each cop either a move to an adjacent vertex or
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360 Cop-edge critical generalized Petersen and Paley graphs

stay on the same vertex. Analogously in a robber move, the robber either moves to

an adjacent vertex or stays on the same vertex. Many cops are allowed to occupy

a single vertex. The players know each others actual position (that is, the game is

played with complete information). The cops win and the game ends if one of the

cops move to the vertex occupied by the robber; if robber has a strategy to avoid

cops indefinitely, then R wins. The minimum number of cops needed to catch the

robber (regardless of robber’s strategy) is called the cop number of G, and is denoted

by c(G). This parameter is well studied in literature (see [1, 6, 7]).

Throughout this paper we consider only simple graphs that is graphs without loops

and parallel edges. For additional definitions on graphs we refer to the book [11] and

for the game we refer to the book [7].

A graph G is said to be cop-vertex/edge critical if for any vertex/edge x in G either

c(G− x) < c(G) or c(G− x) > c(G) (see [9]).

A graph G is said to be m-cop win if c(G) = m and is said to be m-cop edge critical if

G is edge critical and c(G) = m. In this paper we study the edge/vertex critical graphs

with cop number 3. The Petersen graph, the dodecahedron and the Heawood graph

are examples of edge critical graphs with cop number 3. In this paper, we present

some more examples of edge critical cubic graphs with cop number 3 continuing the

work started in [9]. In the second section we focus on generalized Petersen graph

while in the third section we study the Paley graphs.

2. Generalized Petersen graphs

The length of the shortest cycle contained in a graph G is called the girth of G. Let

us remind the following elementary but useful results.

Proposition 1 ([1]). If G has girth at least 5, then c(G) ≥ δ(G), where δ(G) is the
minimum degree of G.

Proposition 2 ([7]). If G is planar, then c(G) ≤ 3.

The generalized Petersen graph GP (n, k) also denoted P(n, k) for n ≥ 5 and 1 ≤ k ≤
bn−1

2 c is a graph consisting of vertex set

V (P(n, k)) = {u1, u2, . . . , un, v1, v2, . . . , vn}

and the edge set {(ui, ui+1), (ui, vi), (vi, vi+k) | i = 1, 2, . . . , n} where subscript are

taken modulo n. These graphs were introduced by Coxeter (see [10]). It is known

that the Petersen graph P(5, 2) is 3-cop edge critical [4], we also know that the graph

P(6, 2) is 2-cop win. Therefore we start with P(7, 2). The following useful result can

be found in [5].

Theorem 1 ([5]). Let P be the generalized Petersen graph. Then c(G) ≤ 4.
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Lemma 1. Let G be the graph P(7, 2). Then G is edge critical with cop number 3.

Proof. Let G be the graph P(7, 2). Since G is a graph with girth at least 5 therefore,

from Proposition 1,

c(G) ≥ 3. (1)

If we place cop c1 on the vertex 2, cop c2 on the vertex 5 and c3 on the vertex 14,

then we can catch the robber in at most three rounds (see graph P(7, 2) presented in

Figure 1). This implies that

c(G) ≤ 3. (2)

Thus we have from (1) and (2) that c(G) = 3.

Claim. c(G− e) = 2 for any edge e ∈ G.

To prove this we delete three types of edges from graph G. i) An edge connecting two

vertices in the inner cycle of the graph G. ii) an edge connecting two vertices in the

outer cycle of graph G. iii) an edge connecting the vertices in the inner cycle and the

outer cycle of graph G (see Figure 1).

v1

v2

v3

v4

v5

v6v7

v8

v9

v10

v11

v12

v13
v14

Figure 1. The generalized Petersen graph P(7, 2)

ad i) Label the vertices as shown in the Figure 2 and assume that edge e belongs

to the outer cycle of graph P(7, 2) (in the Figure 2 edges colored by the color blue

represents inner cycle edges of the graph P(7, 2)), edges colored by the color green

represents outer cycle edges of graph P(7, 2) and edges colored by the color black

represents the edges between inner and outer cycle of graph P(7, 2). Assume that

we always start the game by placing cop c1 on the vertex v3 and cop c2 on vertex
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v2. Clearly the robber cannot start on v1, v2, v3, v4, v5, v7, v9 and v10. If the robber

starts on vertex v6, then we move cop c1 to vertex v1. The robber then must move

to vertex v13. Now the cop c1 moves to vertex v6 and cop c2 moves to vertex v7.

