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1. Introduction

For standard terminology and notation in abstract algebra and graph theory, not

specifically mentioned or defined, we refer the reader to the standard textbooks [2] and

[6], respectively. Throughout the paper all rings are assumed to be finite commutative

with 1 6= 0. First, we recall some basic notions about the line graph and line signed

graph of a graph, which will further be studied in the realm of a unit graph and signed

unit graph. For a commutative ring R with unity, let Z(R) and Z0(R) be the set of

all zero-divisors and the set of all nonzero zero-divisors of R, respectively.

Let R be a commutative ring with 1 6= 0 and U(R) be its set of units. According

to Ashrafi et al. [1], the unit graph of R, denoted by G(R), is a simple graph whose

vertices are the elements of R, and two distinct vertices x and y are adjacent if and

only if x+ y is a unit of R.

The proof of the following result can be found in [7].

Lemma 1. [7] Let R = Zt2 × S(t ≥ 0), where S ∈ {Z2,Z4,Z6,
Z2[x]

〈x2〉 }. Then G(R) =

2tG(S).
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For a given graph, there are several derived graphs in the literature, among which

the line graph is one of them. The line graph L(G) of a graph G, is a graph defined

by V (L(G)) := E(G) and {e1, e2} ∈ E(L(G)) if e1 and e2 are incident to a common

vertex in G. If (u, v) ∈ E(G) we will denote the corresponding vertex of L(G) by

[u, v].

Lemma 2. [6, Page 71] Let G be an arbitrary graph and L(G) be its line graph. Then
for any vertex [u, v] ∈ V [L(G)] the degree is given by

degL(G)[u, v] = degG(u) + degG(v)− 2

Turning to signed graph: “Given a graph Γ, the graph Γ equipped with a signature

σ is called a signed graph, denoted by Σ := (Γ, σ), where Γ = (V,E) is an underlying

graph and σ : E → {+,−} is the signature that labels each edge of Γ either by ‘+’ or

‘−’. The edge which receives the positive (negative) sign is called a positive (negative)

edge. A signed graph is said to be an all-positive (all-negative) if all of its edges are

positive (negative); it is also called homogeneous if it is either an all-positive or an

all-negative and heterogeneous otherwise. The negative degree d−(v) of a vertex v is

the number of negative edges incident at v in Σ”.

One of the fundamental concepts in the theory of signed graphs is balance. Harary

[5] introduced the fascinating concept of balanced signed graphs for the analysis of

social networks, in which a positive edge stands for a positive relation and a negative

edge represents a negative relation. “A signed graph is balanced if every cycle has

an even number of negative edges, and a signed graph that is not balanced is called

an unbalanced signed graph. Note that if a signed graph is disconnected, then it is

balanced if each of its component is balanced.”

Consistent marked graphs were introduced by Beineke and Harary [4]. The idea was

earlier motivated by communication networks and later studied on social networks.

Definition 1. “A marked signed graph is an ordered pair Σµ = (Σ, µ), where Σ = (Γ, σ)
is a signed graph and µ : V (Σ)→ {+,−} is a function from the vertex set V (Σ) into the set
{+,−}, called marking of Σ. In particular; σ induces a unique marking µσ defined by

µσ(v) =
∏
e∈Ev

σ(e),

where Ev is the set of edges incident at v in Σ, is called the canonical marking of Σ. If every
vertex of a given signed graph Σ is canonically marked, then a cycle Z in Σ is said to be
canonically consistent (C-consistent) if it contains an even number of negative vertices and
the given signed graph Σ is said to be C-consistent if every cycle in it is C-consistent.”

For a signed graph Σ, Behzad and Chartrand [3] defined its line signed graph L(Σ)

as the signed graph in which the edges of Σ are represented as vertices, two of these

vertices are defined to be adjacent whenever the corresponding edges in Σ have a
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vertex in common, any such edge ef is negative whenever both e and f are negative

edges in Σ and positive otherwise.

Pranjali and Amit Kumar [8] initiated the study of signed unit graph of a commutative

ring. The formal definition of the signed unit graph defined in [8] is as follows:

Definition 2. “A signed unit graph is an ordered pair GΣ(R) := (G(R), σ), where G(R)
is the unit graph of a commutative ring R and for an edge (a, b) of GΣ(R), σ is defined as”

σ(a, b) =

{
+ , if a ∈ U(R) or b ∈ U(R);

− , otherwise.

The goal of that study was to associate the concept of unit graph to signed graph.

Moreover, they have established the necessary and sufficient conditions on commuta-

tive rings for which the signed unit graph GΣ(R) is balanced.

The following significant result brought from [8] will be useful later in our work:

Lemma 3. Let R be a finite commutative ring 1 6= 0. The signed unit graph GΣ(R) is
homogeneous (all-positive) if and only if R is a local ring.

This work is intended to extend the idea of line graph of a unit graph into a line

signed graph of a signed unit graph with key focus on the fundamental concepts of

balance and consistency. Although, local rings are ubiquitous, but to avoid trivialities,

non-local rings have become the central point of the work. To address this issue, we

attempt to characterize finite commutative rings with unity for which L(GΣ(R) is

balanced and C-consistent. In the sequel, we established sufficient conditions that

will work as a stepping stone to derive the main results.

2. Rings for which LΣ(GΣ(R)) is balanced

This section is devoted to determining the commutative rings for which LΣ(GΣ(R))

of given GΣ(R) is balanced. More emphasis is placed on the non-local rings as for

local rings GΣ(R) is an all-positive, and thus many things turn out trivially.