Then the game finish in the next move. This shows that vertex v6 is a bad starting

point. (Now 5 vertices remain for the robber to start).

If the robber starts at vertex v8, then we move cop c1 to vertex v1. The robber then

must move to vertex v14. Now cop c2 moves to vertex v7 and the robber must move

to vertex v13. Again cop c2 moves to vertex v14 and then the game finish in the next

move.

Suppose the robber starts at vertex v11, then we move cop c2 to vertex v4. Now the

robber must move to vertex 12. Again we move cop c1 to vertex v5 and the game

finish in the next move.

If the robber starts at vertex v12, then we move cop c1 to vertex v5 and cop c2 to

vertex v4. Then the game finish in the next move.

If the robber starts at vertex v13, then we move cop c1 to vertex v1 and cop c2 to

vertex v7. Now the robber is trapped and we can finish the game in the next two

moves. If the robber starts at vertex v14, then we move cop c1 to vertex v1 and cop

c2 to vertex v7. Robber then must move to vertex v13. New position is equivalent to

the previous one and we can finish the game in the next two moves. Therefore the

graph depicted in Figure 2 is 2-cop win.

v1 v2v3 v4v5

v6

v7

v8

v9v10

v11 v12 v13 v14

Figure 2. The graph P(7, 2)− {e}

ad ii) Assume that edge e lies between inner and outer cycles. Removal of any of

these edges from G results the graph depicted in Figure 3.

Label the vertices as shown in Figure 3. As in the previous case assume that we always

start the game by placing cop c1 on vertex v3 and cop c2 on vertex v2. Clearly, the

robber cannot start on v1, v2, v3, v4, v5, v7, v9 and v10. If the robber starts on vertex

v6, then we move cop c1 to vertex v1. Then the game finish in the next move. This

shows that vertex v6 is a bad starting point. (Now 5 vertices remain for the robber

to start).
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If the robber starts at vertex v8, then we move cop c1 to vertex v1. The robber then

must move to vertex v14. Now cop c2 moves to vertex v7 and cop c1 moves to vertex

v8, then the robber must move to vertex v13. Again the cop c2 moves to vertex v5

and cop c1 moves to vertex v14. Now the robber is trapped and we can finish the

game in the next move. (Now 4 vertices remain for the robber to start).

Suppose the robber starts at vertex v11, then we move cop c2 to vertex v4. The the

robber then must move to vertex v12. Again we move cop c1 to vertex v5. The robber

must move to vertex v13. Now we move cop c1 to the vertex v7 and cop c2 to vertex

v11. Now the robber is trapped and we can finish the game in the next two moves.

If the robber starts at vertex v12, then we move cop c1 to vertex v5 and cop c2 to

vertex v4. Then the robber must move to vertex v13. Again we move cop c2 to vertex

v11 and cop c1 to vertex v7. Now the robber is trapped and we can finish the game

in the next two moves. (Now 2 vertices remain for the robber to start).

If the robber starts at vertex v13, then we move cop c1 to vertex v5 and cop c2 to

vertex v7. Now the robber is trapped and we can finish the game in the next two

moves (at this point only one vertex remain for the robber to start).

If the robber starts at vertex v14, then we move cop c1 to vertex v1 and cop c2 to

vertex v7. The robber then must move to vertex v13. Again the cop c2 moves to

vertex v5 and cop c1 moves to vertex v8. Now the robber is trapped and we can finish

the game in the next two moves. Therefore the graph depicted in the Figure 3 is

2-cop win.

v1 v2v3 v4v5

v6

v7

v8

v9v10

v11 v12 v13 v14

Figure 3. The graph P(7, 2)− {e′}

ad iii) Assume that edge e lies in the inner cycle. Removal of any of these edges from

G results the graph depicted in Figure 4.

Label the vertices as shown in the Figure 4. Assume that we always start the game

by placing cop c1 on vertex v14 and cop c2 on vertex v11. Clearly the robber cannot

start on v8, v7, v14, v13, v4, v11, v12 and v10. If the robber starts on vertex v1, then we

move cop c1 to vertex v8 and cop c2 to vertex v4. Now the robber is trapped and we

can finish the game in the next move. This shows that vertex v1 is a bad starting

point. (Now 5 vertices remain for the robber to start).

If the robber starts at vertex v2, then we move cop c2 to vertex v4. The robber then

must move to vertex v9. Now cop c1 moves to vertex v8. The robber then must

move to vertex v10. Again cop c1 moves to the vertex v9 and cop c2 moves to vertex
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v11, then the robber must move to the vertex v3. Now we move the cop c1 to vertex

v10 and cop c2 to vertex v12, then the game finish in the next move.(Now 4 vertices

remain for the robber to start).

Suppose the robber starts at vertex v3, then we move cop c2 to vertex v10 and cop

c1 to vertex v7. Now robber is trapped and we can finish the game in the next two

moves. (Now 3 vertices remain for the robber to start).

If the robber starts at vertex v5, then we move cop c1 to vertex v7. Now the robber

must move to vertex v3. Again we move cop c2 to vertex v10. Now the robber is

trapped and we can finish the game in the next move. (Now two vertices remain for

the robber to start).

If the robber starts at vertex v6, then we move the cop c2 to vertex v4. The robber

then must move to vertex v1. Again the cop c1 moves to vertex v8. Now the robber

is trapped and we can finish the game in the next two move. (Now one more vertex

remain for the robber to start).

If the robber starts at vertex v9, then we move cop c1 to vertex v8 and cop c2 to

vertex v4. The robber then must move to vertex v10. Again cop c1 moves to vertex

v9 and cop c2 moves to vertex v11. The robber then must move to vertex v3. Now we

move cop c1 to vertex v10 and cop c2 to vertex v12. Now the robber is trapped and

we can finish the game in the next move. Therefore, the graph depicted in the Figure

4 is 2-cop win.

v8 v7 v14 v13 v4 v11 v12 v10

v1 v2 v3 v5 v6 v9

Figure 4. The graph P(7, 2)− {e′′}

We know that graph P(8, 2) is 2-cop win [5]. Therefore next graph to analyze is

P(9, 2).

Lemma 2. Let G be the graph P(9, 2). Then G is edge critical with cop number 3.

Proof. Let G be the graph P(9, 2). Since G is a graph with girth at least 5 therefore,

from Proposition 1,

c(G) ≥ 3. (3)



C. Dominic,  L. Witkowski, M. Witkowski 365

If we place cop c1 on vertex 10, cop c2 on vertex 4 and c3 on vertex 12, then we can

catch the robber in at most five rounds. This implies that

c(G) ≤ 3. (4)

Now we have from (3) and (4), c(G) = 3.

Claim. c(G − e) = 2 for any edge e ∈ G. Assume that the edge e is in the outer

cycle (see Figure 5). We always start the game by placing the cop c1 on vertex 1 and

cop c2 on vertex 9. These two cops dominates the vertices 1, 3, 11, 8, 9, 10, 7 and 2,

the remaining unguarded vertices in G are 12, 13, 14, 15, 4, 5, 6, 16, 17 and 18. If

we place the robber R on these vertices, then we get the following strategies. Since

strategy includes more steps we use the following notations for the movements of the

cops and the robber. Cop c1 moves to vertex v by c1 → v. Cop c2 moves to vertex

v by c2 → v. Robber R moves to vertex v by R → v. The robber stay on vertex v

by R = v. Cop c1 stay on vertex v by c1 = v and cop c2 stay on vertex v by c2 = v,

where v = {1, 2, . . . , 18} (see Figure 5).

Case-I : Assume R = 12.

Now the cops can catch the robber in at most 5 rounds.

R1 : c1 = 1, c2 → 2, R→ 13.

R2 : c1 → 3, c2 = 2, R→ 14.

R3 : c1 = 3, c2 → 4, R→ 15.

R4 : c1 → 5, c2 → 14, R = 15. Then the game finish in the next step.

Case-II : Assume R = 13.

Now the cops can catch the robber in at most 3 rounds.

R1 : c1 → 3, c2 → 2, R→ 14.

R2 : c1 = 3, c2 → 4, R→ 15.

R3 : c1 → 5, c2 → 14, R = 15. Then the game finish in the next step.

Case-III : Assume R = 14.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 3, c2 → 2. Now either R = 14 or R→ 15. Suppose R = 14.