Theorem 1. Let R be a local ring, and LΣ(GΣ(R)) be line signed graph of signed unit
graph GΣ(R). Then LΣ(GΣ(R)) is balanced.

Proof. Let R be a local ring, and GΣ(R) be its signed unit graph. Then, by Lemma

3 GΣ(R) is an all-positive, and hence LΣ(GΣ(R)) is an all-positive signed graph.

Therefore, LΣ(GΣ(R)) is trivially balanced.

Here, it is obvious to ask the following problem:

Problem 1. Characterize non-local rings for which LΣ(GΣ(R)) is balanced.
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Towards attempting the above problem, we shall start with small ordered line signed

graphs of a signed unit graph associated with R.

Theorem 2. If R is a finite commutative ring with unity such that |R| < 6, then
LΣ(GΣ(R)) of GΣ(R) is balanced.

Proof. If |R| = 2, then R ∼= Z2 and GΣ(R) is an all-positive and therefore

LΣ(GΣ(R)) is also all-positive, so balanced trivially. Next, if |R| = 3, or |R| = 5, then

R ∼= Z3 or R ∼= Z5, respectively. Since both the listed rings are local, LΣ(GΣ(R)) is

balanced.

If |R| = 4, then R is either isomorphic to Z4 or F4 or Z2[x]
〈x2〉 or Z2×Z2. Note that first

three rings are local therefore, LΣ(GΣ(R)) is balanced and for the remaining rings

LΣ(GΣ(R)) is a null graph, and hence balanced.

It is evident from the above result that the smallest order of a non-local ring whose

line signed graph of signed unit graph is not balanced is 6, which is apparent from

the graph shown in Figure 1. Besides this, Figure 1 also helps us to visualize the

possibility that the signed unit graph may be balanced, although its line signed graph

is not necessarily balanced.

Example 1. If R ∼= Z6, then G(R) ∼= C6. In this case, both GΣ(R) and LΣ(GΣ(R)) are
shown in Figure 1.

Figure 1. The graph G(Z6), GΣ(Z6) and LΣ(GΣ(Z6))

One can see that GΣ(R) is balanced, while LΣ(GΣ(R)) is not balanced, due to presence of
precisely one negative edge in the cycle.

Theorem 3. Let R be a finite commutative ring with unity such that |Z0(R)| ≤ 2. Then
LΣ(GΣ(R)) is balanced.

Proof. Let R be a ring with non-zero identity such that |Z0(R)| ≤ 2. If |Z0(R)| = 1,

thenR is either isomorphic to Z4 or Z2[x]
〈x2〉 . Since both the rings are local, so LΣ(GΣ(R))

is balanced due to Theorem 1.



Pranjali 317

If |Z0(R)| = 2, then R is Z9 or Z3[x]
〈x2〉 or Z2×Z2. Since the first two rings are local, by

Theorem 1, LΣ(GΣ(R)) is balanced. Next, if R ∼= Z2 × Z2, then in light of Lemma

1, G(Z2 × Z2) is isomorphic to 2-copies of K2. Thus LΣ(GΣ(R)) has two isolated

vertices, and hence balanced trivially.

Theorem 4. Let R be the direct product of local rings, among which at least one has
three or more units. Then LΣ(GΣ(R)) is not balanced.

Proof. Let R be a finite commutative ring with unity. In view of [2, page 95], R

can be written as R1 × R2 × R3 × · · · × Rt (t > 1), where each Ri is a local ring.

If at least for one i, |U(Ri)| ≥ 3, then there exist a vertex v1 in GΣ(R) of negative

degree greater than equal to three and that would create an all negative triangle in

LΣ(GΣ(R)) namely; [v1, v2]− [v1, v3]− [v1, v4]− [v1, v2], where v1 = (1, 0, 1, 1, . . . , 1),

v2 = (0, u1, 0, 0, . . . , 0), v3 = (0, u2, 0, 0, . . . , 0) and v4 = (0, u3, 0, 0, . . . , 0), where

ui ∈ U(Ri). This shows that LΣ(GΣ(R)) is not balanced.

From the above discussion, it may be noted that the necessary condition on a finite

ring R for which LΣ(GΣ(R)) of given GΣ(R) is balanced is that each ring in the direct

product has at most two units.

Proposition 1. Let R be a finite commutative ring with unity such that |U(R)| ≤ 2.

Then R is isomorphic to Zt−1
2 × S (t > 0), where S ∼= Z2 or Z3 or Z4 or Z6 or Z2[x]

〈x2〉 .

Proof. Let R be a finite commutative ring with unity such that |U(R)| ≤ 2. Since

every finite commutative ring with unity can be written as R ∼= R1 × R2 × · · · × Rt,
where each Ri’s a local ring. Without loss of generality, let us assume that |R1| ≤
|R2| ≤ |R3| ≤ · · · ≤ |Rt|. We know that the number of units of R ∼= R1×R2×· · ·×Rt
is given by U(R) = U(R1)× U(R2)× · · · × U(Rt) and |U(R)| = |U(R1)| × |U(R2)| ×
· · · × |U(Rt)|. Now, if |U(R)| = 1, then |U(Ri)| = 1 ∀ i, (1 ≤ i ≤ t). Therefore, for

each i, Ri ∼= Z2 , and hence R ∼= Zt2 (t > 0).

Let |U(R)| = 2, then exactly one of Ri must have two units and remaining Ri must

have one unit. Without loss of generality, suppose that |U(Ri)| = 1 ∀ i (1 ≤ i ≤ t−1)

and |U(Rt)| = 2. Now it is known that the commutative rings with unity having

exactly two units is isomorphic to one of the following listed rings Z3 or Z4 or Z2[x]
〈x2〉 ,

or Z6. Except Z6 all the listed rings are local, so Rt must be isomorphic to either Z3

or Z4 or Z2[x]
〈x2〉 and Ri ∼= Z2 ∀ i (1 ≤ i ≤ t−1). Therefore R ∼= Zt−1

2 ×S (t > 0), where

S ∼= Z2 or Z3 or Z4 or Z2[x]
〈x2〉 .

Theorem 5. Let R be a finite commutative ring with unity, and let LΣ(GΣ(R)) be line
signed graph of a signed unit graph GΣ(R). Then LΣ(GΣ(R)) is balanced if and only if either
R is a local ring or R is isomorphic to Zt−1

2 × S, (t ≥ 1), where S is one of the following

rings Z2 or Z4 or Z2[x]

〈x2〉 .
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Proof. Let R be a finite commutative ring with non-zero identity and let LΣ(GΣ(R))

be the line signed graph of a signed unit graph GΣ(R). From ([2], p. 95), R must be

of the form R ∼= R1 ×R2 ×R3 × · · · ×Rt, (t ≥ 1), where each Ri(1 ≤ i ≤ t) is a local

ring.

Necessity: Let us assume that LΣ(GΣ(R)) is balanced and we wish to prove that R is

isomorphic to Zt−1
2 ×S, where S is one of the rings Z2 or Z4 or Z2[x]

〈x2〉 . We shall prove

the result by contrapositive. To do this, suppose R is neither local nor R ∼= Zt2 × S,

where S is one of the following rings Z2 or Z4 or Z2[x]
〈x2〉 . Then one should necessarily

have t > 1 and R must have |U(R)| ≥ 2. First, if |U(R)| = 2, then by Proposition

1 along with assumption R must be isomorphic to Zt−1
2 × Z3 (t > 1). But for this

R, LΣ(GΣ(R)) is a disjoint union of C6 in which one cycle has exactly one negative

edge, which indicates that LΣ(GΣ(R)) is not balanced.

Next, if |U(R)| > 2, then for choice of unit of Ri, we have the following two possi-

bilities: (i) when at least one Ri have |U(Ri)| ≥ 3; (ii) when at least two Ri have

|U(Ri)| = 2.

For possibility (i) when at least one Ri have |U(Ri)| ≥ 3, LΣ(GΣ(R)) is not balanced,

due to Theorem 4. (ii) If at least two Ri’s have |U(Ri)| = 2, then R have at least four

units, i.e., |U(R)| ≥ 4. Also we know that G(R) is |U(R)|-regular. Therefore, there

exist a vertex v in GΣ(R) having d−(v) = 2 and d+(v) ≥ 2 as Ri’s has two units.

Clearly, corresponding to these edges incident on v in GΣ(R) there exist a complete

graph of order k (k ≥ 4) in LΣ(GΣ(R)) with exactly one negative edge, and this

indicates that LΣ(GΣ(R)) is not balanced. From the above analysis it is found that

in each of the above possibilities LΣ(GΣ(R)) is not balanced. Thus by contrapositive

the result follows.

Sufficiency: First let R be a local ring then due to Theorem 1, LΣ(GΣ(R)) is balanced.

Next let R ∼= Zt−1
2 ×S,(t ≥ 1) where S is one of the following rings Z2 or Z4 or Z2[x]

〈x2〉 .

For t = 1, R is isomorphic to Z2 or Z4 or Z2[x]
〈x2〉 and all these rings are local, and hence

by Theorem 1, LΣ(GΣ(R)) is balanced.

On the other hand if t > 1, then for S ∼= Z2, we have G(Zt−1
2 × Z2) ∼= ∪2(t−1)

i=1 K2,

due to Lemma 1 and hence LΣ(GΣ(R)) is a null graph. Next, for S ∼= Z4 or Z2[x]
〈x2〉 ,

we have G(Zt−1
2 × S) ∼= 2(t−1)-copies of C4, in which GΣ(R) consists of exactly one

homogenous all positive C4 and remaining components homogenous all-negative C4.

Note that in this case LΣ(GΣ(R)) ∼= GΣ(R), this yields, LΣ(GΣ(R)) is balanced.

Remark 1. It is worthwhile to note here that if LΣ(GΣ(R)) is balanced, then |U(R)| ≤ 2,
but converse is not true. As for instance if R ∼= Z2 × Z3, then |U(R)| = 2 and there is a
vertex (1, 0) in GΣ(R) having negative degree 3, and which create an all-negative triangle in
LΣ(GΣ(R)). This shows that LΣ(GΣ(R)) is not balanced.

In the following theorem, we characterize the rings R, for which both GΣ(R) and

LΣ(GΣ(R)) are balanced:
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Theorem 6. Let R be a finite commutative ring with unity and GΣ(R) be its singed unit
graph. Let LΣ(GΣ(R)) be a line signed unit graph of GΣ(R). Then GΣ(R) and LΣ(GΣ(R))
are both balanced if and only if R is either a local ring or R is isomorphic to Zt2 × S, where
S ∼= Z2 or Z4 or Z2[x]

〈x2〉 .