R2 : c1 = 3, c2 → 4, R→ 15.

R3 : c1 → 5, c2 → 14, R = 15. Then the game finish in the next step. Suppose after

the first round R→ 15.

R2 : c1 → 5, c2 → 4, R = 15. Then the game finish in the next step.



366 Cop-edge critical generalized Petersen and Paley graphs

Case-IV : Assume R = 15.

Now the cops can catch the robber in at most 3 rounds.

R1 : c1 → 3, c2 → 2. Now either R = 15 or R→ 14. Suppose R = 15.

R2 : c1 → 5, c2 → 4, R = 15. Then the game finish in the next step. Suppose after

the first round R→ 14.

R2 : c1 = 3, c2 → 4, R→ 15. Then the game finish in the next step.

Case-V : Assume R = 4.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 8, c2 → 2, R→ 14.

R2 : c1 → 1, c2 = 2. Now the robber has three choices R = 14, R→ 13 and R→ 15.

Suppose R = 14.

R3 : c1 → 3, c2 → 4, R→ 15.

R4 : c1 → 5, c2 → 14, R = 15. Then the game finish in the next step. Suppose after

the second round R→ 13.

R3 : c1 → 3, c2 = 2, R→ 14.

R4 : c1 = 3, c2 → 4, R→ 15.

R5 : c1 → 5, c2 → 14. Then the game finish in the next step. Again assume that

after the second round R→ 15.

R3 : c1 → 3, c2 → 4, R = 15.

R4 : c1 → 5, c2 → 14, R = 15. Then the game finish in the next step.

Case-VI : Assume R = 18.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 8, c2 = 9, R→ 17.

R2 : c1 = 8, c2 → 7, R→ 16.

R3 : c1 → 6, c2 = 7, R = 16. Then the game finish in the next step.

Case-VII : Assume R = 17.

Now the cops can catch the robber in at most 3 rounds.

R1 : c1 → 8, c2 → 7, R→ 16.

R2 : c1 → 6, c2 → 17, R = 16. Then the game finish in the next step.

Case-VIII : Assume R = 16.

Now the cops can catch the robber in at most 3 rounds.



C. Dominic,  L. Witkowski, M. Witkowski 367

R1 : c1 → 8, c2 → 7, R = 16.

R2 : c1 → 6, c2 → 17, R = 16. Then the game finish in the next step.

Case-IX : Assume R = 6.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 8, c2 → 2, R→ 16.

R2 : c1 → 18, c2 → 4, R = 16.

R3 : c1 → 17, c2 → 6, R = 16. Then the game finish in the next step.

Case-X : Assume R = 5.

Now the cops can catch the robber in at most 3 rounds.

R1 : c1 → 3, c2 → 7, R→ 15.

R2 : c1 → 13, c2 → 5, R = 15. Then the game finish in the next step.

1

2

3

4

56

7

8

9

10

11

12

13

14

15
16

17

18

Figure 5. The graph P(9, 2)− {e}

Assume that the edge e is in between the inner cycle and the outer cycle (see Figure

6 ). We always start the game by placing cop c1 on vertex 4 and cop c2 on vertex

5. These two cops dominates the vertices 4, 5, 7, 6, 3, 2, 14, and 15, the remaining

unguarded vertices in G are 12, 13, 11, 10, 18, 17, 16, 8, 9 and 1. If we place robber

R on these vertices, then we get the following strategies. We follow notations from

the previous cases.
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Case-I : Assume R = 12.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 2, c2 → 3, R→ 11.

R2 : c1 → 9, c2 → 13, R = 11.

R3 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.

Case-II : Assume R = 13.

Now the cops can catch the robber in at most 5 rounds.

R1 : c1 = 4, c2 → 3, R→ 12.

R2 : c1 → 2, c2 = 3, R→ 11.

R3 : c1 → 9, c2 → 13, R = 11.

R4 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.

Case-III : Assume R = 11.

Now the cops can catch the robber in at most 5 rounds.

R1 : c1 → 2, c2 → 7. Now either R = 11 or R→ 10. Suppose R = 11.

R2 : c1 = 2, c2 → 9, R = 11.

R3 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step. Suppose

after the first round R→ 10.

R2 : c1 = 2, c2 → 17. Now either R = 10 or R→ 11. Suppose R = 10.