Proof. Invoking Theorem 5 and [8, Theorem 2.3], the proof follows.

3. Rings for which LΣ(GΣ(R)) is Consistent

This section begins with the result depicting the C-consistency of LΣ(GΣ(R)) for local

ring. Next, to realize the impact of non-local rings on the C-consistency of LΣ(GΣ(R))

we shall be doing almost everything for non-local rings. Further, we establish several

sufficient conditions which work as a strong foundation for the main result.

Theorem 7. Let R be a local ring and let LΣ(GΣ(R)) be a line signed graph of signed
unit graph GΣ(R). Then LΣ(GΣ(R)) is C-consistent.

Proof. Let R be a local ring. Then in light of Lemma 3, GΣ(R) is an all-positive,

and hence corresponding LΣ(GΣ(R)) is also all-positive. Therefore, LΣ(GΣ(R)) is

trivially C-consistent.

Theorem 8. Let R ∼= Zt2 × S, t ≥ 1, where S is isomorphic to Z2 or Z3 or Z4 or Z2[x]

〈x2〉 .

Then LΣ(GΣ(R)) is C-consistent.

Proof. Let R ∼= Zt2 × S, t ≥ 1. If S is taken to be Z2, then in light of Lemma 1,

G(Zt2×Z2) ∼= ∪2t

i=1K2. Clearly, by Definition 2 along with the definition of line signed

graph, we acquire the desired conclusion, i.e., LΣ(GΣ(R)) is trivially C-consistent.

Next, if S is taken to be Z3, then in the similar vein, G(Zt2 × Z3) is isomorphic to

2t−1-copies of C6, in which GΣ(R) consists of two negative edges in one cycle and re-

maining other all negative components, which would create exactly one negative edge

in one cycle and remaining other all negative components, respectively in LΣ(GΣ(R)).

Therefore under the C-marking, two vertices in one component receive ‘−’ve sign and

all six vertices in the other components receive ‘+’ve sign in LΣ(GΣ(R)), and hence

it is C-consistent.

Finally, if S is either Z4 or Z2[x]
〈x2〉 , then G(Zt2×S) ∼= 2t−copies of C4, in which GΣ(R)

consists of precisely one homogenous all positive C4 and remaining other homogenous

all-negative C4. Note that LΣ(GΣ(R)) ∼= GΣ(R), this indicates that under the C-

marking all the vertices in LΣ(GΣ(R)) receive ‘+’ive sign. It follows that LΣ(GΣ(R))

is C-consistent.

Remark 2. Note that if a non-local ring R has Z2 as a quotient, then LΣ(GΣ(R)) need not
be C-consistent, as for instance, if R ∼= Z2×Z7, then R has Z2 as a quotient, but LΣ(GΣ(R))
is not C-consistent.
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To examine the impact of reduced rings on the C-consistency of LΣ(GΣ(R)), we have

established the following result:

Theorem 9. For t > 1, let R ∼= Zt−1
2 × Z3, or

∏t
i=1 Fi, where either each Fi’s is a field

of characteristic 2 or each Fi’s is a field of characteristic pi (pi > 2), respectively. Then
LΣ(GΣ(R)) is C-consistent.

Proof. If R ∼= Zt−1
2 ×Z3 or Zt−1

2 ×Z2, then the proof follows from Theorem 8. Next,

if R ∼=
∏t
i=1 Fi, where either each Fi’s is a field of characteristic 2, or each Fi’s is

a field of characteristic pi (pi > 2), respectively, then to examine C-consistency in

LΣ(GΣ(R)) it is enough to calculate the negative degree of each vertex in GΣ(R). To

do this, let us assume that v = (v1, v2, . . . , vt) be an arbitrary vertex of GΣ(R). If

v ∈ U(R) or v = 0̄, then d−(v) = 0. This yields d−(v) > 0 only when vi 6= 0 at

least for one i (1 ≤ i ≤ t) in v. Also one can verify that d−(v) = |U(R)| − L, where

L =
∏
j |U(Fj)| ·

∏
i(|U(Fi)| − 1) in GΣ(R).

On the other hand, when each Fi’s is a field of characteristic 2, then the value of ‘L’

turns out to be even. Therefore d−(v) is odd. Since v is arbitrary, d−(u) is also odd

for u ∈ V (GΣ(R)). Hence the negative degree of a vertex [u, v] in LΣ(GΣ(R)) is given

by

d−[u, v] = d−(u) + d−(v)− 2

Thus the negative degree of each vertex in LΣ(GΣ(R)) is even, and hence under a

canonical marking, each vertex of LΣ(GΣ(R)) receive a positive sign.

Next, if each Fi’s is a field of characteristic pi (pi > 2), respectively, then the value

of ‘L’ turns out to be even. Therefore, d−(v) is even. Since v is arbitrary, d−(u) is

also even for u ∈ V (GΣ(R)). Thus by following the similar procedure as done above

it is found that the negative degree of a vertex [u, v] in LΣ(GΣ(R)) is even, and hence

under a canonical marking each vertex of LΣ(GΣ(R)) receive a positive sign. Thus

the result follows.

In the following result we establish the sufficient condition to determine the rings R

for which LΣ(GΣ(R)) is C-consistent by imposing the condition on the set of nonzero

zero-divisors of R.

Theorem 10. Let R be a ring with unity such that |Z0(R)| ≤ 4. Then LΣ(GΣ(R)) is
C-consistent.

Proof. Let R be a ring with 1 6= 0 such that |Z0(R)| ≤ 4. To show the desired

result, we shall tackle each case separately.

If |Z0(R)| = 1, then the possible rings are Z4 or Z2[x]
〈x2〉 . Since both the rings are

local, LΣ(GΣ(R)) is C-consistent due to Theorem 7. Next, if |Z0(R)| = 2, then upto

isomorphism such rings are Z9 or Z3[x]
〈x2〉 or Z2 × Z2. Now it is easy to see that the

first two listed rings are local, so by Theorem 7, LΣ(GΣ(R)) is C-consistent and for

the remaining one LΣ(GΣ(R)) is C-consistent due to Theorem 8. If |Z0(R)| = 3, then
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in this case there are eight commutative rings upto isomorphism, namely, Z6 or Z8

or Z2[x]
〈x3〉 or Z4[x]

〈2x,x2−2〉 or Z2[x,y]
〈x,y〉2 or Z4[x]

〈2,x〉2 or F4[x]
〈x2〉 or Z4[x]

〈x2+x+1〉 . Note that except Z6

all other rings are local, thus LΣ(GΣ(R)) is C-consistent for these rings. For Z6 we

have LΣ(GΣ(Z6)) is isomorphic to C6 with one negative edge and under a C-marking

exactly two vertices will be assigned with ‘(−)’ive sign. Hence LΣ(GΣ(Z6)) is C-
consistent. Finally if |Z0(R)| = 4, then the possible non-isomorphic commutative

rings are Z2 × F4 or Z3 × Z3 or Z25 or Z5[x]
〈x2〉 . For the first two rings LΣ(GΣ(R))

is C-consistent due to Theorem 9 and the rest two listed rings are local, therefore

LΣ(GΣ(R)) is C-consistent for each of the listed rings.

The following remark may help to visualize the C-consistency of LΣ(GΣ(R)) when a

ring has ‘k’ nonzero zero-divisors up to 14 of a particular kind.

Remark 3. If R is finite commutative ring with 1 6= 0 such that |Z0(R)| = k, where
k ∈ {2, 4, 6, 8, 10, 12, 14}. Then LΣ(GΣ(R)) is C-consistent.

Proof. Let R be finite commutative ring with 1 6= 0 such that |Z0(R)| = k, where

k ∈ {2, 4, 6, 8, 10, 12, 14}. In order to show the result we shall make use of Theorem 7

and Theorem 9. For each k we shall tackle the case separately. The cases for k = 2

and k = 4 have been covered in Theorem 10. Now for k = 6, there are exactly five

nonzero commutative rings, each having exactly 6 nonzero zero-divisors, viz., Z49,
Z7[x]
〈x2〉 , Z3 × Z5, F4 × F4 and Z2 × Z2 × Z2. The first two rings are local, so in view of

Theorem 7, LΣ(GΣ(R)) is C-consistent. Now for the remaining rings LΣ(GΣ(R)) is

C-consistent, due to Theorem 9.

Next, for k = 8, there are exactly ten nonzero commutative rings, each having exactly

eight nonzero zero divisors, viz., Z27,
Z3[x]
〈x3〉 ,

Z3[x,y]
〈x,y〉2 ,

Z9[x]
〈3x,x2〉 ,

Z9[x]
〈3x,x2−3ε〉 , where ε ∈

∑
2,

F9[x]
〈x2〉 , GR(81, 9), Z5×Z5, Z2×F8 and Z3×Z7. Among the listed ten rings, first seven

ring are local and rest of them are of the form as given in Theorem 9. Therefore,

invoking Theorem 7 and Theorem 9, LΣ(GΣ(R)) is C-consistent.

Next for k = 10, there are exactly five nonzero commutative rings, each having exactly

10 nonzero zero-divisors, viz., Z121,
Z11[x]
〈x2〉 , Z5 × Z7, Z3 × F9, and F4 × F8. All the

mentioned rings are either local or of the form as appeared in Theorem 9. So by the

same arguments as given above, LΣ(GΣ(R)) is C-consistent.

Next for k = 12, there are exactly six nonzero commutative rings, each having exactly

12 nonzero zero-divisors, viz., Z169,
Z13[x]
〈x2〉 , Z7×Z7, Z3×Z11, Z5×F9 and Z2×Z2×F4.

All the listed rings are either local or appeared in Theorem 9. So by giving the similar

arguments as given above, LΣ(GΣ(R)) is C-consistent.

Next for k = 14, there are 7 rings with 14 nonzero zero-divisors, viz., Z39, Z55,