R3 : c1 = 2, c2 → 18, R→ 11.

R4 : c1 → 12, c2 → 10, R = 11. Then the game finish in the next step. Suppose

R→ 11 in the previous round.

R3 : c1 → 12, c2 → 18, R = 11. Then the game finish in the next step.

Case-IV : Assume R = 10.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 6, c2 → 7. Now the robber has three choices R = 10, R→ 18 and R→ 11.

Suppose R = 10.

R2 : c1 → 8, c2 → 9, R→ 11.

R3 : c1 → 18, c2 → 2, R = 11.

R4 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step. Suppose

after the first round R→ 18.

R2 : c1 → 8, c2 = 7, R→ 10.
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R3 : c1 = 8, c2 → 9, R→ 11.

R4 : c1 → 18, c2 → 2, R = 11.

R5 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step. Suppose

after the first round R→ 11.

R2 : c1 → 4, c2 → 9. Now either R = 11 or R→ 12. Suppose after the second round

R = 11.

R3 : c1 → 2, c2 → 10. Then the game finish in the next step. Suppose after the

second round R→ 12.

R3 : c1 → 14, c2 = 9. Now either R = 12 or R → 11. In both cases we keep c2 on

the vertex 9 and move c1 along the vertices 13 and 12 and catch the robber in

at most three rounds.

Case-V : Assume R = 18.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 6, c2 → 7. Now either R = 18 or R→ 10. Suppose R = 18.

R2 : c1 → 8, c2 = 7, R→ 10.

R3 : c1 = 8, c2 → 9, R→ 11.

R4 : c1 → 18, c2 → 2, R = 11.

R5 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step. Suppose

after the first round R→ 10.

R2 : c1 → 8, c2 → 9, R→ 11.

R3 : c1 → 18, c2 → 2, R = 11.

R4 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.

Case-VI : Assume R = 17.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 6, c2 → 7, R→ 18.

R2 : c1 → 8, c2 = 7, R→ 10.

R3 : c1 = 8, c2 → 9, R→ 11.

R4 : c1 → 18, c2 → 2, R = 11.

R5 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.

Case-VII : Assume R = 16.

Now the cops can catch the robber in at most 7 rounds.
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R1 : c1 → 6, c2 = 5, R→ 17.

R2 : c1 = 6, c2 → 7, R→ 18.

R3 : c1 → 8, c2 = 7, R→ 10.

R4 : c1 = 8, c2 → 9, R → 11. After this round we follow CASE IV ROUND 4

onwards. Therefore we can catch the robber in at most three more rounds and

finish the game.

Case-VIII : Assume R = 1.

Now the cops can catch the robber in at most 2 rounds.

R1 : c1 → 6, c2 → 3, R = 1. Then the game finish in the next step.

Case-IX : Assume R = 9.

Now the cops can catch the robber in at most 5 rounds.

R1 : c1 → 6, c2 → 7. Now either R→ 2 or R→ 10. Suppose R→ 2.

R2 : c1 → 4, c2 → 9, R→ 12.

R3 : c1 → 14, c2 = 9. Now either R → 11 or R = 12. In both cases we keep c2 on

the vertex 9 and move c1 along the vertices 13 and 12 and catch the robber in

at most three rounds. Now assume that after the first round R→ 10.

R2 : c1 → 8, c2 → 9, R→ 11.

R3 : c1 → 18, c2 → 2, R = 11.

R4 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.

Case-X : Assume R = 8.

Now the cops can catch the robber in at most 7 rounds.

R1 : c1 → 6, c2 → 7. Now either R→ 1 or R→ 18. Suppose R→ 1.

R2 : c1 → 8, c2 → 5, R = 1. Then the game finish in the next step. Now assume

that after the first round R→ 18.

R3 : c1 → 8, c2 = 5, R→ 10.

R4 : c1 = 8, c2 → 9, R→ 11.

R5 : c1 → 18, c2 → 2, R = 11.

R6 : c1 → 10, c2 → 12, R = 11. Then the game finish in the next step.
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Figure 6. The graph P(9, 2)− {e′}.

Assume that the edge e is in the inner cycle (see Figure 7). We always start the game

by placing cop c1 on the vertex 14 and cop c2 on vertex 18. These two cops dominates

the vertices 4, 15, 13, 14, 10, 8, 17 and 18, the remaining unguarded vertices in G are

1, 2, 3, 5, 6, 7, 9, 11, 12 and 16. If we place robber R on these vertices, then we get

the following strategies. We follow notations from the previous cases.