F8 × F8, Z7 × F9, Z2 × Z2 × Z2 × Z2, Z3 × Z9, and Z3 × Z3[x]
〈x2〉 . Here for the first

five rings LΣ(GΣ(R)) is C-consistent, due to Theorem 9 and for the remaining two

rings Z3×Z9, and Z3× Z3[x]
〈x2〉 , their signed unit graphs are isomorphic and hence their

line signed graphs are also isomorphic. Now in order to check the C-consistency, we

shall calculate the negative degree of each vertex in LΣ(GΣ(Z3 × Z9)). Let [v1, v2] ∈
V (LΣ(GΣ(Z3 × Z9))), where v1, v2 ∈ V (GΣ(Z3 × Z9)). In view of the Definition 2, it
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is apparent that if either v1 ∈ U(Z3 × Z9) or v1 ∈ M(Z3 × Z9), then d−(v1) = 0. It

may easily be seen that the number of negative edges incident on v1 in GΣ(R) is 6,

when neither v1 nor v2 belongs to any of U(Z3×Z9) or M(Z3×Z9). Thus d−(v1) = 6

and d−(v2) = 6 and hence the negative degree of vertex [v1, v2] in LΣ(GΣ(Z3 × Z9))

is given by 6 + 6− 2 = 10, which is even. Therefore, under the C-marking each vertex

of LΣ(GΣ(R)) receive the positive sign. Hence for each ring R having |Z0(R)| ≤ k,

where k ∈ {2, 4, 6, 8, 10, 12, 14}, LΣ(GΣ(R)) is C-consistent.

By imposing the condition on cardinality of rings we have the following result:

Theorem 11. Let R be finite commutative ring with 1 6= 0 such that |R| < 10. Then
LΣ(GΣ(R)) is C-consistent.

Proof. Let R be a finite commutative ring with 1 6= 0 such that |R| < 10. If |R| = 2

or 3 or 5 or 7, then in each case R is precisely local. Therefore, by Theorem 7,

LΣ(GΣ(R)) is C-consistent for each R.

Next, if |R| = 4, then all non-isomorphic rings of order 4 are, viz., Z4 or Z2[x]/〈x2〉 or

F4 or Z2 × Z2. Among the listed rings, the first three rings are local, so LΣ(GΣ(R))

is C-consistent, due to Theorem 7. For the remaining ring Z2 × Z2, LΣ(GΣ(R)) is

C-consistent, due to absence of a cycle.

Now if |R| = 6, then the only ring is Z6 for which G(R) is isomorphic to C6 and

LΣ(GΣ(Z6)) is a cycle C6 consisting of one negative edges. Now, under the canon-

ical marking only two vertices in LΣ(GΣ(Z6)) receive the negative sign. Therefore,

LΣ(GΣ(R)) is C-consistent.

Next, let |R| = 8. Then there are ‘ten’ non-isomorphic rings that are listed as follows

Z8 or F8 or Z2[x]/〈x3〉 or Z2[x,y]
〈x,y〉2 or Z4[x]

〈2x,x2−2〉 or Z4[x]
〈2,x〉2 or Z2 × Z2 × Z2 or Z2 × F4

or Z2 × Z4 or Z2 × Z2[x]
〈x2〉 . Among the listed rings the first six rings are local, so by

Theorem 7 that LΣ(GΣ(R)) is C-consistent. For the rings Z2 ×Z2 ×Z2 and Z2 × F4,

LΣ(GΣ(R)) is C-consistent due to Theorem 9. Now for the remaining rings we found

that LΣ(GΣ(R)) is C-consistent due to Theorem 8.

Finally, let |R| = 9. Then R is isomorphic to one of the rings viz., Z9 or Z3[x]/〈x2〉
or F9 or Z3 × Z3. Note that the first three listed rings are local, and the remaining

one is reduced, therefore LΣ(GΣ(R)) is C-consistent due to Theorem 7 and Theorem

9 respectively.

Remark 4. It is apparent from Theorem 11 that the smallest order of a non-local ring R
for which LΣ(GΣ(R)) is not C-consistent is 10. Interestingly, however, one can easily verify
that the only commutative ring with 1 6= 0 of order 10 is Z10, for which LΣ(GΣ(R)) is not
C-consistent.

We now turn our attention towards proving the sufficient conditions in Theorem 12

and Theorem 13, which are essential to achieve the main result(Theorem 14).
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Theorem 12. Let R be a finite commutative ring with 1 6= 0. Suppose that R ∼=
∏t
i=1 Ri

(t > 1), where each Ri’s is a local ring with maximal ideal Mi, respectively. If |Mi| is even
for some i (1 ≤ i ≤ t), then LΣ(GΣ(R)) is C-consistent.

Proof. Let R be a finite commutative ring such that R ∼=
∏t
i=1Ri (t > 1), where

each Ri’s is a local ring with maximal ideal Mi, respectively. To examine the C-
consistency of LΣ(GΣ(R)), first, we shall compute the negative degree of each vertex

in GΣ(R)). Now let us assume that |Mi| is even for some i and let u = (u1, u2, . . . , ut)

and v = (v1, v2, . . . , vt) be two arbitrary elements of R, i.e., u, v ∈ V (GΣ(R)). It is

easy to check that the presence of negative edges on u(or v) in GΣ(R) is seen only

when some ui ∈Mi and uj ∈ U(Rj). Now we shall tackle each of these cases:

Case 1 Let u1 ∈ M1. Then the edge (u, v) is negative if and only if u + v ∈ U(R).

Since u1 ∈ M1, it gives v1 ∈ U(R1) and vi ∈ Mi for some i (2 ≤ i ≤ t). Thus in

GΣ(R), the number of negative edges incident on u is a multiple of |U(R1)|, which is

even.

Case 2 Let u1 ∈ U(R1). Now suppose that the edge (u, v) is negative, then there are

two possibilities for vi (2 ≤ i ≤ t): (i) vi ∈Mi and (ii) vi ∈ U(Ri).