Case-I : Assume R = 12.

Now the cops can catch the robber in at most 4 rounds.

R1 : c2 → 10, c1 → 13, R→ 2.

R2 : c2 → 11, c1 → 14, R = 2.

R3 : c1 → 12, c2 → 4, R = 2. Then the game finish in the next step.

Case-II : Assume R = 11.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 13, c2 → 8. Now either R→ 10 or R = 11. Suppose R→ 10.

R2 : c1 → 12, c2 → 18, R→ 9.

R3 : c1 → 11, c2 → 17, R = 9.

R4 : c1 → 10, c2 → 7, R = 9. Then the game finish in the next step. Assume after

the first round R = 11.

R2 : c1 → 12, c2 = 8, R→ 10.

R3 : c1 → 11, c2 → 18, R→ 9.
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R4 : c1 → 10, c2 → 17, R = 9. Then the game finish in the next step.

Case-III : Assume R = 16.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 15, c2 = 18, R→ 6.

R2 : c1 = 15, c2 → 8, R→ 4.

R3 : c1 → 14, c2 = 8, R→ 2.

R4 : c1 = 14, c2 → 1. Now either R→ 12 or R = 2. Suppose R→ 12.

R5 : c1 = 14, c2 → 11, R→ 2.

R6 : c1 = 14, c2 → 12, R = 2. Then the game finish in the next step. Assume after

the fourth round R = 2.

R5 : c1 → 4, c2 → 11, R = 2. Then the game finish in the next step.

Case-IV : Assume R = 6.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 15, c2 → 8, R→ 4.

R2 : c1 → 14, c2 = 8, R→ 2.

R3 : c1 = 14, c2 → 1. Now either R→ 12 or R = 2. Suppose R→ 12.

R4 : c1 = 14, c2 → 11, R→ 2.

R5 : c1 = 14, c2 → 12, R = 2. Then the game finish in the next step. Assume after

the third round R = 2.

R4 : c1 → 4, c2 → 11, R = 2. Then the game finish in the next step.

Case-V : Assume R = 5.

Now the cops can catch the robber in at most 8 rounds.

R1 : c1 → 13, c2 → 17. Now either R→ 15 or R = 5. Suppose R→ 15.

R2 : c1 = 13, c2 → 16, R→ 5.

R3 : c1 → 3, c2 = 16, R→ 7.

R4 : c1 = 3, c2 → 17, R→ 9.

R5 : c1 → 1, c2 = 17. Now either R→ 10 or R = 9. In both cases we keep c2 on the

vertex 17 and move c1 along the vertices 11 and 10 and catch the robber in at

most three rounds. Now assume that after the first round R = 5.

R2 : c1 → 3, c2 → 16, R→ 7.
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R3 : c1 = 3, c2 → 17, R→ 9.

R4 : c1 → 1, c2 = 17. Now either R→ 10 or R = 9. In both cases we keep c2 on the

vertex 17 and move c1 along the vertices 11 and 10 and catch the robber in at

most three rounds. Now assume that after the first round R = 5.

Case-VI : Assume R = 7.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 15, c2 = 18. Now either R→ 9 or R = 7. Suppose R→ 9.

R2 : c1 → 5, c2 → 10, R = 9. Then the game finish in the next step. Assume after

the first round R = 7.

R2 : c1 → 5, c2 = 18, R→ 9.

R3 : c1 → 7, c2 → 10, R = 9. Then the game finish in the next step.

Case-VII : Assume R = 9.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 → 15, c2 = 18. Now either R→ 7 or R = 9. Suppose R→ 7.

R2 : c1 → 5, c2 = 18, R→ 9.

R3 : c1 → 7, c2 → 10, R = 9. Then the game finish in the next step. Suppose after

the first round R = 9.

R2 : c1 → 5, c2 → 10. Then the game finish in the next step.

Case-VIII : Assume R = 1.

Now the cops can catch the robber in at most 5 rounds.

R1 : c1 → 13, c2 → 8, R→ 11.

R2 : c1 → 12, c2 = 8, R→ 10.

R3 : c1 → 11, c2 → 18, R→ 9.

R4 : c1 → 10, c2 → 17, R = 9. Then the game finish in the next step.

Case-IX : Assume R = 2.

Now the cops can catch the robber in at most 4 rounds.

R1 : c1 = 14, c2 → 10. Now either R→ 12 or R = 2. Suppose R = 2.

R2 : c1 = 14, c2 → 11, R = 2.

R3 : c1 → 4, c2 → 12, R = 2. Then the game finish in the next step. Suppose after

the first round R→ 12.

R2 : c1 = 14, c2 → 11, R→ 2.
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R3 : c1 → 12, c2 → 4, R = 2. Then the game finish in the next step.

Case-X : Assume R = 3.

Now the cops can catch the robber in at most 6 rounds.

R1 : c1 → 15, c2 → 8. Now either R = 3 or R→ 13. Suppose R→ 13.

R2 : c1 → 14, c2 → 1, R→ 12.

R3 : c1 = 14, c2 → 11, R→ 2.

R4 : c1 → 4, c2 → 12, R = 2. Then the game finish in the next step. Suppose after

the first round R = 3.

R2 : c1 = 15, c2 → 1, R→ 13.

R3 : c1 → 14, c2 = 1, R→ 12.

R4 : c1 = 14, c2 → 11, R→ 2.

R5 : c1 → 4, c2 → 12, R = 2. Then the game finish in the next step.
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Figure 7. The graph P(9, 2)− {e′′}.
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3. Paley graphs

Paley graphs are graphs constructed from the members of a suitable finite field by

connecting pairs of elements that differ by a quadratic residue.

Definition 1. Let q and r be two positive integers with gcd(q, r) = 1. Then r is a quadratic
residue of q if and only if x2 ≡ r (mod q) has a solution, and r is a quadratic nonresidue of
q if and only if x2 ≡ r (mod q) has no solution. We denote the set of quadratic residues by
(F∗p)2.

Definition 2. Let p be a prime number and n be a positive integer such that p ≡ 1
(mod 4). The graph Ppn = (V,E) with

V (P ) = Fpn and E(P ) = {{x, y} | x, y ∈ Fpn , x− y ∈ (F∗pn)2}

is called the Paley graph of order pn.

The list of integers which can be considered as an order of the Paley graph starts with

5, 9, 13, 17, 25, 29, 37, 41, etc. Paley graphs have very nice properties, namely they

are : connected, symmetric (they are vertex and edge-transitive), self-complementary

(complement of Px is Px), and strongly regular (they are regular and every two

adjacent vertices have the same number of common neighbours, as well as every two

non-adjacent vertices) [2, 3, 8].

In [9] authors define the GΞ as a graph obtained by connecting the corresponding

vertices in G and its complement G. Notice that P5 is just a 5-cycle and therefore

Petersen graph is a PΞ
5 .

Remark 1. P5 is 2 cop-edge critical. PΞ
5 is 3 cop-edge critical.

We prove that P17 is 3-cop edge critical graph.

Lemma 3. Let G be the graph P17. Then G is cop-edge critical with cop number 3.

Proof. P17 has 68 edges and is a strongly regular with parameters (17, 8, 3, 4),

i.e. it has 17 vertices, the degree of every vertex is 8, for any two adjacent

vertices, the number of vertices adjacent to both is 3, for any two non-adjacent

vertices, the number of vertices adjacent to both is 4. Quadratic residues of 17 are

{1, 2, 4, 8, 9, 13, 15, 16} (this implies that vertex with label 0 is connected to vertices

1, 2, 4, . . . , 16 and vertex with label 1 to vertices 2, 3, 5, . . . , 0 etc.).

Notice that no two vertices of P17 dominates a neighbourhood of any other vertex. It

is easy to prove as there is a gap of three consecutive vertices in the neighbourhood

of every vertex (for 0 it is 10, 11, 12) but on the other hand no vertex is connected
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to three consecutive vertices. That means (since P17 is vertex-transitive) that only

0 and 10, 11 or 12 could create the required pair. But since 10 is not connected to

3, 11 is not connected to 14 and 12 is not connected to 5 the condition is not true.

Therefore two cops are not sufficient to catch robber in that graph.