(i) If vi ∈Mi for some i, then the number of such v’s are multiple of |U(R1)|.
(ii) If vi ∈ U(Ri) for all i, then the number of such v’s are multiple of |M1|.
Thus in both the possibilities, the negative degree of u is even. From the cases as

mentioned earlier, it is evident that d−(u) is even in GΣ(R) and u is arbitrary in each

case. Therefore the negative degree of a vertex [u, v] ∈ V (LΣ(GΣ(R))), associated

with u, v ∈ V (GΣ(R)) is given by

d−[u, v] = d−(u) + d−(v)− 2

which is even. This shows that the negative degree of each vertex in LΣ(GΣ(R)) is

even and hence under C-marking each vertex will receive ‘+’ive sign. Thus the result

follows.

Theorem 13. Let R be a finite commutative ring with 1 6= 0. Suppose that R ∼=
∏t
i=1 Ri

(t > 1), where each Ri’s is a local ring with maximal ideal Mi, respectively. If |U(Ri)| is
even for all i (1 ≤ i ≤ t), then LΣ(GΣ(R)) is C-consistent.

Proof. Let R be a finite commutative ring with 1 6= 0 of the form
∏t
i=1Ri

(t > 1), where each Ri’s is a local ring with maximal ideal Mi, respectively. Let

u = (u1, u2, . . . , ut) and v = (v1, v2, . . . , vt) be two arbitrary elements of V (GΣ(R))

and if they are adjacent, then corresponding to these vertices, the vertex [u, v] ∈
V (LΣ(GΣ(R))). In view of the Definition 2, it is apparent that if either ui ∈ U(Ri) or

ui ∈Mi for all i, then d−(u) = 0. Thus, a negative edge on u occurs only when some

ui ∈ U(Ri) and some uj ∈ Mj . It may easily be seen that the number of negative

edges incident on u in GΣ(R) is given by |U(R)| − (
∏
i(|U(Ri| − |Mi|) ·

∏
j(|U(Rj)|))

which is even. Now we proceed similar to that as we did in the previous theorem
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to compute the negative degree of a vertex [u, v] ∈ V (LΣ(GΣ(R))) and found that

d−[u, v] is even. Since [u, v] is arbitrary, it follows that through the C-marking each

vertex of LΣ(GΣ(R)) receive ‘+’ive sign. Hence LΣ(GΣ(R)) is C-consistent.

Remark 5. It is bring here to note that the sufficient conditions furnished in Theorem 12
and Theorem 13 are not mutually exclusive, as for instance; if R ∼= Z4 ×Z8, then R satisfies
the conditions of each of the above mentioned theorem.

The following result characterizes rings for which LΣ(GΣ(R)) is C-consistent.

Theorem 14. Let R be a finite commutative ring with 1 6= 0. Suppose that R ∼=
∏t
i=1 Ri

(t ≥ 1), where each Ri is a local ring with maximal ideal Mi, respectively. Then LΣ(GΣ(R))
is C-consistent if and only if any one of the following conditions hold:

(i) R is local;

(ii) |U(Ri)| is even ∀ i;

(iii) R ∼= Zt−1
2 × Z3, or

∏t
i=1 Fi, where each Fi’s is field of characteristic 2;

(iv) |Mi| is even for some i.

Proof. Necessity: Let R be a finite commutative ring with non-zero identity and

by ([2], p. 95) R be expressed as R1 ×R2 × · · · ×Rt (t ≥ 1) where each Ri is a local

ring with maximal ideal Mi, respectively. Suppose LΣ(GΣ(R)) is C-consistent and we

claim that R satisfies one of the conditions (i)− (iv).

We shall prove the result by contrapositive. For this, let us assume that R does not

satisfy any of the above conditions, and then we are tempted to show that LΣ(GΣ(R))

is not C-consistent. Under this assumption, t must be strictly greater than 1. Since

each Ri is local, |Ri| = pkii , where each pi’s is prime and (1 ≤ i ≤ t). To violate

condition (ii), there must be some Ri’s which are field of characteristic 2. Therefore,

for given positive integers ‘t’ and ‘j’, the precise form of R is F1 × F2 × · · · × Fj ×
Rj+1×Rj+2× · · ·×Rt (t ≥ 1), where each Fi’s (1 ≤ i ≤ j) is field of characteristic 2.

Note that each Ri’s (j + 1 ≤ i ≤ t) is local and to disobey the condition (iii) and

condition (iv), j < t and |Mi| must be odd for all i, respectively.

Now to demonstrate the study on j < t, we shall deal with the following two cases:

(i) j + 1 = t and (ii) j + 1 < t, in the realm of following two possibilities: a) when at

least one of the Fi’s is isomorphic to Z2; b) when none of the Fi’s is isomorphic to

Z2.

Case (i): Let j + 1 = t;

Then R ∼= F1 × F2 × · · · × Fj × Rj+1, where each Fi’s is field of characteristic 2 and

Rj+1 is local, but not field of characteristic 2.

i(a); Let us assume that at least one of Fi’s is isomorphic to Z2, but R �
Zt−1

2 × Z3. Consider three distinct elements aj+1, bj+1, cj+1 ∈ U(Rj+1). Then,

one may have a 3 cycle in LΣ(GΣ(R)), viz., [z1, z2] − [z1, z3] − [z1, z4] − [z1, z2],
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where z1 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
j−times