On the other hand we can find 3 vertices (for example {0, 10, 14}) that dominate

whole graph. Hence three cops are enough to guard the P17 graph. Thus we showed

that the cop number of P17 is equal to 3.

Now we need to show that removing any edge from P17 decrease its cop number.

We show that in P17 there are always two vertices that dominate any vertex and its

neighbourhood without a single vertex. Let us choose a vertex 0 and edge {0, 4}.
The two vertices with that property are 10 an 15 (they are not connected only with

{3, 4, 5}). Notice that 0 is not connected to 3 and 5 thus after removing the edge {0, 4},
vertices 10 and 15 dominates whole neighbourhood of 0, and 0 itself. In general there

is a cycle 0− 4− 8− 12− 16− 3− 7− 11− 15− 2− 6− 10− 14− 1− 5− 9− 13− 0 on

which we can restrict the robber movement with proper positioning of the cops (when

robber moves from vertex 0 to vertex 4 we move cops from 10, 15, to 14 and 2 etc.).

Whenever some edge from this cycle is missing we will then catch the robber when

he/she will reach it. Since Paley graphs are edge and vertex transitive the argument

is true for every edge of P17 (after applying proper automorphism).

Lemma 4. Let G be the graph PΞ
17. Then G is edge critical with cop number 4.

Proof. Graph GΞ is obtained by taking a graph G and its complement (on the

separate set of vertices) and by connecting the corresponding vertices in both copies

with an edge. We will address the copies of the graph as P17 part and P17 part. We

start with showing that cop number of PΞ
17 is 4. We start the game by putting three

cops in P17 part of the graph so that they dominate the whole graph and fourth

robber in the P17 part. Then robber has to put him/herself on the part with only

one cop. We then keep one cop in the complement part of the graph in order to

prevent robber from changing the parts and place other cops so that they dominates

whole P17. Thus in at most three rounds robber would get caught. This implies that

4 cops are enough to catch the robber.

On the other hand, if we have only 3 cops then we have two options for the robber

to move to safe position in every step: the move is either to move in the same part

he is at the moment or to switch parts. As we know from previous proof we can not

stop the robber on one part with only two cops. If we move three cops on one part,

then robber can always change parts and continue the game. If we use only two cops

then (again by previous proof) we can force the robber to choose between a single

vertex from part he is in at the moment and changing the parts. Assume robber is
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at vertex v and his choices are vertex u and v. The third cop can not guard both u

and v as u is not connected with v, therefore the robber would always have a “safe”

vertex to move to and continue the game. Thus the cop number of PΞ
17 is 4.

If we remove a single edge from either of parts then by previous proof we can stop

robber on one part of the graph with just two cops and use the third one in order

to prevent the robber from changing the sides. The game would look as follows: We

start by putting all cops on one part, then after first round choose one cop to prevent

the robber from changing parts while other two catch him.

If the missing edge is the edge between the parts (denote it as edge {v, v}) then we

force robber on the vertex v using the same approach as just described (where one cop

only focus on preventing the robber from switching parts). Once the robber is forced

by other two cops onto vertex v the third cop moves into vertex u which is the vertex

copy of the only choice robber has on his part that is not guarded by other two cops.

Then robber is caught in the next step. We need to show that such move by the third

cop is always possible. Again we would use the example from the previous proof.

Assume missing edge is {4, 4} and robber is on vertex 0. Then cop which prevents

him from moving onto 0 can move to any vertex which is connected to both 0 and 8,

which are {3, 5, 11, 14}. Since every vertex of P17 is connected to one of them, the cop

can do it from every position his current was. Then in next step robber is forced on

vertex 4, while third cop moves to 8 and robber is caught in the next round. Again

due to P17 being vertex and edge transitive the same proof can be repeated for every

edge concludes the proof that PΞ
17 is edge critical with cop number 4.

We propose two conjectures regarding Paley graphs:

Conjecture 2. There are infinitely many cop edge critical graphs among family {PΞ
x :

x ∈ N}.

Conjecture 3. If Px is k-cop edge critical, then PΞ
x is k+1-cop edge critical.

4. Open Problems

In this paper we have found three more graphs which are 3-cop edge critical and

have given a very first example of a graph which is 4-cop edge critical. Moreover

we formulate a very interesting conjectures regarding edge criticality among Paley

graphs. Characterization of graphs which are 3-cop edge critical still remains open.
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