, 0), z2 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, aj+1), z3 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, bj+1), and

z4 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, cj+1), corresponding to a vertex of degree at least 3 in GΣ(R). Now

we shall calculate negative degree of each vertex in GΣ(R). Making use of combina-

torics, we found that d− (z1) is even and d−(z2), d−(z3), d−(z4) are all odd. In view

of Lemma 2, we found that d− [z1, z2], d− [z1, z3], d− [z1, z4] are all odd, which ensures

that through a canonical marking all 3 vertices receive ‘−’ sign, and hence the above

mentioned three cycle in LΣ(GΣ(R)) is not C-consistent. Therefore, LΣ(GΣ(R)) is

not C-consistent.

i(b) Next, assume that none of the Fi’s is isomorphic to Z2. Consider ai, bi, ci ∈
U(Fi) (1 ≤ i ≤ j). Then, one may choose a 3 cycle in LΣ(GΣ(R)), corresponding to

a vertex of degree at least 3 in GΣ(R), viz., [z1, z2] − [z1, z3] − [z1, z4] − [z1, z2],

where z1 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
j−times

, 1), z2 = (a1, a2, . . . , aj︸ ︷︷ ︸
j−times

, 0), z3 = (b1, b2, . . . , bj︸ ︷︷ ︸
j−times

, 0), and

z4 = (c1, c2, . . . , cj︸ ︷︷ ︸
j−times

, 0) and z2, z3, z4 are all distinct. Now we shall proceed to compute

negative degree of each vertex for the verification of C-consistency in LΣ(GΣ(R)).

Making use of combinatorics, one can see that d− (z1) is odd and d−(z2), d−(z3),

d−(z4) are all even. Proceeding in the similar vein, we found that d− [z1, z2],

d− [z1, z3], d− [z1, z4] are all odd, which assure that through the canonical mark-

ing all 3 vertices receive ‘(−)ive’ sign, and hence the above mentioned three cycle is

not C-consistent. This shows that LΣ(GΣ(R)) is not C-consistent.

Case (ii): Let j + 1 < t;

Then, R ∼= F1×F2×· · ·×Fj×Rj+1×Rj+2×· · ·×Rt (t > 2), where each Fi’s is field

of characteristic 2 and each Rk’s (j+1 ≤ k ≤ t) is local, but not field of characteristic

2.

(ii)a) Let us assume that some of Fi’s is isomorphic to Z2. Consider ak, bk ∈
U(Rk),∀k (j + 1 ≤ k ≤ t). Then, one may have a 3 cycle in LΣ(GΣ(R)),

viz., [z1, z2] − [z1, z3] − [z1, z4] − [z1, z2], where z1 = (1, 1, 1, . . . , 1︸ ︷︷ ︸
j−times

, 0, 0, . . . , 0︸ ︷︷ ︸
(t−j)−times

),

z2 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, aj+1, aj+2, . . . , at︸ ︷︷ ︸
(t−j)−times

), z3 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, bj+1, bj+2, . . . , bt︸ ︷︷ ︸
(t−j)−times

), and

z4 = (0, 0, . . . , 0︸ ︷︷ ︸
j−times

, aj+1, aj+2, . . . , bt︸ ︷︷ ︸
(t−j)−times

), which occur corresponding to a vertex of degree

at least 3 in GΣ(R). Note that the units of each Rk’s in z4 is chosen in such a way that

z2, z3, and z4 are all remain distinct. Now we shall calculate negative degree of each

vertex for the verification of C-consistency in LΣ(GΣ(R)). Now using the arguments,

analogues to those used in the previous cases, we conclude that d− [z1, z2], d− [z1, z3],

d− [z1, z4] are all odd, which ensures that through the canonical marking all 3 vertices

receive ‘(−)’ive sign, and hence the above mentioned three cycle is not C-consistent.

Therefore, LΣ(GΣ(R)) is not C-consistent.

(ii)b); Assume that none of the Fi’s is isomorphic to Z2. Then, R ∼= F1 × F2 × · · · ×
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Ft ×Rj+1 ×Rj+2 × · · · ×Rt (t ≥ 1), where each Fi’s is field of characteristic 2.

Consider ai, bi, ci ∈ U(Fi) (1 ≤ i ≤ j). Then, one may choose a 3 cycle in LΣ(GΣ(R)),

viz., [z1, z2]− [z1, z3]− [z1, z4]− [z1, z2], corresponding to a vertex of degree at least

3 in GΣ(R), where z1 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
j−times

, 1, 1, . . . , 1︸ ︷︷ ︸
(t−j)−times

), z2 = (a1, a2, . . . , aj︸ ︷︷ ︸
j−times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
(t−j)−times

),

z3 = (b1, b2, . . . , bj︸ ︷︷ ︸
j−times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
(t−j)−times

), and z4 = (c1, c2, . . . , cj︸ ︷︷ ︸
j−times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
(t−j)−times

) and z2, z3, z4

are all distinct. Making use of combinatorics, one can see that d− (z1) is odd and

d−(z2), d−(z3), d−(z4) are all even, and therefore d− [z1, z2], d− [z1, z3], d− [z1, z4]

are all odd, which ensures that under the canonical marking all 3 vertices will be

marked with ‘(−)ive’sign. It indicates that the above mentioned three cycle is not

C-consistent. Therefore, LΣ(GΣ(R)) is not C-consistent. Thus by contrapositive the

necessity holds .

Sufficiency: For the sufficiency, let R satisfies one of the above conditions, then we

wish to prove that LΣ(GΣ(R)) is C-consistent. The proof is immediate from Theorems

7, 9, 12 and 13.
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